Secure Wi-Fi MCU Provides IoT Connectivity Solution

Espressif Systems has announced the release of the ESP32-S2 Secure Wi-Fi MCU, a highly integrated, low-power, 2.4 GHz Wi-Fi SoC supporting Wi-Fi HT40 and 43 GPIOs. Based on the Xtensa single-core 32-bit LX7 processor, ESP32-S2 can be clocked at up to 240 MHz.

With state-of-the-art power management and RF performance, IO capabilities and security features, ESP32-S2 is well suited for a wide variety of IoT or connectivity-based applications, including smart home and wearables. With an integrated 240 MHz Xtensa core, ESP32-S2 is sufficient for building the most demanding connected devices without requiring external MCUs.

Features:

  • CPU and Memory
    • Xtensa single-core 32-bit LX7 microcontroller
    • 7-stage pipeline
    • Clock frequency of up to 240 MHz
    • Ultra-low-power co-processor
    • 320 kB SRAM, 128 kB ROM, 16 KB RTC memory
    • External SPIRAM (128 MB total) support
    • Up to 1 GB of external flash support
    • Separate instruction and data cache
  • Connectivity
    • Wi-Fi 802.11 b/g/n
    • 1×1 transmit and receive
    • HT40 support with data rate up to 150 Mbps
    • Support for TCP/IP networking, ESP-MESH networking, TLS 1.0, 1.1 and 1.2 and other networking protocols over Wi-Fi
    • Support Time-of-Flight (TOF) measurements with normal Wi-Fi packets
  • IO Peripherals
    • 43 programmable GPIOs
    • 14 capacitive touch sensing IOs
    • Standard peripherals including SPI, I2C, I2S, UART, ADC/DAC and PWM
    • LCD (8-bit parallel RGB/8080/6800) interface and also support for 16/24-bit parallel
    • Camera interface supports 8 or 16-bit DVP image sensor, with clock frequency of up to 40 MHz
    • Full speed USB OTG support
  • Security
    • RSA-3072-based trusted application boot
    • AES256-XTS-based flash encryption to protect sensitive data at rest
    • 4096-bit eFUSE memory with 2048 bits available for application
    • Digital signature peripheral for secure storage of private keys and generation of RSA signatures
  • Power Consumption
    • ESP32-S2 supports fine resolution power control through a selection of clock frequency, duty cycle, Wi-Fi operating modes and individual power control of its internal components.
    • When Wi-Fi is enabled, the chip automatically powers on or off the RF transceiver only when needed, thereby reducing the overall power consumption of the system.
    • ULP co-processor with less than 5 uA idle mode and 24 uA at 1% duty-cycle current consumption. Improved Wi-Fi-connected and MCU-idle-mode power consumption.
  • Software
    • ESP32-S2 supports Espressif’s software development framework (ESP-IDF), which is a mature and production-ready platform, already used by millions of devices deployed in the field. Availability of common cloud connectivity agents and common product features shortens the time to market.

Engineering samples of ESP32-S2 beta are available this month (June).

Espressif Systems | www.espressif.com

Arm-Based Industrial Panel PC is Designed for IoT Applications

Advantech has announced the TPC-71W, the new generation of its industrial panel PCs aimed at machine automation and web-terminal applications. TPC-71W is a cost-efficient, Arm-based industrial panel PC that features a 7” true-flat display with P-CAP multi-touch control and an NXP Arm Cortex-A9 i.MX 6 dual/quad-core processor to deliver high-performance computing. The system also features a serial port with a termination resistor that supports the CAN 2.0B protocol and offers a programmable bit rate of up to 1 Mb/s.

Equipped with the Google Chromium embedded web browser and support for various operating systems, including Android, Linux Yocto and Linux Ubuntu with QT GUI toolkits, TPC-71W allows system integrators to easily develop and deploy a wide range of industrial applications. The provision of wireless communication technologies, such as Bluetooth, Wi-Fi and NFC, via a mini PCIe interface simplifies networking and ensures connectivity for data transfers.

TPC-71W also features Power over Ethernet (PoE) functionality for powering devices via Ethernet, thereby eliminating the need to build a power infrastructure. Furthermore, the TPC-71W panel PC supports VESA and panel mounting for flexible and convenient installation. Compared to other similar products, TPC-71W is one of the most competitively priced rugged industrial panel PCs currently available on the market. Overall, this powerful, reliable, and cost-effective computing platform provides the ideal solution for IoT implementation and expansion.

Aimed at the industrial market, TPC-71W is a rugged yet compact, fanless panel PC equipped with an NXP® Arm® Cortex-A9 i.MX 6 dual/quad-core processor, 2 GB DDR3L RAM, and 8 GB eMMC storage to provide high-performance computing and improved efficiency for high-tier industrial applications. The 7” true-flat display with 16:9 aspect ratio features P-CAP multi-touch control for easy and intuitive operation. Moreover, to ensure reliable operation in harsh industrial environments, TPC-71W supports a wide operating temperature range (-20 ~ 60 °C/-4 ~ 140 °F) and is IP66 rated for protection from dust, oil, and water ingress.

TPC-71W supports various OS, including Android 6, Linux Yocto 2.1, and Linux Ubuntu 16.04 with QT GUI toolkits. Linux is an open-source OS specifically designed to assist system integrators with developing unique applications. The ability to support both Android and Linux eliminates software porting efforts and ensures easy deployment. Moreover, TPC-71W features the Google Chromium embedded web browser that simplifies programming and further facilitates application development.

To ensure connectivity for web-based management, TPC-71W offers Bluetooth, Wi-Fi, and NFC wireless communication capabilities via a mini PCIe interface. The inclusion of a serial port that supports industrial communication interfaces, such as RS-232/485 and the CAN 2.0B protocol, and a LAN port that supports speeds of up to 1000 Mbps (10/100/1000 Mbps) accelerates data transfer rates, while also enabling Wake-on-LAN functions. Furthermore, the TPC-71W panel PC can be equipped with optional PoE functionality for powering devices via Ethernet; this greatly streamlines installations and reduces overall equipment costs.

Key Features:

  • 7” WSVGA LCD with 16:9 aspect ratio and P-CAP multi-touch control
  • NXP Arm Cortex®[C1] -A9 i.MX 6 dual/quad-core processor
  • Up to 2 GB DDR3L RAM and 8 GB of eMMC storage onboard
  • 10/100/1000 Mbps LAN Optional PoE functionality for powering devices via Ethernet
  • Supports Linux Yocto, Linux Ubuntu, and Android OS

Advantech’s TPC-71W 7” industrial panel PC is available for order now.

