Product News Tech News

DENSO Taps Cypress’ Fail-Safe Flash for Car Cockpit Design

Cypress Semiconductor has announced that automotive supplier DENSO has selected Cypress’ Semper fail-safe storage for its next-generation digital automotive cockpit applications with advanced graphics. Based on an embedded Arm Cortex-M0 processing core, the Semper family is purpose-built for automotive environments.
The Cypress Semper family offers high density serial NOR Flash memory up to 4 Gbit and leverages the company’s proprietary MirrorBit process technology. The family also features EnduraFlex architecture, which achieves greater reliability and endurance. Semper fail-safe storage devices were the first in the industry to achieve the ISO 26262 automotive functional safety standard and are ASIL-B compliant, says Cypress.

According to Cypress, the Semper fail-safe storage products exceed automotive quality and functional safety requirements with ASIL-B compliance and are ready for use in ASIL-D systems. Cypress’ 512 Mb, 1 Gb and 2 Gb Semper devices are currently sampling.

Cypress Semiconductor | www.cypress.com

 


Keep up-to-date with our FREE Weekly Newsletter!



Don't miss out on upcoming issues of Circuit Cellar.

— ADVERTISMENT—

Advertise Here

Note: We’ve made the May 2020 issue of Circuit Cellar available as a free sample issue. In it, you’ll find a rich variety of the kinds of articles and information that exemplify a typical issue of the current magazine.


Would you like to write for Circuit Cellar? We are always accepting articles/posts from the technical community. Get in touch with us and let's discuss your ideas.

Sponsor this Article
Website | + posts

Circuit Cellar's editorial team comprises professional engineers, technical editors, and digital media specialists. You can reach the Editorial Department at [email protected], @circuitcellar, and facebook.com/circuitcellar

Supporting Companies

Slider

Upcoming Events

Copyright © 2021 KCK Media Corp.

DENSO Taps Cypress’ Fail-Safe Flash for Car Cockpit Design

by Circuit Cellar Staff time to read: 1 min