Linux-driven i.MX6 Gateway Offers 4G Plus Isolated Serial and CANbus

By Eric Brown

Chinese embedded vendor Forlinx Embedded Technology has unveiled a power-efficient FCU1201 IoT gateway equipped with NXP’s 1 GHz, dual-core Cortex-A9 i.MX6 DualLite. Like the company’s i.MX6 UL-equipped FCU1101, the system combines extensive serial interfaces with wireless connectivity.


 
FCU1201
(click images to enlarge)

In addition to general lightweight IoT gateway duty, the FCU1201 supports in-vehicle EV charging, vending machines, remote monitoring of CNC machines, and Ali Cloud (Alibaba Cloud) IoT aggregation applications built around Alibaba’s Link IoT Edge platform. The system runs Linux 3.0.35 on the i.MX6.


 
FCU1201 EV charging (left) and CNC control applications
(click images to enlarge)

The 147.5 x 100 x 41.8mm system is equipped with 1GB DDR3, 8GB eMMC, and a microSD slot. There’s a 10/100 Ethernet port, a wireless module with 802.11b/g/n and Bluetooth 4.0, and a Huawei ME909S 4G module with SIM slot. The 4G module can be swapped out for GPRS. A pair each of antennas are provided for WiFi and 4G.

The FCU1201 enables dual simultaneous displays via an HD-ready mini-HDMI port and a DVI-I style LVDS port with support for 7-inch displays. Audio features include a 3.5 mm stereo earphone jack and a single track microphone. In addition, “users could also expand with 1W x 2 speaker connectors or 3.5mm single track microphone jack,” says Forlinx.


 
FCU1201 detail views
(click images to enlarge)

The system is further equipped with USB 2.0 host, micro-USB OTG, and serial debug console ports, as well as a variety of serial connections via terminal block connectors. These include 2x RS485 and 2x CAN 2.0 ports, all with electronic isolation. There are also several RS232 inputs.

Other features include 4x DI and 4x DO via terminal connectors. The digital inputs are “designed with photo coupler and wet node,” says Forlinx, which adds: “users can change it to dry node optionally.” The digital outputs feature electromagnet relay protection.

The FCU1201 supports any ISO7816-compliant ESAM/PSAM security module. It also provides a mini-SIM slot for loading a PSAM card.

The gateway runs on a 9-15 V DC input and offers a 15-second UPS function. There’s also an RTC, reset and boot buttons, and mounting holes. Both 0 to 70℃ and -40 to 70℃ SKUs are available, although the WiFi works only at commercial temperatures.

Further information

No pricing or availability information was provided for the FCU120. More information may be found in the Forlinx FCU1201 announcement and product page.

This article originally appeared on LinuxGizmos.com on August 13.

Forlinx Embedded Technology | www.forlinx.net
 

Industry Players Form Consortium Focused on UWB Interoperability

The ASSA ABLOY Group (which includes HID Global), NXP Semiconductors, Samsung Electronics and Bosch have announced the launch of the FiRa Consortium. The new coalition is designed to grow the Ultra-Wideband (UWB) ecosystem so new use cases for fine ranging capabilities can thrive, ultimately setting a new standard in seamless user experiences. Sony Imaging Products & Solutions Inc., LitePoint and the Telecommunications Technology Association (TTA) are the first companies to join the newly-formed organization.

The FiRa name, which stands for “Fine Ranging,” highlights UWB technology’s unique ability to deliver unprecedented accuracy when measuring the distance or determining the relative position of a target.  Especially in challenging environments, UWB technology outperforms other technologies in terms of accuracy, power consumption, robustness in RF connection and security, by a wide margin.

The starting point for UWB technology is the IEEE standard 802.15.4/4z, which defines the essential characteristics for low-data-rate wireless connectivity and enhanced ranging. It is the aim of the FiRa Consortium to build on what the IEEE has already established, by developing an interoperability standard based on the IEEE’s profiled features, defining mechanisms that are out of scope of the IEEE standard, and pursuing activities that support rapid development of specific use cases.

The capabilities of UWB promise to make it an essential technology in many areas including:

  • Seamless Access Control – UWB can identify an individual’s approach toward or away from a secured entrance, verify security credentials, and let the authorized individual pass through the entrance without physically presenting the credential.
  • Location-Based Services – UWB offers highly precise positioning, even in congested multipath signal environments, making it easier to navigate large venues such as airports and shopping malls or find a car in a multi-story parking garage. It also enables targeted digital marketing campaigns and foot traffic data. Retailers can present customized offers, government agencies can tailor their notifications, and entertainment venues can personalize recommendations during events.
  • Device-to-Device (Peer-to-Peer) Services – By providing precise relative distance and direction between two devices, UWB lets devices find the relative location of each other even without infrastructures such as anchors or access points. This allows people to easily find one another in crowded spaces or find items even when placed in hidden areas.

Due to its low power spectral density, UWB offers little to no interference with other wireless standards, so it is well suited for use with other wireless technologies, including Near Field Communication (NFC), Bluetooth, and Wi-Fi. There are also adjacent markets that leverage UWB in other ways, especially automotive.

