By Eric Brown
iWave has unveiled a rugged, wireless enabled SMARC module with 4 GB LPDDR4 and dual GbE controllers that runs Linux or Android on NXP’s i.MX8 QuadMax SoC with 2x Cortex-A72, 4x -A53, 2x -M4F and 2x GPU cores.
iWave has posted specs for an 82 mm x 50 mm, industrial temperature “iW-RainboW-G27M” SMARC 2.0 module that builds on NXP’s i.MX8 QuadMax system-on-chip. The i.MX8 QuadMax was announced in Oct. 2016 as the higher end model of an automotive focused i.MX8 Quad family.
Although the lower-end, quad-core, Cortex-A53 i.MX8M SoC was not fully announced until after the hexa-core Quad, we’ve seen far more embedded boards based on the
i.MX8M , including a recent Seco SM-C12
SMARC module. The only other i.MX8 Quad based product we’ve seen is Toradex’s QuadMax driven Apalis iMX8 module. The Apalis iMX8 was announced a year ago, but is still listed as “coming soon.”
— ADVERTISMENT—
—Advertise Here—
Like Rockchip’s RK3399, NXP’s i.MX8 QuadMax features dual high-end Cortex-A72 cores and four Cortex-A53 cores. NXP also offers a similar i.MX8 QuadPlus design with only one Cortex-A72 core.
The QuadMax clock rates are lower than on the RK3399, which clocks to 1.8 GHz (A72) and 1.2 GHz (A53). Toradex says the Apalis iMX8’s -A72 and -A53 cores will clock to 1.6 GHz and 1.2 GHz, respectively.
Whereas the i.MX8M has one 266 MHz Cortex-M4F microcontroller, the Quad SoCs have two. A HIFI4 DSP is also onboard, along with a dual-core Vivante GC7000LiteXS/VX GPU, which is alternately referred to as being two GPUs in one or having a split GPU design.
iWave doesn’t specifically name these coprocessors except to list features including a “4K H.265 decode and 1080p H.264 enc/dec capable VPU, 16-Shader 3D (Vec4), and Enhanced Vision Capabilities (via GPU).” The SoC is also said to offer a “dual failover-ready display controller.” The CPUs, meanwhile, are touted for their “full chip hardware virtualization capabilities.”
Inside the iW-RainboW-G27M
Like iWave’s SMARC 2.0 form factor Snapdragon 820 SOM, the iW-RainboW-G27M supports Linux and Android, in this case running Android Nougat (7.0) or higher. (Toradex’s Apalis iMX8 supports Linux, and also supports FreeRTOS running on the Cortex-M4F MCUs.)
Like Toradex, iWave is not promoting the automotive angle that was originally pushed by NXP. iWave’s module is designed to “offer maximum performance with higher efficiency for complex embedded application of consumer, medical and industrial embedded computing applications,” says iWave.
— ADVERTISMENT—
—Advertise Here—
Like the QuadMax based Apalis iMX8, as well as most of the i.MX8M products we’ve seen, the iW-RainboW-G27M supports up to 4 GB LPDDR4 RAM and up to 16 GB eMMC. iWave notes that the RAM and eMMC are “expandable,” but does not say to what capacities. There’s also a microSD slot and 256 MB of optional QSPI flash.
Whereas Apalis iMX8 has a single GbE controller, iWave’s COM has two. It similarly offers onboard 802.11ac Wi-Fi and Bluetooth (4.1). The Microchip ATWILC3000-MR110CA module, which juts out a bit on one side, is listed by Digi-Key as 802.11b/g/n, but iWave has it as 802.11ac.
Interfaces expressed via the SMARC edge connector include 2x GbE, 2x USB 3.0 host (4-port hub), 4x USB 2.0 host, and USB 2.0 OTG. Additional SMARC I/O includes 3x UART (2x with CTS & RTS), 2x CAN, 2x I2C, 12x GPIO, and single PCIe, SATA, debug UART, SD, SPI and QSPI
Media features include an HDMI/DP transmitter, dual-channel LVDS or MIPI-DSI, and an SSI/I2S audio interface. iWave also lists HDMI, 2x LVDS, SPDIF, and ESAI separately under “expansion connector interfaces.” Other expansion I/O is said to include MLB, CAN and GPIO.
The 5 V module supports -40 to 80°C temperatures. There is no mention of a carrier board.
Further information
No pricing or availability was listed for the iW-RainboW-G27M, but a form is available for requesting a quote. More information may be found on iWave’s iW-RainboW-G27M product page.
iWave | www.iwavesystems.com
This article originally appeared on LinuxGizmos.com on March 13.
Sponsor this ArticleCircuit Cellar's editorial team comprises professional engineers, technical editors, and digital media specialists. You can reach the Editorial Department at editorial@circuitcellar.com, @circuitcellar, and facebook.com/circuitcellar