Advantech | www.advantech.com

 

Bluetooth Mesh (Part 3)

Secure Provisioning

In this next part of his article series on Bluetooth mesh, Bob looks at how to create secure provisioning for a Bluetooth Mesh network without requiring user intervention. He also takes a special look at an attack called Man-in-the-Middle which Bluetooth’s asymmetric key encryption is vulnerable to.

By Bob Japenga

Both of our cars are more than 15 years old. My only new car envy is with the lack of a modern audio system. With a rental car, I’m always envious of the Bluetooth support and the seamless way I can connect and reconnect my phone to the car’s system. Most of the new audio systems are well thought out and easy to use. For my birthday, I got a Bluetooth device that would connect my phone to my dumb audio system in both cars. I have been very happy with the devices although they have two quirks. One is that they don’t work when the car has been left outside and it’s below zero. After the car warms up, it will happily function. But it doesn’t like subzero temperatures.

The other quirk—pointed out by my grandchildren—is that when it powers up, it announces: “Waiting for Pairing.” And then when it is paired, it reports “Paired.” The quirk is that instead of saying “Waiting for Pairing” it sounds like it is saying “Waiting for Perry.” The first time my grandkids were in the car, they asked: “Who is Perry and why are we waiting for him?” Now I can only hear “Waiting for Perry” when I turn on the car.
Pairing is the way two standard Bluetooth devices establish the initial link for one-to-one networking (Figure 1). Bluetooth mesh needs a much more sophisticated and secure method of linking the many-to-many network. That method is called provisioning. I introduced Bluetooth mesh provisioning in my last article (Circuit Cellar 345, April 2019) [1]. So, if you haven’t read that article, as a minimum, it will be important to go back to understand the terms that were defined in that article and which I will be using in this article.

Figure 1
Pairing is the way two standard Bluetooth devices establish the initial link for one-to-one networking.

As I mentioned last time, the Bluetooth specification [2] states that only if an Out-of-Band (OOB) public key is used or if an OOB action is taken to pass the public key (using user supplied information), “provisioning is Insecure Provisioning.” This statement will basically jettison any project that does not use one of these two OOB methods when presented to a savvy IT group. It did for us. Imagine presenting to your CEO a new product line using Bluetooth mesh that doesn’t use one of these two methods. Most likely the savvy CEO will ask: “What is the projected return on our investment?” AND “Is it secure?” Would you want to say: “Well, we are using Insecure Provisioning but other than that it is secure?”

I’m not convinced that the specification is entirely accurate in this statement and would appeal to the Bluetooth SIG to reconsider their wording. I want to elaborate on this idea in this article and provide some means for making provisioning secure without using either of the two OOB methods to pass the public keys.

Man-in-the-Middle

As I mentioned last time, Bluetooth uses asymmetric key encryption during the first part of provisioning. Asymmetric key encryption has one basic security flaw. It is subject to what is called a Man-in-the-Middle (MitM) attack. Let me illustrate this attack.

Imagine that Bob and Barbara are happily married. I know, normally everyone uses Alice in these illustrations, but my wife’s name is Barbara. They want to communicate some secret birthday plans about their grandson Sean. So, they both send over clear text their public keys (B1 and B2) (Figure 2). Bob encrypts all of his messages with Barbara’s public key B2, and sends them to Barbara. Barbara decrypts all of Bob’s messages using her private key B2P. Barbara sends all of her messages to Bob using Bob’s public key B1 to encrypt the data. Bob decrypts Barbara’s messages with Bob’s private key B1P.

Figure 2
Shown here is an example exchange that would be insecure because it would be subject to a Man-in-the-Middle attack. However, during normal asymmetric key encryption, the attack can be prevented through authentication.

Imagine that grandson Sean is a curious computer whiz and wants to know what’s he is going to get for his birthday. He intercepts the public key exchange B1 and B2 between his grandparents. Instead of passing on their public keys, he sends them his public key S1. So, when Bob and Barbara send their messages encrypted with S1 to each other he intercepts them and decrypts them using his private key S1P since they are encrypting their messages with his public key S1. He finds out what he is getting for his birthday and then encrypts the messages using Bob and Barbara’s public keys and sends them back to them. Bob and Barbara are clueless to the fact that Sean now knows what he is getting for his birthday.

That example illustrates that, if during the provisioning process, the public keys are not exchanged OOB, the process would be insecure because they would be subject to a MitM attack. However, during normal asymmetric key encryption, the way this can be prevented is through authentication. If Bob can know that a key is authentically from Barbara, he would immediate recognize that the key that Sean sent was not from Barbara. During normal Internet asymmetric key encryption this authentication is done through Certificates of Authority created by a trusted signing authority.

The Bluetooth provisioning process includes authentication of the device as part of the process. Authentication can either be using an OOB technique or without OOB. So, I would contend that if you use some means of authenticating that does not transfer the credentials over the Bluetooth network, your provisioning process would be secure in spite of what the Bluetooth specification says (I am definitely treading on thin ice here!).

Read the full article in the June 347 issue of Circuit Cellar

Don’t miss out on upcoming issues of Circuit Cellar. Subscribe today!

Note: We’ve made the October 2017 issue of Circuit Cellar available as a free sample issue. In it, you’ll find a rich variety of the kinds of articles and information that exemplify a typical issue of the current magazine.

Ultra96-V2 SBC adds Certified Wi-Fi and Industrial Temp Support

By Eric Brown

Avnet has unveiled a minor upgrade to its open-spec, 96Boards CE form-factor Ultra96 SBC. The Ultra96-V2 retains the $249 price and core features of the Ultra96, including the Arm/FPGA hybrid Xilinx Zynq UltraScale+ MPSoC, but it also makes a few key additions.

The biggest touted improvement is a new Microchip wireless module with the same 802.11n Wi-Fi capability, but with Bluetooth improving to 5.0 BLE. The major advantage here is that the module is said to be pre-certified in 75 countries.


 
Ultra96-V2 (left) and Ultra96-V1
(click images to enlarge)
Avnet has also “updated all components on the Ultra96-V2 to allow industrial temperature grade options so that the board can operate in harsh industrial applications.” We saw no details, however, on the specifics of the standard and industrial options. The term “industrial temperature” usually refers to -40 to 85°C.

Other new features include an Infineon power management IC (PMIC) and dedicated headers for UART and JTAG. The product page suggests that the previous I2C header has been removed, with I2C now being available only on the 40-pin low-speed header, but the block diagram indicates otherwise. There also appear to be four new LEDs.