FiRa Consortium | www.firaconsortium.org
NXP Semiconductors | www.nxp.com

 

Zigbee Certified Products Surpass 3,000 Milestone

The Zigbee Alliance has announced there are now more than 3,000 Zigbee Certified products and Zigbee Compliant Platforms available to the market. This milestone highlights the growing market for interconnected products for smart homes and buildings. “Hitting the 3,000th certification demonstrates how collaborating across brands and standards is what’s helping our market flourish as everyone wants choice and the ability to easily connect devices to one another,” said Jon Harros, Director of Certification and Testing Programs, Zigbee Alliance.

“Our member companies work in different areas of the IoT realm yet come together to drive innovation and development through Zigbee Certification. Each qualified product and platform further expands the interoperability universe for us all,” said Harros.

The Zigbee Alliance Certification program ensures that quality, interoperable Zigbee products are available for product developers, ecosystem vendors, service providers and their customers. Certifications for Zigbee 3.0 products are on the rise, and, according to the Zigbee alliance, this uptick is a clear indicator that major market influencers are choosing “open” for their IoT product designs.

LEEDARSON, a one-stop ODM shop that offers an array of IoT devices, is one of the top member companies leveraging the Zigbee Certified program to ensure they deliver high quality, interoperable lighting and IoT devices to market.  LEEDARSON is also the first organization to earn certification for a Zigbee 3.0 lightbulb.

Amazon claimed the 3,000th Zigbee Certified product spot with their 2nd Generation Echo Show. The Echo Show features a built-in smart home hub that easily connects to Zigbee-based light bulbs, door locks, sensors and more.

This certification milestone is the resulting work from hundreds of global manufacturers and developers that have designed products using Zigbee-based standards for the smart home, building, and connected city environments. The companies that contributed to this milestone throughout the first half of 2019 include:

Amazon, BEGA Gatenbrink-Leuchten KG, Chameleon Technology, Green Energy Options, Hangzhou Greatstar Industrial, The Kroger Co., Landis+Gyr,  LEEDARSON, Leviton Manufacturing Company, NEXELEC, Qualcomm, Samsung, Schneider Electric, Secure Meters, Sengled, Shenzhen Feibit Electronic Technology, Shenzhen Heiman, Shenzhen Kaifa Technology, Shenzhen Sunricher Technology, Silicon Labs, SmartThings, Somfy, System Level Solutions, Stelpro, Texas Instruments, The Home Depot, Toshiba Corporation, Tuya Xylem, and Yunding Network Technology.

The Zigbee Alliance | www.zigbee.org

IoT Modules Enable Large-Scale LTE-M and NB-IoT Deployments

Telit has announced the ME310G1 (shown) and ME910G1 modules, designed for mass-scale LTE-M and NB-IoT deployments that feature hundreds of thousands or millions of devices. Based on the new Qualcomm 9205 LTE modem and featuring optional 2G fallback, the modules also provide a future-proof foundation for IoT deployments that span legacy networks, 4G and 5G.
The ME310G1 and ME910G1 are the first 3GPP Release 14 additions to the Telit portfolio and the first members of Telit’s new series based on the Qualcomm 9205 LTE IoT Modem, which was announced in late 2018. The highly compact chipset enables Telit to meet booming global demand for ultra-small modules for applications such as wearable medical devices, fitness trackers and industrial sensors.

The new modules are ideal for battery-powered applications via improved features such as Power Saving Mode (PSM) and extended Discontinuous Reception (eDRX), which periodically wakes up the device to transmit only the smallest amounts of data necessary before returning to sleep mode. Both modules also ensure reliable indoor connections, with a maximum coupling loss of up to +15dB/+20dB for superior in-building penetration compared to earlier LTE standards.

The multi-band ME310G1 and ME910G1 are available in versions with 2G fallback for use in areas where LTE-M/NB-IoT service is yet to be deployed. These versions also support GSM voice and will support VoLTE for applications that require the ability to make phone calls.

The ME910G1 is the latest member of Telit’s best-selling xE910 and family. The ME910G1 is also a drop-in replacement in existing devices based on the family’s modules for 2G, 3G and the various categories of LTE. With Telit’s design-once-use-anywhere philosophy, developers can cut costs and development time by simply designing for the xE910 LGA common form factor, giving them the freedom to deploy technologies best suited for the application’s environment.

The ME310G1 LTE-only variant is less than 200 mm-squared and variant with 2G fallback is less than 300 mm2-squared and they enable enterprises to deploy new small footprint designs across many application areas including asset tracking, health-care monitoring, smart metering, portable devices, industrial sensors, home automation, and others that benefit from low-power and low-data rate capabilities. The xE310 family’s flexible perimeter footprint includes pin-to-pin compatible 2G and 4G modules, enabling integrators to design a single PCB layout and deploy a combination of technologies.

ME310G1 and ME910G1 samples are now available. Mass production begins in late 2019 and Q1 2020, depending on the product version.

Telit | www.telit.com

400 W 1/8th Brick DC-DC Converters Support PMBus

Murata has announced the introduction of its DSE Series, a fully isolated, 12 Vout, 400 W eighth brick DC-DC converter with a DOSA compliant digital interface to support the PMBus standard for communication and control. The Series, which also includes DAE and DCE products, has a droop load sharing option for paralleling up to three modules in some of the most power demanding applications. Further, the series meets the international TNV standard for Input Voltage with a 36-75 Vin range and provides 2250 VDC isolation for use in Power over Ethernet (PoE) applications.

