Product News Tech News

Fuel-Gauge ICs Maximize Battery Runtimes for Devices

Maxim Integrated offers the MAX17260 and MAX17261 ModelGauge m5 EZ fuel gauges IC that are well suited for a broad range of Li-ion battery powered applications.  These battery characterization-free solutions provide high levels of accuracy while also offering small size and ease of design.

The MAX17260 and MAX17261, which feature the ModelGauge m5 EZ algorithm, provide a high level of accuracy in fuel gauging compared to competing solutions. This allows designers to maximize their devices’ runtime by preventing premature or sudden device shutdowns, while maintaining a smaller battery size. The fuel gauges, which are housed in an ultra-small 1.5 mm x 1.5 mm package, feature a very low quiescent current of 5.1 µA to minimize draining the battery during long periods of standby time. The products allow designs to be quickly done without battery characterization or calibration.
As devices have become more sophisticated with their feature offerings and increasing power density, designers are now challenged with achieving an enhanced user experience without compromising battery runtimes. There is also a huge market need for highly accurate fuel gauges, as less accuracy may introduce uncertainty that must be compensated with higher battery capacity and larger physical dimensions.

Accurate battery state of charge (SOC) prevents sudden crash and premature device shutdown; Provides easy to understand battery information for end users such as time to empty, time to full under current, as well as hypothetical load conditions; Dynamic power technology enables high system performance without crashing the battery and results in smaller battery size.

The very low quiescent current of 5.1µA of these chips prevent excessive energy loss during long periods of standby time. This battery characterization-free solution offers no battery size limit; MAX17260 offers a high-side Rsense option to simplify ground-plane design; MAX17261 offers a flexible switched resistor divider option to support any number of series cells (multi-cell batteries). The devices support small electronics with 1.5 mm x 1.5 mm wafer-level packaging (WLP) as well as 3 mm x 3 mm TDFN.

The MAX17260 is available for $0.93 (1000-up); MAX17261 is available for $1.22 (1000-up). MAX17260GEVKIT and MAX17261GEVKIT evaluation kits are available for $60.

Maxim Integrated | www.maximintegrated.com

— ADVERTISMENT—

Advertise Here

Keep up-to-date with our FREE Weekly Newsletter!

Don't miss out on upcoming issues of Circuit Cellar.


Note: We’ve made the May 2020 issue of Circuit Cellar available as a free sample issue. In it, you’ll find a rich variety of the kinds of articles and information that exemplify a typical issue of the current magazine.

Would you like to write for Circuit Cellar? We are always accepting articles/posts from the technical community. Get in touch with us and let's discuss your ideas.

Sponsor this Article
Website | + posts

Circuit Cellar's editorial team comprises professional engineers, technical editors, and digital media specialists. You can reach the Editorial Department at editorial@circuitcellar.com, @circuitcellar, and facebook.com/circuitcellar

Supporting Companies

Upcoming Events


Copyright © KCK Media Corp.
All Rights Reserved

Copyright © 2023 KCK Media Corp.

Fuel-Gauge ICs Maximize Battery Runtimes for Devices

by Circuit Cellar Staff time to read: 1 min