Like the original, the Ultra96-V2 runs PetaLinux on the Zynq UltraScale+ MPSoC with a 1.5GHz quad-core, Cortex-A53 CPU block, a Mali-400 MP2 GPU, and a ZU3EG A484 FPGA — one of the lower-end UltraScale+ FPGA options. The SoC also features 2x 600MHz Cortex-R5 MCUs with vector FPUs and memory protection units for improved real-time processing. Avnet recently released a MSC SM2S-ZUSP module billed as the world’s first Zynq UltraScale+ based SMARC module.


Ultra96-V2 block diagram
(click image to enlarge)
As before, the SBC provides 2GB of Micron LPDDR4, and boots from a 16GB Delkin microSD card pre-loaded with Xilinx’s PetaLinux. Major ports include mini-DP, 2x USB 3.0, and single USB 2.0 host and micro-USB 3.0 ports.

Specifications listed for the Ultra96-V2 include:

  • Processor — Xilinx Zynq UltraScale+ MPSoC ZU3EG A484 (4x Cortex-A53 @ 1.5GHz); FPGA with 154K logic cells, 141K flip-flops, and 70K LUTs; Mali-400 MP2 GPU; 2x Cortex-R5 MCUs
  • Memory/storage:
    • 2GB LPDDR4 RAM (“512M x 32” Micron).
    • MicroSD slot with 16GB Delkin card pre-loaded with PetaLinux
  • Wireless — Microchip 802.11 b/g/n and Bluetooth 5 BLE (certified in 75 countries)
  • Other I/O:
    • Mini-DisplayPort
    • 2x USB 3.0 host ports
    • USB 2.0 host port
    • Micro-USB 3.0 “upstream” port
    • I2C, UART, and JTAG headers
    • 40-pin low-speed connector
    • 60-pin high-speed connector
  • Other features — 4x LEDs; optional USB-to-JTAG/UART pod
  • Operating temperature — industrial temp version available
  • Power — 12V input; Infineon PMIC
  • Dimensions — 85 x 54mm; 96Boards CE
  • Operating system — PetaLinux; voucher for Xilinx SDSoC license

Further information

The Ultra96-V2 is available for pre-order at $249, with shipments due by May, according to the announcement and June 4 per the shopping page. More information may be found on Avnet’s Ultra96-V2 product page.

This article originally appeared on LinuxGizmos.com on March 27.

Avent | www.avnet.com

ST and Virscient Team Up for Connected-Car Effort

STMicroelectronics has teamed up with Virscient to help system designers build automotive solutions using ST’s Telemaco3P secure telematics and connectivity processors. Virscient offers support to ST customers in the development and delivery of advanced automotive applications based on the ST Modular Telematics Platform (MTP). MTP is a comprehensive development and demonstration platform incorporating ST’s Telemaco3P telematics and connectivity microprocessor.

MTP enables the rapid prototyping and development of smart-driving applications, including vehicle connectivity to back-end servers, road infrastructure, and other vehicles. Virscient brings a deep understanding of wireless connectivity technologies and protocols ideal for architecting connected-car systems that rely on technologies such as GNSS (Precise Positioning), LTE/cellular modems, V2X technologies, Wi-Fi, Bluetooth and Bluetooth Low Energy (BLE).

The Telemaco3P incorporates dual Arm Cortex-A7 processors with an embedded Hardware Security Module (HSM), an independent Arm Cortex-M3 subsystem, and a rich set of connectivity interfaces. With security at its core, and considerable flexibility in both hardware and software configurations, the Telemaco3P provides an excellent platform for connectivity within the vehicular environment.

ST’s Telemaco3P system-on-chip is designed as a solution for ensuring a secure connection between the vehicle and the Cloud. Its asymmetric multi-core architecture provides powerful application processors as well as an independent CAN control subsystem with optimized power management. Its ISO 26262 silicon design, its embedded Hardware Security Module, and automotive-grade qualification up to 105°C ambient temperature make it well suited for implementing a wide range of secure telematics applications supporting high-throughput wireless connectivity and over-the-air firmware upgrades.

STMicroelectronics | www.st.com
Virscient | www.virscient.com

 

May Circuit Cellar: Sneak Preview

The May issue of Circuit Cellar magazine is out next week!. We’ve been hard at work laying the foundation and nailing the beams together with a sturdy selection of  embedded electronics articles just for you. We’ll soon be inviting you inside this 84-page magazine.

Not a Circuit Cellar subscriber?  Don’t be left out! Sign up today:

 

Here’s a sneak preview of May 2019 Circuit Cellar:

EMBEDDED COMPUTING AT WORK

Technologies for Digital Signage
Digital signage ranks among the most dynamic areas of today’s embedded computing space. Makers of digital signage players, board-level products and other technologies continue to roll out new solutions for implementing powerful digital signage systems. Circuit Cellar Chief Editor Jeff Child looks at the latest technology trends and product developments in digital signage.

PC/104 and PC/104 Family Boards
PC/104 has come a long way since its inception over 25 ago. With its roots in ISA-bus PC technology, PC/104 evolved through the era of PCI and PCI Express by spinning off its wider family of follow on versions including PC/104-Plus, PCI-104, PCIe/104 and PCI/104-Express. This Product Focus section updates readers on these technology trends and provides a product gallery of representative PC/104 and PC/104-family boards.

TOOLS & TECHNIQUES FOR EMBEDDED ENGINEERING

Code Analysis Tools
Today it’s not uncommon for embedded devices to have millions of lines of software code. Code analysis tools have kept pace with these demands making it easier for embedded developers to analyze, debug and verify complex embedded software. Circuit Cellar Chief Editor Jeff Child explores the latest technology trends and product developments in code analysis tools.

Transistor Basics
In this day and age of highly integrated ICs, what is the relevance of the lone, discrete transistor? It’s true that most embedded systems can be solved by chip level solutions. But electronic component vendors do still make and sell individual transistors because there’s still a market for them. In this article, Stuart Ball reviews some important basics about transistors and how you can use them in your embedded system design.

Pressure Sensors
Over the years, George Novacek has done articles examining numerous types of sensors that measure various physical aspects of our world. But one measurement type he’s not yet discussed in the past is pressure. Here, George looks at pressure sensors in the context of using them in an electronic monitoring or control system. The story looks at the math, physics and technology associated with pressure sensors.