The DSE series offers advanced power conversion technology, including a 32-bit Arm processor that controls critical conversion functions and delivers a digital interface for use in the end system application. The PMBus digital interface can be used to customize the modules’ configuration for specific functions and presents system engineers with critical telemetry information.

Multiple pin configurations are available, as the DSE provides a DOSA standard digital eighth brick pinout with sense, trim, and PMBus. The DAE provides a DOSA analog eighth brick pinout with sense and trim (no PMBus). The DCE is a DOSA analog eighth brick in the traditional 5-pin package. Target applications include telecommunications, networking, wireless, pre-amplifiers, industrial and test equipment.

Murata Power Solutions | www.murata-ps.com

 

mmWave Chipset Solution Eases 5G System Design

Analog Devices has introduced a new solution for millimeter wave (mmWave) 5G featuring high-integrations for next gen cellular network infrastructure. The solution combines ADI’s advanced beamformer IC, up/down frequency conversion (UDC) and additional mixed signal circuitry. ADI is calling this an optimized “Beams to Bits” signal chain.

The new mmWave 5G chipset includes the 16-channel ADMV4821 dual/single polarization beamformer IC, 16-channel ADMV4801 (shown) single-polarization beamformer IC and the ADMV1017 mmWave UDC. The 24- to 30-GHz beamforming + UDC solution forms a 3GPP 5G NR compliant mmWave front-end to address the n261, n257 and n258 bands.

The high channel density, coupled with the ability to support both single- and dual-polarization deployments, greatly increases system flexibility and reconfigurability for multiple 5G use cases while best-in-class equivalent isotropically radiated power (EIRP) extends radio range and density. According to ADI, the company’s experience in mmWave enables system designers to take advantage of world class applications and system design to optimize complete lineups for thermal, RF, power and routing considerations.

Analog Devices | www.analog.com

 

Semtech LoRa Tech Leveraged for Construction and Mining Gear

Semtech has announced that MachineMax, a provider of smart solutions for fleet management, construction and mining applications, has integrated Semtech’s LoRa devices and wireless radio frequency technology (LoRa Technology) into a new smart construction machine usage tracking solution. With Semtech’s LoRa Technology, MachineMax says they were able to create simple, easy to deploy solutions which effectively monitor machine status from anywhere on a construction or mining site.

Machine idling, where a machine’s engine is running but the machine is not actively in use, accounts for an estimated 37% of the time a construction or mining machine is operating on average. Idling results in an increased amount of fuel waste and machine wear, without creating productive machine output. Previously, monitoring the usage status of a mining or construction fleet was accomplished manually, with site managers continually checking on the use status of machines, an expensive and time consuming task.

MachineMax developed a LoRa-based solution which can be easily deployed onto fleet machines in under a minute. The devices attach magnetically and gather real-time data on machine usage status, such as whether or not a machine is idle. With real-time data on when a machine is in use, site managers can make more efficient use of a machine’s time to prevent idling, reducing the amount of fuel used and prolonging machine life.

Semtech’s LoRa devices and wireless radio frequency technology is a widely adopted long-range, low-power solution for IoT that gives telecom companies, IoT application makers and system integrators the feature set necessary to deploy low-cost, interoperable IoT networks, gateways, sensors, module products and IoT services worldwide. IoT networks based on the LoRaWAN specification have been deployed in 100 countries and Semtech is a founding member of the LoRa Alliance.

Semtech | www.semtech.com

 

IoT Smart Water Care System Leverages Nordic’s BLE SoC

Nordic Semiconductor has announced that ConnectedYard has selected Nordic’s nRF51822 Bluetooth Low Energy (BLE) SoC to provide the wireless connectivity for pHin, a smart water care solution designed to simplify the care and maintenance of backyard swimming pools and hot tubs. pHin combines an nRF51822 SoC- and Wi-Fi-enabled smart monitor and smartphone app that monitors water chemistry and temperature around the clock and notifies customers when they need to take action.
The pHin Smart Monitor floats in the pool or hot tub and continuously monitors water temperature and water chemistry—including pH and oxidation reduction potential (ORP)—and then wirelessly sends the water chemistry data over the Nordic SoC-enabled Bluetooth LE connection to the pool owner’s Bluetooth 4.0 (or later) smartphone and the ‘pHin WiFi bridge’. The data is also available via the pHin Partner Portal, which allows retailers, service technicians, and pool builders to remotely monitor water conditions and provides features that help drive consumers back to their local retailer for chemicals and other products. pHin uses a coin cell battery to achieve over two years of battery life between replacement, thanks in part to the ultra low power consumption of the nRF51822 SoC.

Nordic’s nRF51822 is ideally suited for Bluetooth LE and 2.4GHz ultra low power wireless applications. The nRF51822 is built around a 32-bit Arm® Cortex M0 CPU, 2.4GHz multiprotocol radio, and 256kB/128kB Flash and 32kB/16kB RAM. The SoC is supplied with Nordic’s S130 SoftDevice, a Bluetooth 4.2 qualified concurrent multi-link protocol stack. Nordic’s software architecture includes a clear separation between the RF protocol software and the application code, simplifying development for ConnectedYard’s engineers and ensuring the SoftDevice doesn’t become corrupted when developing, compiling, testing and verifying application code.

