Product News

Long-Range, Memory Jewelry-Tagging Solution

EMThe EM4126 EPC radio-frequency identification (RFID) IC is designed to provide RFID tagging on small and/or high-value products (e.g., jewelry and watches). The IC’s high sensitivity enables long read ranges. EM4126-based tags can achieve –21-dBm read sensitivities. The ICs are designed for supply chain management, tracking and tracing, container identification, and access and asset control applications.

The EM4126’s 224 bits of nonvolatile memory support International Organization for Standardization (ISO) or Electronic Product Code (EPC) data structures and enable SGTIN-198 encoding, which uses alphanumeric serialization represented as a string of up to 20 7-bit characters. The EM4126’s additional features include ISO 18000-63 and EPC Class-1 Generation-2 compliance, 32-bit short-tag identification, 40-to-160 Kbps forward- and return-link data rates, and a –40°C-to-85°C extended temperature range.

Contact EM Microelectronic for pricing.

EM Microelectronic
www.emmicroelectronic.com

Keep up-to-date with our FREE Weekly Newsletter!

Don't miss out on upcoming issues of Circuit Cellar.


Note: We’ve made the May 2020 issue of Circuit Cellar available as a free sample issue. In it, you’ll find a rich variety of the kinds of articles and information that exemplify a typical issue of the current magazine.

— ADVERTISMENT—

Advertise Here

Would you like to write for Circuit Cellar? We are always accepting articles/posts from the technical community. Get in touch with us and let's discuss your ideas.

Sponsor this Article
Website | + posts

Circuit Cellar's editorial team comprises professional engineers, technical editors, and digital media specialists. You can reach the Editorial Department at editorial@circuitcellar.com, @circuitcellar, and facebook.com/circuitcellar

Leave a Comment

Supporting Companies

Upcoming Events


Copyright © KCK Media Corp.
All Rights Reserved

Copyright © 2023 KCK Media Corp.

Long-Range, Memory Jewelry-Tagging Solution

by Circuit Cellar Staff time to read: 1 min