MICROCONTROLLERS DO IT ALL

Robotic Arm Plays Beer Pong
Simulating human body motion is a key concept in robotics development. With that in mind, learn how these Cornell graduates Daniel Fayad, Justin Choi and Harrison Hyundong Chang accurately simulate the movement of a human arm on a small-sized robotic arm. The Microchip PIC32 MCU-based system enables the motion-controlled, 3-DoF robotic arm to take a user’s throwing motion as a reference to its own throw. In this way, they created a robotic arm that can throw a ping pong ball and thus play beer pong.

Fancy Filtering with the Teensy 3.6
Signal filtering entails some tricky tradeoffs. A fast MCU that provides hardware-based floating-point capability eases some of those tradeoffs. In the past, Brian Millier has used the Arm-based Teensy MCU modules to serve meet those needs. In this article, Brian taps the Teensy 3.6 Arm MCU module to perform real-time audio FFT-convolution filtering.

Real-Time Stock Monitoring Using an MCU
With today’s technology, even very simple microcontroller-based devices can fetch and display data from the Internet. Learn how Cornell graduates David Valley and Saelig Khatta built a system using that can track stock prices in real-time and display them conveniently on an LCD screen. For the design, they used an Espressif Systems ESP8266 Wi-Fi module controlled by a Microchip PIC32 MCU. Our fun little device fetches chosen stock prices in real-time and displays them on a screen.

… AND MORE FROM OUR EXPERT COLUMNISTS

Attacking USB Gear with EMFI
Many products use USB, but have you ever considered there may be a critical security vulnerability lurking in your USB stack? In this article, Colin O’Flynn walks you through on example product that could be broken using electromagnetic fault injection (EMFI) to perform this attack without even removing the device enclosure.

An Itty Bitty Education
There’s no doubt that we’re living in a golden age when it comes to easily available and affordable development kits for fun and education. With that in mind, Jeff Bachiochi shares his experiences programming and playing with the Itty Bitty Buggy from Microduino. Using the product, you can build combine LEGO-compatible building blocks into mobile robots controlled via Bluetooth using your cellphone.

April Circuit Cellar: Sneak Preview

The April issue of Circuit Cellar magazine is out next week (March 20th)!. We’ve worked hard to cook up a tasty selection of in-depth embedded electronics articles just for you. We’ll be serving them up to in our 84-page magazine.

Not a Circuit Cellar subscriber?  Don’t be left out! Sign up today:

 

Here’s a sneak preview of April 2019 Circuit Cellar:

VIDEO AND DISPLAY TECHNOLOGIES IN ACTION

Video Technology in Drones
Because video is the main mission of the majority of commercial drones, video technology has become a center of gravity in today’s drone design decisions. The topic covers everything including single-chip video processing, 4k HD video capture, image stabilization, complex board-level video processing, drone-mounted cameras, hybrid IR/video camera and mesh-networks. In this article, Circuit Cellar’s Editor-in-Chief, Jeff Child, looks at the technology and trends in video technology for drones.

Building an All-in-One Serial Terminal
Many embedded systems require as least some sort of human interface. While Jeff Bachiochi was researching alternatives to mechanical keypads, he came across the touchscreen display products from 4D Systems. He chose their inexpensive, low-power 2.4-inch, resistive touch screen as the basis for his display subsystem project. He makes use of the display’s Espressif Systems ESP8266 processor and Arduino IDE support to turn the display module into a serial terminal with a serial TTL connection to other equipment.

MICROCONTROLLERS ARE EVERYWHERE

Product Focus: 32-Bit Microcontrollers
As the workhorse of today’s embedded systems, 32-bit microcontrollers serve a wide variety of embedded applications-including the IoT. MCU vendors continue to add more connectivity, security and I/O functionality to their 32-bit product families. This Product Focus section updates readers on these trends and provides a product album of representative 32-bit MCU products.

Build a PIC32-Based Recording Studio
In this project article, learn how Cornell students Radhika Chinni, Brandon Quinlan, Raymond Xu built a miniature recording studio using the Microchip PIC32. It can be used as an electric keyboard with the additional functionality of recording and playing back multiple layers of sounds. There is also a microphone that the user can use to make custom recordings.

WONDERFUL WORLD OF WIRELESS

Low-Power Wireless Comms
The growth in demand for IoT solutions has fueled the need for products and technology to do wireless communication from low-power edge devices. Using technologies including Bluetooth Low-Energy (BLE), wireless radio frequency technology (LoRa) and others, embedded system developers are searching for ways to get efficient IoT connectivity while drawing as little power as possible. Circuit Cellar Chief Editor Jeff Child explores the latest technology trends and product developments in low-power wireless communications.

Bluetooth Mesh (Part 2)
Continuing his article series on Bluetooth mesh, this month Bob Japenga looks at the provisioning process required to get a device onto a Bluetooth mesh network. Then he examines two application examples and evaluates the various options for each example.

Build a Prescription Reminder
Pharmaceuticals prescribed by physicians are important to patients both old and young. But these medications will only do their job if taken according to a proper schedule. In this article, Devlin Gualtieri describes his Raspberry-Rx Prescription Reminder project, a network-accessible, the Wi-Fi connected, Raspberry Pi-based device that alerts a person when a particular medication should be administered. It also keeps a log of the actual times when medications were administered.

ENGINEERING TIPS, TRICKS AND TECHNIQUES

The Art of Current Probing
In his February column, Robert Lacoste talked about oscilloscope probes—or more specifically, voltage measurement probes. He explained how selecting the correct probe for a given measurement, and using it as it properly, is as important as having a good scope. In this article, Robert continues the discussion with another common measurement task: Accurately measuring current using an oscilloscope.

Software Engineering
There’s no doubt that achieving high software quality is human-driven endeavor. No amount of automated code development can substitute for best practices. A great tool for such efforts is the IEEE Computer Society’s Guide to the Software Engineering Body of Knowledge. In this article, George Novacek discusses some highlights of this resource, and why he has frequently consulted this document when preparing development plans.

HV Differential Probe
A high-voltage differential probe is a critical piece of test equipment for anyone who wants to safely examine high voltage signals on a standard oscilloscope. In his article, Andrew Levido describes his design of a high-voltage differential probe with features similar to commercial devices, but at a considerably lower cost. It uses just three op amps in a classic instrumentation amplifier configuration and provides a great exercise in precision analog design.

i.MX6-Based SBC Offers Global Cellular Expansion

VersaLogic has announced the Swordtail SBC that features models with either the NXP i.MX6 Quad (quad core), or the i.MX6 DualLite (dual core) processors. The SBC includes on-board Wi-Fi, Bluetooth and a cellular plug-in socket. At home in hostile environments the compact 95 mm x 95 mm computer board is rated for operation at full industrial temperature range (-40° to +85°C). Unlike many Arm-based “modules”, VersaLogic’s new Arm-based products are complete board-level computers. They do not require additional carrier cards, companion boards, connector break-out boards, or other add-ons to function.