Nordic Semiconductor | www.nordicsemi.com

IoT Monitoring System for Commercial Fridges

Using LoRa Technology

IoT implementations can take many shapes and forms. Learn how these four Camosun College students developed a system to monitor all the refrigeration units in a commercial kitchen simultaneously. The system uses Microchip PIC MCU-based monitoring units and wireless communication leveraging the LoRa wireless protocol.

By Tyler Canton, Akio Yasu, Trevor Ford and Luke Vinden

In 2017, the commercial food service industry created an estimated 14.6 million wet tons of food in the United States [1]. The second leading cause of food waste in commercial food service, next to overproduction, is product loss due to defects in product quality and/or equipment failure [2].

While one of our team members was working as the chef of a hotel in Vancouver, more than once he’d arrive at work to find that the hotel’s refrigeration equipment had failed overnight or over the weekend, and that thousands of dollars of food had become unusable due to being stored at unsafe temperatures. He always saw this as an unnecessary loss—especially because the establishment had multiple refrigeration units and ample space to move product around. In this IoT age, this is clearly a preventable problem.

For our Electronics & Computer Engineering Technologist Capstone project, we set forth to design a commercial refrigeration monitoring system that would concurrently monitor all the units in an establishment, and alert the chefs or managers when their product was not being stored safely. This system would also allow the chef to check in on his/her product at any time for peace of mind (Figure 1).

Figure 1
This was the first picture we took of our finished project assembled. This SLA printed enclosure houses our 10.1″ LCD screen, a Raspberry Pi Model 3B and custom designed PCB.

We began with some simple range testing using RFM95W LoRa modules from RF Solutions, to see if we could reliably transmit data from inside a steel box (a refrigerator), up several flights of stairs, through concrete walls, with electrical noise and the most disruptive interference: hollering chefs. It is common for commercial kitchens to feel like a cellular blackout zone, so reliable communication would be essential to our system’s success.

System Overview

We designed our main unit to be powered and controlled by a Raspberry Pi 3B (RPi) board. The RPi communicates with an RFM95W LoRa transceiver using Serial Peripheral Interface (SPI). This unit receives temperature data from our satellite units, and displays the temperatures on a 10.1″ LCD screen from Waveshare. A block diagram of the system is shown in Figure 2. We decided to go with Node-RED flow-based programming tool to design our GUI. This main unit is also responsible for logging the data online to a Google Form. We also used Node-RED’s “email” nodes to alert the users when their product is stored at unsafe temperatures. In the future, we plan to design an app that can notify the user via push notifications. This is not the ideal system for the type of user that at any time has 1,000+ emails in their inbox, but for our target user who won’t allow more than 3 or 4 to pile up it has worked fine.

Figure 2
The main unit can receive temperature data from as many satellite units as required. Data are stored locally on the Raspberry Pi 3B, displayed using a GUI designed by Node-RED and logged online via Google Sheets.

We designed an individual prototype (Figure 3) for each satellite monitoring unit, to measure the equipment’s temperature and periodically transmit the data to a centralized main unit through LoRa communication. The units were intended to operate at least a year on a single battery charge. These satellites, controlled by a Microchip Technology PIC24FJ64GA704 microcontroller (MCU), were designed with an internal Maxim Integrated DS18B20 digital sensor (TO-92 package) and an optional external Maxim

Figure 3
This enclosure houses the electronics responsible for monitoring the temperatures and transmitting to the main unit. These were 3D printed on Ultimaker 3 printers.

Integrated DS18B20 (waterproof stainless steel tube package) to measure the temperature using the serial 1-Wire interface.

Hardware

All our boards were designed using Altium Designer 2017 and manufactured by JLCPCB. We highly recommend JLCPCB for PCB manufacturing. On a Tuesday we submitted our order to the website, and the finished PCB’s were manufactured, shipped, and delivered within a week. We were amazed by the turnaround time and the quality of the boards we received for the price ($2 USD / 10 PCB).

Figure 4
The main unit PCB’s role is simply to allow the devices to communicate with each other. This includes the RFM95W LoRa transceivers, RPi, LCD screen and a small fan

Main Unit Hardware: As shown in Figure 4, our main board’s purpose is communicating with the RPi and the LCD. We first had to select an LCD display for the main unit. This was an important decision, as it was the primary human interface device (HID) between the system and its user. We wanted a display that was around 10″—a good compromise between physical size and readability. Shortly after beginning our search, we learned that displays between 7″ and 19″ are not only significantly more difficult to come by, but also significantly more expensive. Thankfully, we managed to source a 10.1″ display that met our budget from robotshop.com. On the back of the display was a set of female header pins designed to interface with the first 26 pins of the RPi’s GPIO pins. The only problem with the display was that we needed access to those same GPIO pins to interface with the rest of our peripherals.

Figure 5
Our main board, labeled Mr. Therm, was designed to attach directly to the LCD screen headers. RPi pins 1-26 share the same connectivity as the main board and the LCD.

