Product News

Fast 16-bit ADC, Four-Channel 14-bit ADC, & Digital Variable Gain Amp

Texas Instruments launched the ADS54J60, which is the industry’s first 16-bit 1-GSPS ADC and the first to achieve over 70 dBFS signal-to-noise ratio (SNR) at 1-GSPS. Texas instruments also announced the highest-density, four-channel, 14-bit 500-MSPS ADC, the ADS54J54. To optimize the signal chain, TI’s new 4.5-GHz LMH6401 fully differential digital variable gain amplifier (DVGA) offers the widest bandwidth with DC coupling and allows signal acquisition of low and high frequencies without the limitation of baluns used in AC-coupled systems. These ADCs work together with the amplifier to provide the highest performance, lowest power and space savings in defense and aerospace, test and measurement, and communication infrastructure applications.Texas Instruments

All ICs are now sampling. The ADS54J54 costs $500 in 1,000-unit quantities. The ADS54J60 will be available in Q4 2015 for $705 in 1,000-unit quantities. The LMH6401 costs $10.95 in 1,000-unit quantities.

Source: Texas Instruments

Keep up-to-date with our FREE Weekly Newsletter!

Don't miss out on upcoming issues of Circuit Cellar.


Note: We’ve made the May 2020 issue of Circuit Cellar available as a free sample issue. In it, you’ll find a rich variety of the kinds of articles and information that exemplify a typical issue of the current magazine.

Would you like to write for Circuit Cellar? We are always accepting articles/posts from the technical community. Get in touch with us and let's discuss your ideas.

— ADVERTISMENT—

Advertise Here

Website | + posts

Circuit Cellar's editorial team comprises professional engineers, technical editors, and digital media specialists. You can reach the Editorial Department at editorial@circuitcellar.com, @circuitcellar, and facebook.com/circuitcellar

Sponsor this Article

Supporting Companies

Upcoming Events


Copyright © KCK Media Corp.
All Rights Reserved

Copyright © 2021 KCK Media Corp.

Fast 16-bit ADC, Four-Channel 14-bit ADC, & Digital Variable…

by Circuit Cellar Staff time to read: 1 min