C-Programmable Autonomous Mobile Robot System
The RP6v2 is a C-programmable autonomous mobile robot system designed for hobbyists and educators at universities, trade schools, and high schools. The system includes a CD with software, an extensive manual, plenty of example programs, and a large C function library. All library and example programs are open-source GNU general public license (GPL).
The autonomous mobile robot system has a large payload capacity and expansion boards, which may be stacked as needed. It receives infrared (IR) codes in RC5 format and includes integrated light, collision, speed, and IR-obstacle sensors. Its powerful tank drive train can drive up steep ramps and over obstacles.
The RP6v2’s features include an Atmel ATmega32 8-bit RISC microcontroller, AVR-GCC and RobotLoader open-source software for use with Windows and Linux, six PCB expansion areas, two 7.2-VDC motors, an I2C bus expansion system, and a USB interface for easy programming and communication.
The fully assembled RP6v2 robotic system costs $199.
Global Specialties
www.globalspecialties.com
Smart Panels with Powerful CPU and Multiple OS Support
— ADVERTISMENT—
—Advertise Here—
The SP-7W61 and the SP-1061 smart panels are based on the Texas Instruments 1-GHz Sitara AM3715 Cortex-A8 processor and an Imagination Technologies integrated PowerVR SGX graphics accelerator. The products support multiple OSes—including Linux 2.6.37, Android 2.3.4, and Windows Compact 7—making them well suited for communications, medical and industrial control, human-machine interface (HMI), and transportation applications.
The SP-7W61 (7” and 16:9) and the SP-1061 (10” and 4:3) have a low-power, slim, fanless mechanical design and a high-value cost/performance (C/P) panel PC module that uses powerful and efficient components. Compared with other x86 HMI or open-frame products, the SP-7W61 and the SP-1061 successfully keep power consumption to less than 5.9 W, which is half the typical rate. The smart panels feature multiple display sizes and low power consumption options. They can be implemented into slim and thin chassis types (e.g., for HMI, control panels, or wall-mount controllers).
ADLINK provides full support on software customization based on different platforms. A virtual machine or software development kit (SDK) is provided with related documentation for different platforms, so users can easily set up the software environment.
Contact ADLINK for pricing.
ADLINK Technology, Inc.
www.adlinktech.com
Fast-Switching 0.65-TO-20-GHz Synthesizer
The APSYN420B is a 0.65-to-20-GHz frequency synthesizer with a 0.001-Hz resolution and 0.1° phase resolution. The synthesizer provides a nominal output power of 13 dBm into 50 ?. The module features a high-stability internal reference that can be phase-locked to a user-configurable external reference or used in a master-slave configuration for high phase coherence.
The APSYN420B’s key features include low phase noise, fast switching (settling time is typically 20 µs with a 20-µs frequency update), and an internal OCXO reference that can be configured for high phase coherence between multiple sources. The synthesizer offers USB and LAN interfaces and consumes less than 10 W when powered from an external 6-VDC supply.
The APSYN420B’s modulation capabilities include angle, pulse, pulse trains, and pulsed chirps. Linear, logarithmic, or random-frequency sweeps can be performed with combined modulation running. Frequency chirps (linear ramp, up/down) can also be accomplished. The device can accept external reference signals from 1 to 250 MHz.
Applications for the APSYN420B include automatic test equipment, satellite, and other telecommunications needs. The APSYN420B is designed for a 0°C-to-45°C operating temperature range and weighs less than 2 lb in a compact 2.4” × 4.2” × 8.3” enclosure.
Contact Saelig for pricing.
— ADVERTISMENT—
—Advertise Here—
Saelig Co., Inc.
www.saelig.com
SoC for Next-Generation Multimedia and Navigation Systems
The R-Car H2 is the latest member of Renesas’s R-Car series of automotive system-on-a-chip (SoC) offerings. The SoC delivers more than 25,000 Dhrystone million instructions per second (DMIPS) and provides high-performance and state-of-the-art 3-D graphics capabilities for high-end multimedia and automotive navigation systems.
The R-Car H2 is powered by the ARM Cortex A-15 quad-core configuration running an additional ARM Cortex A-7 quad core. The SoC also features Imagination Technologies’s PowerVR Series6 G6400 graphics processing unit (GPU). The GPU supports open technologies (e.g., OpenGL ES 2.0) and the OpenGL ES 3.0 and OpenCL standards.
The R-Car H2’s bus architecture includes dedicated CPU and IP caches, which reduce the double data rate type three (DDR3) memory bandwidth consumption. To ensure adequate memory bandwidth, the R-Car H2 is equipped with two independent DDR3-1600 32-bit interfaces.
The R-Car H2 integrates advanced automotive interfaces including Ethernet audio video bridging (AVB), MOST150, and CAN and mass storage interfaces such as serial advanced technology attachment (SATA), USB 3.0/2.0, secure digital (SD) card, and PCI Express for system expansion. As a device option, the GPS baseband engine handles all modern navigation standards. The R-Car H2’s additional features include 24-bit digital signal processing (DSP) for codec, high-quality audio processing with hardware sample rate converters, and audio mixing. Its multi-core architecture enables you to implement real-time features (e.g., quick-boot, backup camera support, and media processing) parallel to the execution of advanced OSes, such as QNX Neutrino RTOS, Windows Embedded Automotive, or Linux.
The SoC’s media hardware accelerators enable features such as 4× HD 1080p video encoding/decoding including Blu-ray support at 60 frames per second, image/voice recognition, and high-resolution 3-D graphics with almost no CPU load. These implemented hardware modules also execute the display content improvements needed for HMI/navigation data similar to movie/DVD handling.
Contact Renesas for pricing.