We initially planned on fixing this problem by placing our circuit board between the RPi and the display, creating a three-board-stack. Upon delivery and initial inspection of the display, however, we noticed an undocumented footprint that was connected to all the same nets directly beneath the female headers. We quickly decided to abandon the idea of the three-board-stack and decided instead to connect our main board to that unused footprint in the same way the RPi connects to display (Figure 5). This enabled us to interface all three boards, while maintaining a relatively thin profile. The main board connects four separate components to the rest of the circuit. It connects the RFM95W transceiver to the RPi, front panel buttons, power supply and a small fan.

Read the full article in the April 345 issue of Circuit Cellar
(Full article word count: 3378 words; Figure count: 11 Figures.)

Don’t miss out on upcoming issues of Circuit Cellar. Subscribe today!

Note: We’ve made the October 2017 issue of Circuit Cellar available as a free sample issue. In it, you’ll find a rich variety of the kinds of articles and information that exemplify a typical issue of the current magazine.

BLE Multicore MCUs Embed Arm Cortex M33 CPU

Dialog Semiconductor has announced its SmartBond DA1469x family of Bluetooth low energy SoCs, a range of multi-core MCUs for wireless connectivity. The devices’ three integrated cores have each been carefully chosen for their capabilities to sense, process and communicate between connected devices, says Dialog. To provide the devices’ processing power, the DA1469x product family is the first wireless MCU in production with a dedicated application processor based on the Arm Cortex-M33 CPU, according to Dialog.

The M33 is aimed at compute intensive applications, such as high-end fitness trackers, advanced smart home devices and virtual reality game controllers. The DA1469x devices have a new integrated radio that offers double the range compared to its predecessor together with an Arm Cortex-M0+ based software-programmable packet engine that implements protocols and provides full flexibility for wireless communication.

On the connectivity front, an emerging application is for manufacturers to deploy accurate positioning through the Angle of Arrival and Angle of Departure features of the newly introduced Bluetooth 5.1 standard. With its world-class radio front end performance and configurable protocol engine, the DA1469x complies with this new version of the standard and opens new opportunities for devices that require accurate indoor positioning such as building access and remote keyless entry systems.

To enhance the sensing functionality of the DA1469x, the M33 application processor and M0+ protocol engine is complemented with a Sensor Node Controller (SNC), which is based on a programmable micro-DSP that runs autonomously and independently processes data from the sensors connected to its digital and analog interfaces, waking the application processor only when needed. In addition to this power-saving feature, a state-of-the-art Power Management Unit (PMU) provides best-in-class power management by controlling the different processing cores and only activating them as needed.

The SoCs feature up to 144 DMIPS, 512 KB of RAM, memory protection, a floating-point unit, a dedicated crypto engine to enable end-to-end security and expandable memories, ensuring a wide range of advanced smart device applications can be implemented using the chipset family and supporting a range of key value-add interfaces to extend functionality even further.

The PMU also provides three regulated power rails and one LDO output to supply external system components, removing the requirement of a separate power management IC (PMIC). Additionally, the DA169x product family come equipped with a range of key value-add interfaces including a display driver, an audio interface, USB, a high-accuracy ADC, a haptic driver capable of driving both ERM and LRA motors as well as a programmable stepping motor controller.

Developers working with the DA1469x product family can make use of Dialog’s software development suite – SmartSnippets – which gives them the tools they need to develop best-in-class applications on the new MCUs. The DA1469x variants will start volume production in the first half of 2019. Samples and development kits are available now.

Dialog Semiconductor | www.dialog-semiconductor.com

 

RPi-Based IoT gateway Offers Cellular, Zigbee, Z-Wave or LoRa

By Eric Brown

Newark Element14 and Avnet have announced a Raspberry Pi based “SmartEdge Industrial IoT Gateway” with 2x Ethernet, Wi-Fi/BT, CAN, serial and optional Zigbee, Z-Wave or LoRa.

Avnet, which last year launched the Zynq UltraScale+ based ‘Ultra96 96Boards CE SBC, announced plans for the Avnet SmartEdge Industrial IoT Gateway at the CES show in early January. At Embedded World last month, Premier Farnell revealed more details on the Raspberry Pi based IoT gateway, which will launch this summer at Newark Element14 in North America and Farnell Element14 in Europe.


Avnet SmartEdge Industrial IoT Gateway 
(click image to enlarge)
The Avnet SmartEdge Industrial IoT Gateway will support Avnet’s IoT Connectplatform to enable cloud connectivity to Microsoft Azure. The Linux-driven embedded PC will support industrial automation applications such as remote monitoring, predictive maintenance, process control, and automation.

Premier Farnell did not say which Raspberry Pi is under the hood, but based on the WiFi support, it would appear to be the RPi 3 Model B rather than the B+. The limited specs announced for the gateway include 8GB eMMC, an HDMI port, and TPM 2.0 security. The image suggests there are also at least 2x USB ports and a coincell battery holder for a real-time clock.

For communications, you get dual 10/100 Ethernet ports as well as 2.4GHz WiFi and BLE 4.2 with an integrated antenna and external mount. The gateway also provides a mini-PCIe interface for optional cellular modems. In addition, the enclosure “features space for an additional internal accessory to provide Zigbee, Z-Wave, or LoRa capabilities, for example, or for multiple accessories through case expansion,” say Premier Farnell.