Swordtail boards have been designed to enable transmission of maintenance or diagnostic information without the need for a wired connection. Wi-Fi and Bluetooth radios are included on board, and a NimbleLink Skywire socket supports a wide range of optional cellular and other wireless plug-ins. The Swordtail embedded computer board is suited for deployment into demanding industrial, smart city and transportation applications requiring rugged, long-life, power efficient and industrial temperature rated solutions.

Both Swordtail models feature soldered-on memory, and a variety of I/O connections. In addition to wireless capability, the on-board I/O includes a Gbit Ethernet port with network boot capability, two USB 2.0 Ports, serial I/O (RS-232), CAN Bus, microSD socket, and I2C interface. The boards can accommodate up to 32 GB of on-board flash storage.

Designed for COTS and MCOTS users, Swordtail can be modified for specific applications in quantities as low as 100 pieces. Many applications that require lower power or lower heat dissipation also need very high levels of reliability. Designed and tested for industrial temperature (-40° to +85°C) operation, VersaLogic’s Swordtail also meets MIL-STD-202H specifications to withstand high impact and vibration. Carefully engineered and validated, Swordtail excels in unforgiving environments.

Like other VersaLogic products, the Swordtail is designed for long-term availability (10+ year typical production lifecycle). The Swordtail single board computers (EPC-2702), will be available Q2 2019 from both VersaLogic and Digi-Key. OEM pricing starts at $236.

VersaLogic | www.versalogic.com

Wi-Fi 6 / Bluetooth Combo Chips Enhance Automotive Infotainment

Cypress Semiconductor has announced a trio of new products, including Wi-Fi / Bluetooth combo chipsets and supporting software serve as application development platforms that enable multiple users to connect and seamlessly stream unique content to as many as 10 mobile devices simultaneously. The new infotainment platforms include a Wi-Fi 6 (802.11ax) and Bluetooth combo solution that features Cypress’ Real Simultaneous Dual Band (RSDB) architecture. RSDB has become the de facto standard for premium connected infotainment experiences, enabling two unique data streams to run at full throughput simultaneously by integrating two complete Wi-Fi subsystems into a single chip. Wi-Fi 6 enables gigabit-level throughput and improves reliability for content streaming to multiple devices at once.
Cypress also added two Wi-Fi 5 (802.11ac) and Bluetooth combo solutions to its portfolio, empowering car makers and automotive system suppliers with a scalable platform solution to address a wide range of vehicles with a uniform software architecture that minimizes development and system integration costs.

According to Cypress, premium infotainment systems require high-throughput, multi-role, concurrent operation to implement wireless mirroring for applications such as Apple CarPlay, Android Auto and Mirrorlink. Cypress’ Wi-Fi and Bluetooth combo solutions meet these needs and also offer simultaneous Wi-Fi Hotspot and content access, and multi-band/multi-radio coexistence for video and Bluetooth audio. The Cypress CYW89650 2×2 plus 2×2 Wi-Fi 6 and Bluetooth 5.0 combo solution delivers more than 1G bps throughput, and the RSDB architecture enables concurrent operation for these use cases in high-performance infotainment systems without audio or video degradation.

The new CYW89459 2×2 Wi-Fi 5 and Bluetooth 5.0 combo with RSDB builds on the success of Cypress’ existing automotive Wi-Fi 5 solutions, enabling more connected devices to the head unit and including emerging features such as WPA3 security, Wi-Fi Location and Wi-Fi Aware. Together with the new cost-effective CYW89373 1×1 Wi-Fi 5 and Bluetooth 5.0 combo, the portfolio provides mass market to luxury class vehicles with advanced wireless performance and medium coexistence management for an uninterrupted entertainment experience.

Cypress’ automotive wireless solutions are fully automotive qualified with AEC-Q100 grade-3 validation. Cypress’ existing solutions have been designed in by numerous top-tier car OEMs and automotive suppliers and are in production vehicles today supporting infotainment and telematics applications such as smartphone screen-mirroring, content streaming and Bluetooth voice connectivity in car kits.

Cypress Semiconductor | www.cypress.com

 

 

March Circuit Cellar: Sneak Preview

The March issue of Circuit Cellar magazine is out next week!. We’ve rounded up an outstanding selection of in-depth embedded electronics articles just for you, and rustled them all into our 84-page magazine.

Not a Circuit Cellar subscriber?  Don’t be left out! Sign up today:

 

Here’s a sneak preview of March 2019 Circuit Cellar:

POWER MAKES IT POSSIBLE

Power Issues for Wearables
Wearable devices put extreme demands on the embedded electronics that make them work—and power is front and center among those demands. Devices spanning across the consumer, fitness and medical markets all need an advanced power source and power management technologies to perform as expected. Circuit Cellar Chief Editor Jeff Child examines how today’s microcontroller and power electronics are enabling today’s wearable products.

Power Supplies for Medical Systems
Over the past year, there’s been an increasing trend toward new products that have some sort of application or industry focus. That means supplies that include either certifications, special performance specs or tailored packaging intended for a specific application area such as medical. This Product Focus section updates readers on these technology trends and provides a product gallery of representative medical-focused power supplies.

DESIGN RESOURCES, ISSUES AND CHALLENGES

Flex PCB Design Services
While not exactly a brand-new technology, flexible printed circuit boards are a critical part of many of today’s challenging embedded system applications from wearable devices to mobile healthcare electronics. Circuit Cellar’s Editor-in-Chief, Jeff Child, explores the Flex PCB design capabilities available today and whose providing them.

Design Flow Ensures Automotive Safety
Fault analysis has been around for years, and many methods have been created to optimize evaluation of hundreds of concurrent faults in specialized simulators. However, there are many challenges in running a fault campaign. Mentor’s Doug Smith presents an improved formal verification flow that reduces the number of faults while simultaneously providing much higher quality of results.

Cooling Electronic Systems
Any good embedded system engineer knows that heat is the enemy of reliability. As new systems cram more functionality at higher speeds into ever smaller packages, it’s no wonder an increasing amount of engineering mindshare is focusing on cooling electronic systems. In this article, George Novacek reviews some of the essential math and science around cooling and looks are several cooling technologies—from cold pates to heat pipes.

