Product News Tech News

Processing-In-Memory Technology Targets Next-Gen AI Chips

Renesas Electronics announced it has developed an AI accelerator that performs CNN (convolutional neural network) processing at high speeds and low power to move towards the next generation of Renesas embedded AI (e-AI), which will accelerate increased intelligence of endpoint devices. A Renesas test chip featuring this accelerator has achieved the power efficiency of 8.8 TOPS/W, which the company claims is the industry’s highest class of power efficiency. The Renesas accelerator is based on the processing-in-memory (PIM) architecture, an increasingly popular approach for AI technology, in which multiply-and-accumulate operations are performed in the memory circuit as data is read out from that memory.

To create the new AI accelerator, Renesas developed the following three technologies. The first is a ternary-valued (-1, 0, 1) SRAM structure PIM technology that can perform large-scale CNN computations. The second is an SRAM circuit to be applied with comparators that can read out memory data at low power. The third is a technology that prevents calculation errors due to process variations in the manufacturing.

Together, these technologies achieve both a reduction in the memory access time in deep learning processing and a reduction in the power required for the multiply-and-accumulate operations. As a result, the new accelerator achieves the industry’s highest class of power efficiency while maintaining an accuracy ratio more than 99% when evaluated in a handwritten character recognition test (MNIST).

Renesas presented these results on June 13, at the 2019 Symposia on VLSI Technology and Circuits in Kyoto, Japan, June 9-14, 2019. Renesas also demonstrated real-time image recognition using a prototype AI module in which this test chip, powered by a small battery, was connected with a microcontroller, a camera, other peripheral devices and development tools at the demonstration session.

Until now, the PIM architecture was unable to achieve an adequate accuracy level for large-scale CNN computations with single-bit calculations since the binary (0,1) SRAM structure was only able to handle data with values 0 or 1. Furthermore, process variations in the manufacturing resulted in a reduction in the reliability of these calculations, and workarounds were required. Renesas has now developed technologies that resolve these issues and will be applying these, as a leading-edge technology that can implement revolutionary AI chips of the future, to the next generation of e-AI solutions for applications such as wearable equipment and robots that require both performance and power efficiency.

Renesas Electronics | www.renesas.com

Keep up-to-date with our FREE Weekly Newsletter!

Don't miss out on upcoming issues of Circuit Cellar.

— ADVERTISMENT—

Advertise Here


Note: We’ve made the Dec 2022 issue of Circuit Cellar available as a free sample issue. In it, you’ll find a rich variety of the kinds of articles and information that exemplify a typical issue of the current magazine.

Would you like to write for Circuit Cellar? We are always accepting articles/posts from the technical community. Get in touch with us and let's discuss your ideas.

Sponsor this Article
Website | + posts

Circuit Cellar's editorial team comprises professional engineers, technical editors, and digital media specialists. You can reach the Editorial Department at editorial@circuitcellar.com, @circuitcellar, and facebook.com/circuitcellar

Supporting Companies

Upcoming Events


Copyright © KCK Media Corp.
All Rights Reserved

Copyright © 2023 KCK Media Corp.

Processing-In-Memory Technology Targets Next-Gen AI Chips

by Circuit Cellar Staff time to read: 2 min