The system is further equipped with CAN-BUS and RS-232/485 interfaces with Modbus and DeviceNet support, as well as isolated digital I/O. There’s also a 40-pin expansion header for Raspberry Pi HATs and other add-on boards. The system has a wide-range 12-24V DC input plus DIN rail and wall mounting.

Further information

The Avnet SmartEdge Industrial IoT Gateway will launch this summer at Newark Element14 in North America and Farnell Element14 in Europe, with pricing undisclosed. More information is available in the Premier Farnell announcement and more may eventually appear on the Avnet website.

This article originally appeared on LinuxGizmos.com on March 4..

Avnet | www.avnet.com

Farnell Element14 | www.element14.com

Newark Element14 | www.newark.com

i.MX6-Based SBC Offers Global Cellular Expansion

VersaLogic has announced the Swordtail SBC that features models with either the NXP i.MX6 Quad (quad core), or the i.MX6 DualLite (dual core) processors. The SBC includes on-board Wi-Fi, Bluetooth and a cellular plug-in socket. At home in hostile environments the compact 95 mm x 95 mm computer board is rated for operation at full industrial temperature range (-40° to +85°C). Unlike many Arm-based “modules”, VersaLogic’s new Arm-based products are complete board-level computers. They do not require additional carrier cards, companion boards, connector break-out boards, or other add-ons to function.

Swordtail boards have been designed to enable transmission of maintenance or diagnostic information without the need for a wired connection. Wi-Fi and Bluetooth radios are included on board, and a NimbleLink Skywire socket supports a wide range of optional cellular and other wireless plug-ins. The Swordtail embedded computer board is suited for deployment into demanding industrial, smart city and transportation applications requiring rugged, long-life, power efficient and industrial temperature rated solutions.

Both Swordtail models feature soldered-on memory, and a variety of I/O connections. In addition to wireless capability, the on-board I/O includes a Gbit Ethernet port with network boot capability, two USB 2.0 Ports, serial I/O (RS-232), CAN Bus, microSD socket, and I2C interface. The boards can accommodate up to 32 GB of on-board flash storage.

Designed for COTS and MCOTS users, Swordtail can be modified for specific applications in quantities as low as 100 pieces. Many applications that require lower power or lower heat dissipation also need very high levels of reliability. Designed and tested for industrial temperature (-40° to +85°C) operation, VersaLogic’s Swordtail also meets MIL-STD-202H specifications to withstand high impact and vibration. Carefully engineered and validated, Swordtail excels in unforgiving environments.

Like other VersaLogic products, the Swordtail is designed for long-term availability (10+ year typical production lifecycle). The Swordtail single board computers (EPC-2702), will be available Q2 2019 from both VersaLogic and Digi-Key. OEM pricing starts at $236.

VersaLogic | www.versalogic.com

Guitar Video Game Uses PIC32

Realism Revamp

While music-playing video games are fun, their user interfaces tend to leave a lot to be desired. Learn how these two Cornell students designed and built a musical video game that’s interfaced using a custom-built wireless guitar controller. The game is run on a Microchip PIC32 MCU and has a TFT LCD display to show notes that move across the screen toward a strum region.

By Jake Podell and Jonah Wexler

While many popular video games involve playing a musical instrument, the controllers used by the player are not the greatest. These controllers are often made of cheap plastic, and poorly reflect the feeling of playing the real instrument. We have created a fun and competitive musical video game, which is interfaced with using a custom-built wireless guitar controller (Figure 1 and Figure 2). The motivation for the project was to experiment with video game interfaces that simulate the real-world objects that inspired them.

Figure 1
Front of the guitar controller. Note the strings and plectrum.

Figure 2
Back of the guitar controller

The video game is run on a Microchip PIC32 microcontroller [1]. We use a thin-film-transistor LCD display (TFT) to display notes that move across the screen toward a strum region. The user plays notes on a wireless mock guitar, which is built with carbon-impregnated elastic as strings and a conducting plectrum for the guitar pick. The game program running on the PIC32 produces guitar plucks and undertones of the song, while keeping track of the user’s score. The guitar is connected to an Arduino Uno and Bluetooth control center, which communicates wirelessly to the PIC32.

The controller was designed to simulate the natural motion of playing a guitar as closely as possible. We broke down that motion on a real guitar into two parts. First, users select the sound they want to play by holding the appropriate strings down. Second, the users play the sound by strumming the strings. To have a controller that resembled a real guitar, we wanted to abide by those two intuitive motions.

Fret & Strum Circuits

At the top of the guitar controller is the fret board. This is where the users can select the sounds they want to play. Throughout the system, the sound is represented as a nibble (4 bits), so we use 4 strings to select the sound.

Each string works as an active-low push-button. The strings are made of carbon-impregnated elastic, which feels and moves like elastic but is also conductive. Each string was wrapped in 30-gauge copper wire, to ensure solid contact with any conductive surfaces. The strings are each connected to screws that run through the fret board and connect the strings to the fret circuit (Figure 3).

Figure 3
Complete controller circuit schematic (on guitar).