MICROCONTROLLER PROJECTS WITH ALL THE DETAILS

MCU-Based Solution Links USB to Legacy PC I/O
In PCs, serial interfaces have now been just about completely replaced by USB. But many of those interfaces are still used in control and monitoring embedded systems. In this project article, Hossam Abdelbaki describes his ATSTAMP design. ATSTAMP is an MCS-51 (8051) compatible microcontroller chip that can be connected to the USB port of any PC via any USB-to-serial bridge currently available in the market.

Pet Collar Uses GPS and Wi-Fi
The PIC32 has proven effective for a myriad of applications, so why not a dog collar? Learn how Cornell graduates Vidya Ramesh and Vaidehi Garg built a GPS-enabled pet collar prototype. The article discusses the hardware peripherals used in the project, the setup, and the software. It also describes the motivation behind the project, and possibilities to expand the project in the future.

Guitar Video Game Uses PIC32
While music-playing video games are fun, their user interfaces tend leave a lot to be desired. Learn how Cornell students Jake Podell and Jonah Wexler designed and built a musical video game that’s interfaced with using a custom-built wireless guitar controller. The game is run on a Microchip PIC32 MCU and uses a TFT LCD display to show notes that move across the screen towards a strum region.

… AND MORE FROM OUR EXPERT COLUMNISTS

Non-Evasive Current Sensor
Gone are the days when you could do most of your own maintenance on your car’s engine. Today they’re sophisticated electronic systems. But there are some things you can do with the right tools. In his article, By Jeff Bachiochi talks about how using the timing light on his car engine introduced him to non-contact sensor technology. He talks about the types of probes available and how to use them to read the magnitude of alternating current (AC

Impedance Spectroscopy using the AD5933
Impedance spectroscopy is the measurement of a device’s impedance (or resistance) over a range of frequencies. Brian Millier has designed many voltammographs and conductivity meters over the years. But he recently came across the Analog Devices AD5933 chip made by which performs most all the functions needed to do impedance spectroscopy. In this article, explores the technology, circuit design and software that serve these efforts.

Side-Channel Power Analysis
Side-channel power analysis is a method of breaking security on embedded systems, and something Colin O’Flynn has covered extensively in his column. This time Colin shows how you can prove some of the fundamental assumptions that underpin side-channel power analysis. He uses the open-source ChipWhisperer project with Jupyter notebooks for easy interactive evaluation.

Free IoT Security Platform Runs on OpenWrt Routers and the Raspberry Pi

By Eric Brown

At the Consumer Electronics Show (CES) in Las Vegas, Minim announced a free spin-off of Minim, its cloud-managed Wi-Fi and security Software as a Service (SaaS) platform. Minim Labs is designed to work with a new open source software agent called Unum that runs on Raspbian and OpenWrt Linux devices. Optimized images are available for the OpenWrt-based Gli.Net GL-B1300 router and Raspberry Pi. The first 50 sign-ups will get the B1300 router for free (see below).


Minim Labs setup screen
(click image to enlarge)
The Minim Labs toolkit “secures and manages all connected devices in the home, such as the Google Home Hub, Sony Smart TV, and FreeRTOS devices,” providing “device fingerprinting, security scans, AI-powered recommendations, router management, analytics, and parental controls,” says Minim. By signing up to a Minim Labs account you receive a MAC address to register an Unum-enabled device.

The GitHub hosted Unum agent runs on the Linux router where it identifies connected devices and securely streams device telemetry to the Minim platform. Users can open a free Minim Labs account to register up to 10 Unum-enabled devices, offering access to Minim WiFi management apps and APIs. Alternately, you can use Unum with your own application server.

The GL-B1300 and Raspberry Pi builds are designed to walk “home network tinkerers” through the process of protecting devices with Unum and Minim Labs. More advanced developers can download a Unum SDK to modify the software for any OpenWrt-based router.

“By open sourcing our agent and giving technologists free access to our platform, we hope to build a global community that’ll contribute valuable product feedback and code,” stated Jeremy Hitchcock, Founder and CEO of Minim.

Gli.Net’s OpenWrt routers

Gli.Net’s GL-B1300 router runs OpenWrt on a quad-core, Cortex-A7 Qualcomm Atheros IPQ4028 SoC clocked to 717 MHz. The SoC is equipped with a DSP, 256MB RAM, 32 MB flash, and dual-band 802.11ac with 2×2 MIMO. The SoC and supports up to 5-port Ethernet routers abd provides Qualcomm TEE, Crypto Engine, and Secure Boot technologies.


 
GL-B1300 (left) and GL-AR750S
(click images to enlarge)
The GL-B1300 router has dual GbE ports, a WAN port, and a USB 3.0 port. The $89 price includes a 12V adapter and Ethernet cable.

The testimonial quote below says that the GL-AR750S Slate router, which is a CES 2019 Innovation Awards Honoree, will also support Unum and Minim Labs out of the box. The $70 GL-AR750S Slate runs on a MIPS-based, 775MHz Qualcomm QCA9563 processor and is equipped with 128MB RAM, 128MB NAND flash, and a microSD slot.

The Slate router provides 3x GbE ports and dual-band 802.11ac with dual external antennas. Other features include USB 2.0 and micro-USB power ports plus a UART and GPIO. The router supports WireGuard, OpenVPN, and Cloudflare DNS over TLS.


Gli.Net router comparison chart, including GL-B1300 and GL-AR750S
(click image to enlarge)
In addition to its routers, Gli.Net also sells the OpenWrt-on-Atheros/MIPS Domino Core computer-on-module. The Domino Core shipped in a Kickstarter launched Domino.IO IoT kit back in 2015.

“We are glad that Minim is going to launch open-source tools for DIY users and increase awareness of personal Internet security,” stated GL.iNet CTO Dr. Alfie Zhao. “This initiative shows shared value and vision with GL.iNet. We are happy to provide support for Minim tools on our GL-AR750S Slate router and GL-B1300 router, both of which have support to the latest OpenWrt.”

Further information

The free Minim Labs security platform is available for signup now, and the open source Unum agent is available for download. Minim is offering the first 50 Minim Labs signups with a free startup kit containing the GL-B1300 router. More information may be found at the Minim Labs product page.

This article originally appeared on LinuxGizmos.com on January 9.