Renesas Electronics Corp.
www.renesas.com
KNX Device Control
The KNX Gateway enables HAI by Leviton’s Omni and Lumina Ethernet-based controllers to communicate with and control KNX devices through KNX’s standardized network communications bus protocol. You can use an HAI by Leviton interface or automated controller programming to control KNX devices (e.g., lighting devices, temperature and energy management, motors for window coverings, shades, and shutters) in homes and businesses.
The KNX Gateway maps specific data points of each KNX device to a unit or thermostat number on the HAI by Leviton controller. The interface between the KNX Gateway and the HAI by Leviton controller utilizes a RS-485 serial connection.
Compatible controllers include HAI’s OmniPro II home-control system, Omni IIe, Omni LTe, Lumina Pro, and Lumina. The KNX Gateway is powered by either a power over Ethernet (PoE) connection or a 12-to-24-V AC/DC converter.
Contact Leviton for pricing.
Leviton Manufacturing Co., Inc.
www.leviton.com
DC/DC Controller Uses Only a Single Inductor
The LTC3863 is a high-voltage inverting DC/DC controller that uses a single inductor to produce a negative voltage from a positive-input voltage. All of the controller’s interface signals are positive ground referenced. None of the LTC3863’s pins are connected to a negative voltage, enabling the output voltage to be limited by only the external components selection.
Operating over a 3.5-to-60-V input supply range, the LTC3863 protects against high-voltage transients, operates continuously during automotive cold crank, and covers a broad range of input sources and battery chemistries. The controller helps increase the runtime in battery-powered applications.
It has a low 70-µA quiescent current in Standby mode with the output enabled in Burst Mode operation. The LTC3863’s output voltage can be set from –0.4 to 150 V or lower at up to 3 A typical, making it well suited for 12-or-24-V automotive, heavy equipment, industrial control, telecommunications, and robotic applications.
— ADVERTISMENT—
—Advertise Here—
The LTC3863 drives an external P-channel MOSFET, operates with a selectable fixed frequency between 50 and 850 kHz, and is synchronizable to an external clock from 75 to 750 kHz. Its current-mode architecture provides easy loop compensation, fast transient response, cycle-by-cycle overcurrent protection, and excellent line regulation. Output current sensing is accomplished by measuring the voltage drop across a sense resistor.
The LTC3863’s additional features include programmable soft start or tracking, overvoltage protection, short-circuit protection, and failure mode and effects analysis (FMEA) verification for adjacent pin opens and shorts.
The LTC3863 is offered in 12-pin thermally enhanced MSOP and 3-mm × 4-mm QFN packages. The controllers cost $2.06 in 1,000-unit quantities.
Linear Technology Corp.
www.linear.com
Enhanced Web-Based Monitoring Software
HOBOlink is a web-enabled software platform that provides 24/7 data access and remote management for Onset Computer’s web-based HOBO U30 data logging systems. The software’s enhanced version enables users to schedule automatic delivery of exported data files in CSV or XLSX format, via e-mail or FTP.
HOBOlink can configure exported data export in a customized manner. For example, a user with four HOBO U30 systems measuring multiple parameters may configure HOBOlink to automatically export temperature data only. The time range may also be specified.
HOBOlink also enables users to easily access current and historical data, set alarm notifications and relay activations, and manage and control HOBO U30 systems without going into the field. An application programming interface (API) is available to organizations that want to integrate energy and environmental data from HOBOlink web servers with custom software applications.
Contact Onset for pricing.
Onset Computer Corp.
www.onsetcomp.com
Digitally Tunable Capacitors for LTE Smartphones
Peregrine Semiconductor expanded its DuNE digitally tunable capacitor (DTC) product line with six second-generation devices for antenna tuning in 4G long-term evolution (LTE) smartphones. The PE623060, PE623070, PE623080, and PE623090 (PE6230x0) DTCs have a 0.6-to-7.7-pF capacitance range and support main antenna power handling of up to 34 dBm. The PE621010 and the PE621020 (PE6210x0) DTCs have a 1.38-to-14-pF capacitance range and are optimized for power handling up to 26 dBm, making them well suited for diversity antennas. The highly versatile devices support a variety of tuning circuit topologies, particularly impedance-matching and aperture-tuning applications.
The PE6230x0 DTCs are optimized for key cellular frequency bands from 700 to 2,700 MHz, featuring direct battery voltage operation with consistent performance enabled by on-chip voltage regulation.
The 5-bit, 32-state PE623060/70/80 DTCs have a 0.9-to-4.6-pF capacitance range. The 4-bit, 16-state PE623090 DTC has a 0.6-to-2.35-pF capacitance range. The PE623090 DTC’s lower minimum capacitance solves a critical problem in high-frequency tuning. The 5-bit, 32-state PE6210x0 DTCs support the 100-to-3,000-MHz frequency range. These DTCs extend the range of diversity antennas and improve data rates by optimizing the antenna performance at the operating frequency. The PE621010 DTC has a 1.38-to-5.90-pF capacitance range.
The PE6230x0 and PE6210x0 product families enable designers to develop smaller, higher-performing antennas. The product’s antenna-tuning functions—including bias generation, integrated radio frequency (RF) filtering and bypassing, control interface, and electrostatic discharge (ESD) protection of 2-kV human body model (HBM)—are incorporated into a slim, 0.55-mm × 2-mm × 2-mm package. All decoding and biasing are integrated on-chip, and no external bypassing or filtering components are required.
Contact Peregrine for pricing.
Peregrine Semiconductor Corp.
www.psemi.com
Circuit Cellar's editorial team comprises professional engineers, technical editors, and digital media specialists. You can reach the Editorial Department at editorial@circuitcellar.com, @circuitcellar, and facebook.com/circuitcellar
Leave a Comment