The purpose of the fret circuit is to detect changes in voltage across four lines. Each line is branched off a power rail and connected across a string to an input pin on an Arduino Uno. Current runs from the power rail across each string to its respective input pin, which reads a HIGH signal. To detect a push on the string, we grounded the surface into which the string is pushed. By wrapping the fret board in a grounded conductive pad and pushing the string into the fret board, we are able to ground our signal before it can reach the input pin. When this occurs, the associated pin reads a LOW signal, which is interpreted as a press of the string by our system.

Along with the fret circuit, we needed a way to detect strums. The strum circuit is similar in its use of a copper-wrapped, carbon-impregnated elastic string. The string is connected through the fret board to an input pin on the Arduino, but is not powered. Without any external contact, the pin reads LOW. When voltage is applied to the string, the pin reads HIGH, detecting the strum. To mimic the strumming motion most accurately, we used a guitar pick to apply the voltage to the string. The pick is wrapped in a conductive material (aluminum foil), which is connected to the power rail. Contact of the pick applies voltage to the string, which on a rising edge denotes a strum.

Figure 4
Shown here is a block diagram of the controller signals.

As shown in Figure 4, the direct user interface for the player is the guitar controller. The physical interaction with the guitar is converted to an encoded signal by an Arduino mounted to the back of the guitar. The Arduino Uno polls for a signal that denotes a strum, and then reads the strum pattern across the four strings. The signal is sent over USB serial to a Bluetooth control station, which uses a Python script to broadcast the signal to an Adafruit Bluetooth LE module. The laptop that we used as a Bluetooth control station established a link between the controller and the Bluetooth receiver, and was paramount to the debugging and testing of our system. Finally, the Bluetooth module communicated over UART with the PIC, which interpreted the user’s signal in the context of the game [2].  …

Read the full article in the March 344 issue of Circuit Cellar
(Full article word count: 3271 words; Figure count: 10 Figures.)

Watch the project video here:

Don’t miss out on upcoming issues of Circuit Cellar. Subscribe today!

Note: We’ve made the October 2017 issue of Circuit Cellar available as a free sample issue. In it, you’ll find a rich variety of the kinds of articles and information that exemplify a typical issue of the current magazine.

Open-Spec, i.MX6 UL-Based SBC Boasts DAQ and Wireless Features

By Eric Brown

Technologic Systems has announced an engineering sampling program for a wireless- and data acquisition focused SBC with open specifications that runs Debian Linux on NXP’s low-power i.MX6 UL SoC. The -40°C to 85°C tolerant TS-7180 is designed for industrial applications such as industrial control automation and remote monitoring management, including unmanned control room, industrial automation, automatic asset management and asset tracking.


 
TS-7180, front and back
(click images to enlarge)
Like Technologic’s i.MX6-based TS-7970, the TS-7180 has a 122 mm x 112 mm footprint. Like its 119 x 94mm TS-7553-V2 SBC and sandwich-style, 75 mm x 55 mm TS-4100, it features the low power Cortex-A7 based i.MX6 UL, enabling the board to run at a typical 0.91 W.

Like the TS-4100, the new SBC includes an FPGA. On the TS-4100 this was described as a Lattice MachX02 FPGA with an open source, programmable ZPU soft core for controlling GPIO, SPI, I2C and daughtercards. Here, the manual mentions only that the unnamed FPGA enables the optional, 3x 16-bit wide quadrature counters, which are accessible via I2C registers. The “quadrature and edge-counter inputs provide access to” dual, optional tachometers, says Technologic.


 
TS-7180 (left) and block diagram
(click images to enlarge)
The quadrature counters and tachometers are part of a DAQ subsystem with screw terminal interfaces that is not available on its other i.MX6 UL boards. The digital acquisition features also include analog and digital inputs, DIO, and PWM.

Technologic boards typically have a lot of wireless options, but the TS-7180 goes even further by adding a cellular modem socket that supports either MultiTech or NimbeLink wireless modules. You also get Wi-Fi/BT, optional GPS, and a socket for Digi’s XBee modules, which include modems for RF, 802.15.4, DigiMesh, and more. There are also dual 10/100 Ethernet port with an optional Power-over-Ethernet daughtercard.


 
TS-7180 with cellular socket populated with NimbeLink wireless module (left) and with populated XBee socket
(click images to enlarge)
The TS-7180 ships with up to 1 GB RAM and 2 KB FRAM (Cypress 16 kbit FM25L16B), which “provides reliable data retention while eliminating the complexities, overhead, and system level reliability problems caused by EEPROM and other nonvolatile memories,” says Technologic. You also get a microSD slot and 4GB eMMC, which is “configurable as 2 GB pSLC mode for additional system integrity.”

The SBC provides a USB 2.0 host port, as well as micro-USB OTG and serial console ports. There’a also mention of a “coming soon” internal USB interface. Five serial interfaces, including TTL and RS485 ports, are available on screw terminals along with a CAN port.

Other features include an RTC and an optional enclosure and 9-axis IMU. The board runs on an 8-30V input with optional external power supply and Technologic’s TS-SILO SuperCap for 30 seconds of battery backup.

As usual, the board is backed up with open schematics and comprehensive documentation. If it wasn’t over our $200 limit, it would be included in our new catalog of 122 open-spec hacker boards. Two SKUs are available: a basic $315 model with 512MB RAM and a $381 model with 1GB RAM that adds GPS and IMU.