Minim | www.minim.co

 

Secure Cellular Router Serves Industrial and Transportation Needs

Digi International has announced the Digi WR54, a rugged, secure, high-performance wireless router for complex mobile and industrial environments. With dual cellular interfaces, Digi WR54 provides immediate carrier failover for near-constant uptime and continuous connectivity, especially as vehicles move throughout a city or for locations with marginal cellular coverage. Together with a hardened milspec-certified design and built-in Digi TrustFence security framework, this LTE-Advanced router is designed specifically to meet the connectivity challenges inherent in multi-location, on-the-move conditions, from rail and public transit to trucking fleets and emergency vehicle applications.

LTE-Advanced technologies with carrier aggregation are pushing theoretical download speeds to 300 Mbps, and the next generation of cellular radios is capable of aggregating three or more channels for capabilities up to 600 Mbps. It’s expected that 5G deployments this year will push the demands for performance and edge computing even further. Digi WR54 provides an LTE-Advanced cellular module built on a platform that supports higher speeds to optimize bandwidth today while also being positioned for the future as network capabilities improve.

Multiple transit system use cases require rugged, reliable, high-speed connectivity solutions to carry mission-critical data and communications. Transit system integrators require connectivity for fleet tracking, logistics, engine and driver performance monitoring, fare collection and video monitoring; rail companies that are building in wayside data capabilities need constant visibility into complex systems; industrial corporations like utility companies need to monitor high-value assets.

The Digi WR54 architecture supports these performance requirements with not just the aforementioned LTE-Advanced cellular module, but four Gigabit Ethernet ports for wired systems and the latest 802.11 ac Wi-Fi which combine to support the needs of any user. Other key features include:

  • Dual-core 880 MHz MIPS processor: designed with this high-speed architecture, the Digi WR54 is future-built with a CPU capable of supporting higher network speeds and capabilities as infrastructure is updated to support them
  • SAE J1455, MILSTD-810G and IP-54 rated: tested and certified to withstand water, dust, heat, vibration and other environmental challenges suitable to transportation and many industrial applications
  • Optional dual-cellular radios for continuous connectivity between carriers: for users that cannot afford downtime, if the primary cellular carrier drops out, the Digi WR54 automatically and immediately switches over to the secondary carrier
  • Digi TrustFence: a device-security framework that simplifies the process of securing connected devices and adapts to new and evolving threats
  • Digi Remote Manager: with this Digi web-based management tool, users can simply manage their devices, receive alerts and monitor the health of their deployed devices

For users looking to add high-speed passenger Wi-Fi to mass transit systems, the recently launched Digi WR64 dual LTE-Advanced cellular and dual 802.11ac Wi-Fi router offers an all-in-one mobile communications solution for secure cellular connectivity between vehicles and a central operations center. It offers a flexible interface design with integrated Wi-Fi for client and access point connectivity along with USB, serial, a four-port wired Ethernet switch, GPS and Bluetooth in order to consolidate multiple transit or industrial applications into a single, consolidated router.

Digi International| www.digi.com

Nordic Semi’s BLE SoC Selected for Ultra Low Power IoT Module

Nordic Semiconductor has announced that Nanopower has selected Nordic’s nRF52832 Bluetooth Low Energy (Bluetooth LE) System-on-Chip (SoC) to provide the wireless connectivity for its nP-BLE52 module, designed for developers of IoT applications with highly restricted power budgets.

The nP-BLE52 module employs a proprietary power management IC—integrated alongside Nordic’s nRF52832 Wafer-Level Chip Scale Package (WL-CSP) SoC in a System-in-Package (SiP)—which enables it to cut power to the SoC, putting it in sleep mode, before waking it up a pre-set time and in the same state as before it was put to sleep. In doing so the SoC’s power consumption in sleep mode is reduced to 10 nA, making it well suited for IoT applications where battery life is critical by potentially increasing cell lifespan 10x.

In active mode, the nRF52832 SoC runs normally. The SoC has been engineered to minimize power consumption with features such as the 2.4GHz radio’s 5.5mA peak RX/TX currents and a fully-automatic power management system. Once the Nordic SoC has completed its tasks, it instructs the nP-BLE52 to put it to sleep and wake it up again at the pre-set time. The nP-BLE52 then stores the Nordics SoC’s state variables and waits until the nRF52832 SoC needs to be powered up again. On wake-up, the device uploads the previous state variables, allowing the Nordic SoC to be restored to the same operational state as before the power was cut. The SoC’s start-up is much more rapid than if it was activated from a non-powered mode.

The nP-BLE52 module also features a low power MCU which can be set to handle external sensors and actuators when the Nordic chip is switched off. In this state, the module still monitors sensors and buffer readings and can trigger wake-ups if these readings are above predetermined thresholds, while consuming less than 1 uA. The nP-BLE52 also integrates an embedded inertial measurement unit (IMU).

The module’s power management is controlled through a simple API, whereby the user can predetermine the duration of the Nordic SoC’s sleep mode, set the wake-up time and date parameters, and select pins for other on/off triggers.

The module offers IoT developers several advantages, either extending battery life and/or reducing the size of the battery required to power the application thereby reducing the end-product footprint. Longer battery life also reduces or eliminates battery swaps and enables the developer to better adjust for remaining useful battery life as the battery discharges. The module is suitable for any battery-powered device which is not required to be constantly active, for example asset tracking, remote monitoring, beacons, and some smart-home applications.

The nRF52832 WL-CSP SoC measures just 3.0 mm by 3.2mm while offering all the features of the conventionally-packaged chip. The nRF52832 is a powerful multiprotocol SoC ideally suited for Bluetooth LE and 2.4 GHz ultra low-power wireless applications. It combines an 64 MHz, 32-bit Arm Cortex M4F processor with a 2.4 GHz multiprotocol radio (supporting Bluetooth 5, ANT, and proprietary 2.4 GHz RF software) featuring -96dB RX sensitivity, with 512kB Flash memory and 64kB RAM.

The WL-CSP SoC is supplied with Nordic’s S132 SoftDevice, a Bluetooth 5-certifed RF software protocol stack for building advanced Bluetooth LE applications. The S132 SoftDevice features Central, Peripheral, Broadcaster, and Observer Bluetooth LE roles, supports up to twenty connections, and enables concurrent role operation. Nordic’s unique software architecture provides clear separation between the RF protocol software and the developer’s application code, easing product development.

Nordic Semiconductor | www.nordicsemi.com

February Circuit Cellar: Sneak Preview

The February issue of Circuit Cellar magazine is coming soon. We’ve raised up a bumper crop of in-depth embedded electronics articles just for you, and packed ’em into our 84-page magazine.

