Maxim Integrated Products has announced power-management ICs (PMICs) that the company claims offers the industry’s smallest solution size and highest efficiency. MAX20004/6/8, MAX20034 and MAX20098 offer low quiescent current, improved noise performance and electromagnetic interference (EMI) mitigation for digital instrument clusters and radio head units.
Maxim’s newest automotive PMICs for high-voltage power applications include:
- MAX20004, MAX20006 and MAX20008 4 A, 6 A and 8 A high-voltage (40 V tolerant) synchronous buck converters with integrated high-side and low-side MOSFETs, offering the industry’s lowest switch resistance of 38 and 18 mΩ, respectively, for high efficiency. Key advantages of these pin-compatible devices include 25 µA quiescent current, operating input voltages from 3.5 V to 36 V and 93 percent peak efficiency. All are available in a compact 3.5 mm x 3.75 mm, 17-pin side-wettable QFN package that reduces high-frequency switch node and improves efficiency.
- MAX20098 220 kHz to 2.2 MHz synchronous buck controller for applications with mid- to high-power requirements operating with input voltages from 3.5 V to 36 V (42 V tolerant). For efficiency, this device features a quiescent current of 3.5 µA in skip mode at 3.3 V output along with a 1µA typical shutdown current specification. Its 3 mm x 3 mm side-wettable QFN package reduces solution size, and the IC requires few external components, enabling a two-layer PCB design.
- MAX20034 220 kHz to 2.2 MHz dual synchronous buck controller for high-voltage applications operating with input voltages from 3.5 V to 36 V (42 V tolerant), where one regulator will operate as a fixed 5 V or 3.3 V output and the other output is adjustable between 1V to 10V. Key efficiency advantages include 17 µA quiescent current in skip mode and 6.5µA typical shutdown current. The device is available in a 5 mm x 5 mm side-wettable QFN package, and it provides up to 2.2 MHz switching frequency to enable smaller external components and total solution size.
Maxim Integrated | www.maximintegrated.com
Sponsor this Article
Circuit Cellar's editorial team comprises professional engineers, technical editors, and digital media specialists. You can reach the Editorial Department at [email protected], @circuitcellar, and facebook.com/circuitcellar