To decrease thermal deszsign time for design engineers, Laird recently improved the AZTEC thermoelectric module (TEM) simulation program algorithms. The AZTEC product selection tool enables you to specify input variables based on application attributes and the software analysis outputs. Now you can select the best TEM by easily comparing TEM datasheets. In addition, the software includes an analysis worksheet for simulating TEM device functionality.
The AZTEC product selection tool—which is available at Lairdtech.com—uses a variety of input variables (i.e., heat load, ambient and control temperatures, input voltage requirement and thermal resistance of hot side heat exchangers) to recommend appropriate TEMs to meet your application’s needs. Laird updated the software with its newest TEM product offerings.
The Analysis Worksheet Tool simulates expected thermoelectric output parameters based on a given set of thermal and electrical operating points. The included output parameters are:
- the hot and cold side temperatures of the TEM
- heat pumped at the cold surface of the TEM
- coefficient of performance (COP)
- input power requirements
The total hot side heat dissipation is also calculated.
The included Qc Estimating Worksheet calculates an estimate on the heat load for device (spot) or chamber (volume) cooling applications. Computations are made based on the input (e.g., temperature requirements, volumetric dimensions, insulation thickness, material properties, and active heat load) you provide.
Source: Laird
— ADVERTISMENT—
—Advertise Here—
Circuit Cellar's editorial team comprises professional engineers, technical editors, and digital media specialists. You can reach the Editorial Department at editorial@circuitcellar.com, @circuitcellar, and facebook.com/circuitcellar