Not a Circuit Cellar subscriber?  Don’t be left out! Sign up today:

 

Here’s a sneak preview of February 2019 Circuit Cellar:

MCUs ARE EVERYWHERE, DOING EVERYTHING

Electronics for Automotive Infotainment
As automotive dashboard displays get more sophisticated, information and entertainment are merging into so-called infotainment systems. That’s driving a need for powerful MCU- and MPU-based solutions that support the connectivity, computing and interfacing needs particular to these system designs. In this article, Circuit Cellar’s Editor-in-Chief, Jeff Child, looks at the technology and trends feuling automotive infotainment.

Inductive Sensing with PSoC MCUs
Inductive sensing is shaping up to be the next big thing for touch technology. It’s suited for applications involving metal-over-touch situations in automotive, industrial and other similar systems. In his article, Nishant Mittal explores the science and technology of inductive sensing. He then describes a complete system design, along with firmware, for an inductive sensing solution based on Cypress Semiconductor’s PSoC microcontroller.

Build a Self-Correcting LED Clock
In North America, most radio-controlled clocks use WWVB’s transmissions to set the correct time. WWVB is a Colorado-based time signal radio station near. Learn how Cornell graduates Eldar Slobodyan and Jason Ben Nathan designed and built a prototype of a Digital WWVB Clock. The project’s main components include a Microchip PIC32 MCU, an external oscillator and a display.

WE’VE GOT THE POWER

Product Focus: ADCs and DACs
Analog-to-digital converters (ADCs) and digital-to-analog converters (DACs) are two of the key IC components that enable digital systems to interact with the real world. Makers of analog ICs are constantly evolving their DAC and ADC chips pushing the barriers of resolution and speeds. This new Product Focus section updates readers on this technology and provides a product album of representative ADC and DAC products.

Building a Generator Control System
Three phase electrical power is a critical technology for heavy machinery. Learn how US Coast Guard Academy students Kent Altobelli and Caleb Stewart built a physical generator set model capable of producing three phase electricity. The article steps through the power sensors, master controller and DC-DC conversion design choices they faced with this project.

EMBEDDED COMPUTING FOR YOUR SYSTEM DESIGN

Non-Standard Single Board Computers
Although standard-form factor embedded computers provide a lot of value, many applications demand that form take priority over function. That’s where non-standard boards shine. The majority of non-standard boards tend to be extremely compact, and well suited for size-constrained system designs. Circuit Cellar Chief Editor Jeff Child explores the latest technology trends and product developments in non-standard SBCs.

Thermal Management in machine learning
Artificial intelligence and machine learning continue to move toward center stage. But the powerful processing they require is tied to high power dissipation that results in a lot of heat to manage. In his article, Tom Gregory from 6SigmaET explores the alternatives available today with a special look at cooling Google’s Tensor Processor Unit 3.0 (TPUv3) which was designed with machine learning in mind.

… AND MORE FROM OUR EXPERT COLUMNISTS

Bluetooth Mesh (Part 1)
Wireless mesh networks are being widely deployed in a wide variety of settings. In this article, Bob Japenga begins his series on Bluetooth mesh. He starts with defining what a mesh network is, then looks at two alternatives available to you as embedded systems designers.

Implementing Time Technology
Many embedded systems need to make use of synchronized time information. In this article, Jeff Bachiochi explores the history of time measurement and how it’s led to NTP and other modern technologies for coordinating universal date and time. Using Arduino and the Espressif System’s ESP32, Jeff then goes through the steps needed to enable your embedded system to request, retrieve and display the synchronized date and time to a display.

Infrared Sensors
Infrared sensing technology has broad application ranging from motion detection in security systems to proximity switches in consumer devices. In this article, George Novacek looks at the science, technology and circuitry of infrared sensors. He also discusses the various types of infrared sensing technologies and how to use them.

The Art of Voltage Probing
Using the right tool for the right job is a basic tenant of electronics engineering. In this article, Robert Lacoste explores one of the most common tools on an engineer’s bench: oscilloscope probes, and in particular the voltage measurement probe. He looks and the different types of voltage probes as well as the techniques to use them effectively and safely.

IoT Wireless Sensor Nodes Target LPWAN Deployments

Advantech has released its WISE-4210 series of IoT wireless sensor products, including a wireless LPWAN-to-Ethernet AP and three wireless sensor nodes. The nodes include tthe WISE-4210-S231 internal temperature and humidity sensor (shown), WISE-4210-S251 sensor node with 6-channel digital input and a serial port and WISE-4210-S214 sensor node with 4-channel analog input and 4-channel digital input. The device-to-cloud total solution provided by this series of LPWAN products allows IT, OT, and cloud platform system developers to easily implement a private LPWAN, acquire field site data, and achieve seamless integration with both public cloud, such as Microsoft Azure and private enterprise clouds.

Based on proprietary LPWAN technology, the new WISE-4210 series products minimize frequency band interference, support a wider data transmission range, are compatible with lithium batteries, and enable cloud platform integration. By locking the sub-GHz frequency band, WISE-4210 series products significantly reduce susceptibility to interference for 2.4 GHz wireless communication technologies such as Wi-Fi, Bluetooth and Zigbee.

By supporting a network transmission distance of up to 5 km, the WISE-4210 series meets the requirements of large-scale interior environments such as data centers, factories and warehouses for collecting and applying a wide range of interior data. With LPWAN technology, only three 3.6 V lithium batteries are required to operate the WISE-4210 sensor nodes for up to five years, eliminating the need for additional wiring and frequent recharging. Additionally, the WISE-4210 series supports multiple transfer protocols, including MQTT, RESTful, Modbus/TCP and Modbus/RTU, for simple device-to-cloud connections.

The WISE-4210-S231 sensor node with built-in temperature and humidity sensor collects relevant data form factories, data centers or warehouse management without requiring the installation of additional sensors or gateways, making it ideal for indoor temperature and humidity control applications. Meanwhile, the WISE-4210-S251 sensor node, which provides 6-channel digital input and a single RS-485 port, and the WISE-4210-S214 sensor node, which provides four-channel analog input and 4-channel digital input, can be used to collect electricity meter, pressure gauge, thermometer, and power consumption data from factory facilities.

The three wireless nodes support direct data transmissions to SCADA and cloud platforms through a WISE-4210-AP, eliminating the need for a separate data conversion device. The WISE-4210-AP access point is capable of managing up to 64 nodes simultaneously, and thus can simplify overall infrastructure and save installation space.

Advantech | www.advantech.com