Specifications listed for the TS-7180 include:

  • Processor — NXP i.MX6UL (1x Cortex-A7 core @ up to 696MHz); FPGA
  • Memory/storage:
    • 512MB or 1GB DDR3 RAM
    • 2KB FRAM
    • 4GB MLC eMMC; opt. standard eMMC up to 64GB (special request)
    • MicroSD slot
  • Wireless:
    • 802.11b/g/n with antenna
    • Bluetooth 4.0 BLE
    • Cell modem socket (MultiTech or NimbeLink)
    • Optional GPS
    • XBee interface
  • Networking – 2x 10/100 Ethernet ports with optional PoE via daughtercard
  • Other I/O:
    • USB 2.0 host port
    • Micro-USB OTG port
    • Micro-USB serial console device port
    • 4x serial (1x TTL UART, 3x RS-232) via screw terminals
    • RS-485 (via screw terminal)
    • CAN (via screw terminal)
    • SPI, I2C headers
  • DAQ I/O:
    • 7x DIO (30 VDC tolerant) via screw terminal
    • 4x analog inputs (10V or 4-20 mA) via screw terminal
    • 4x digital inputs via screw terminal
    • PWM header
    • 2x optional quadrature counters
    • 2x Optional tachometers
  • Other features — battery backed RTC; temp. sensor; optional 9-axis accelerometer/gyro; TS-SILO Super Capacitor; optional enclosure
  • Power — 8-30 DC input; 0.91W typical consumption (0.59 min to 6.37 max); optional 24V external DIN-rail mountable “PS-MDR-20-24” power supply
  • Operating temperature — -40 to 85°C
  • Dimensions — 122 x 112mm
  • Operating system — Linux 4.1.15 kernel with Debian image

Further information

The TS-7180 is available in an engineering sampling program for $315 with 512 MB RAM or $381 model with 1GB RAM, GPS, and IMU. 100-unit pricing is $254 and $320. More information may be found in Technologic’s TS-7180 announcement and product page.

This article originally appeared on LinuxGizmos.com on January 4.

Technologic Systems | www.embeddedarm.com

 

Secure Cellular Router Serves Industrial and Transportation Needs

Digi International has announced the Digi WR54, a rugged, secure, high-performance wireless router for complex mobile and industrial environments. With dual cellular interfaces, Digi WR54 provides immediate carrier failover for near-constant uptime and continuous connectivity, especially as vehicles move throughout a city or for locations with marginal cellular coverage. Together with a hardened milspec-certified design and built-in Digi TrustFence security framework, this LTE-Advanced router is designed specifically to meet the connectivity challenges inherent in multi-location, on-the-move conditions, from rail and public transit to trucking fleets and emergency vehicle applications.

LTE-Advanced technologies with carrier aggregation are pushing theoretical download speeds to 300 Mbps, and the next generation of cellular radios is capable of aggregating three or more channels for capabilities up to 600 Mbps. It’s expected that 5G deployments this year will push the demands for performance and edge computing even further. Digi WR54 provides an LTE-Advanced cellular module built on a platform that supports higher speeds to optimize bandwidth today while also being positioned for the future as network capabilities improve.

Multiple transit system use cases require rugged, reliable, high-speed connectivity solutions to carry mission-critical data and communications. Transit system integrators require connectivity for fleet tracking, logistics, engine and driver performance monitoring, fare collection and video monitoring; rail companies that are building in wayside data capabilities need constant visibility into complex systems; industrial corporations like utility companies need to monitor high-value assets.

The Digi WR54 architecture supports these performance requirements with not just the aforementioned LTE-Advanced cellular module, but four Gigabit Ethernet ports for wired systems and the latest 802.11 ac Wi-Fi which combine to support the needs of any user. Other key features include:

  • Dual-core 880 MHz MIPS processor: designed with this high-speed architecture, the Digi WR54 is future-built with a CPU capable of supporting higher network speeds and capabilities as infrastructure is updated to support them
  • SAE J1455, MILSTD-810G and IP-54 rated: tested and certified to withstand water, dust, heat, vibration and other environmental challenges suitable to transportation and many industrial applications
  • Optional dual-cellular radios for continuous connectivity between carriers: for users that cannot afford downtime, if the primary cellular carrier drops out, the Digi WR54 automatically and immediately switches over to the secondary carrier
  • Digi TrustFence: a device-security framework that simplifies the process of securing connected devices and adapts to new and evolving threats
  • Digi Remote Manager: with this Digi web-based management tool, users can simply manage their devices, receive alerts and monitor the health of their deployed devices

For users looking to add high-speed passenger Wi-Fi to mass transit systems, the recently launched Digi WR64 dual LTE-Advanced cellular and dual 802.11ac Wi-Fi router offers an all-in-one mobile communications solution for secure cellular connectivity between vehicles and a central operations center. It offers a flexible interface design with integrated Wi-Fi for client and access point connectivity along with USB, serial, a four-port wired Ethernet switch, GPS and Bluetooth in order to consolidate multiple transit or industrial applications into a single, consolidated router.

Digi International| www.digi.com