Product News Tech News

Power Management ICs Reduce Charge Times

Texas Instruments (TI) has introduced several new power management chips that enable designers to boost efficiency and shrink power supply and charger solution sizes for personal electronics and handheld industrial equipment. Operating at up to 1 MHz, TI’s new chipset combines the UCC28780 active clamp flyback controller and the UCC24612 synchronous rectifier controller to help cut the size of power supplies in AC/DC adapters and USB Power Delivery chargers in half. For battery-powered electronics that need maximum charging efficiency in a small solution size, TI also offers the bq25910. It is a 6-A three-level buck battery charger enables up to a 60% smaller-solution footprint in smartphones, tablets and electronic point-of-sale devices.

Designed to work with both gallium nitride (GaN) and silicon (Si) FETs, the UCC28780’s advanced and adaptive features enable the active clamp flyback topology to meet modern efficiency standards. With multimode control that changes the operation based on input and output conditions, pairing the UCC28780 with the UCC24612 can achieve and maintain high efficiency at full and light loads.

The chipset delivers efficient operation at up to 1 MHz, enabling a size reduction of 50% and higher power density than solutions today. Multimode control enables efficiency up to 95 percent at full loads and standby power of less than 40 mW, exceeding Code of Conduct (CoC) Tier 2 and U.S. Department of Energy (DoE) Level VI efficiency standards. For designs above 75 W, engineers can also pair the chipset with a new six-pin power-factor correction (PFC) controller, the UCC28056, which is optimized for light-load efficiency and low standby power consumption to achieve compliance with mandatory International Electrotechnical Commission (IEC)-61000-3-2 AC current harmonic limit regulations. Using features such as adaptive zero voltage switching (ZVS) control, engineers can easily design their systems with a combination of resistor settings and controller auto-tuning.

Leveraging an innovative three-level power-conversion technology, the bq25910 enables up to 50 percent faster charging compared to conventional architectures by dramatically reducing thermal loss. With integrated MOFSETs and lossless current sensing, the bq25910 reduces printed circuit board (PCB) space and allows designers to use small 0.33-µH inductors, saving even more space. The bq25910 enables 95 percent charging efficiency, which could take a standard smartphone battery from empty to 70 percent charged in less than 30 minutes. A differential battery-voltage sense line enables fast charging by bypassing parasitic resistance in the PCB for more accurate voltage measurements, even if the battery is placed away from the charger in the system.

Texas Instruments | www.ti.com

 

— ADVERTISMENT—

Advertise Here

Keep up-to-date with our FREE Weekly Newsletter!

Don't miss out on upcoming issues of Circuit Cellar.


Note: We’ve made the May 2020 issue of Circuit Cellar available as a free sample issue. In it, you’ll find a rich variety of the kinds of articles and information that exemplify a typical issue of the current magazine.

Would you like to write for Circuit Cellar? We are always accepting articles/posts from the technical community. Get in touch with us and let's discuss your ideas.

Sponsor this Article
Website | + posts

Circuit Cellar's editorial team comprises professional engineers, technical editors, and digital media specialists. You can reach the Editorial Department at editorial@circuitcellar.com, @circuitcellar, and facebook.com/circuitcellar

Supporting Companies

Upcoming Events


Copyright © KCK Media Corp.
All Rights Reserved

Copyright © 2023 KCK Media Corp.

Power Management ICs Reduce Charge Times

by Circuit Cellar Staff time to read: 2 min