Secure Wi-Fi MCU Provides IoT Connectivity Solution

Espressif Systems has announced the release of the ESP32-S2 Secure Wi-Fi MCU, a highly integrated, low-power, 2.4 GHz Wi-Fi SoC supporting Wi-Fi HT40 and 43 GPIOs. Based on the Xtensa single-core 32-bit LX7 processor, ESP32-S2 can be clocked at up to 240 MHz.

With state-of-the-art power management and RF performance, IO capabilities and security features, ESP32-S2 is well suited for a wide variety of IoT or connectivity-based applications, including smart home and wearables. With an integrated 240 MHz Xtensa core, ESP32-S2 is sufficient for building the most demanding connected devices without requiring external MCUs.

Features:

  • CPU and Memory
    • Xtensa single-core 32-bit LX7 microcontroller
    • 7-stage pipeline
    • Clock frequency of up to 240 MHz
    • Ultra-low-power co-processor
    • 320 kB SRAM, 128 kB ROM, 16 KB RTC memory
    • External SPIRAM (128 MB total) support
    • Up to 1 GB of external flash support
    • Separate instruction and data cache
  • Connectivity
    • Wi-Fi 802.11 b/g/n
    • 1×1 transmit and receive
    • HT40 support with data rate up to 150 Mbps
    • Support for TCP/IP networking, ESP-MESH networking, TLS 1.0, 1.1 and 1.2 and other networking protocols over Wi-Fi
    • Support Time-of-Flight (TOF) measurements with normal Wi-Fi packets
  • IO Peripherals
    • 43 programmable GPIOs
    • 14 capacitive touch sensing IOs
    • Standard peripherals including SPI, I2C, I2S, UART, ADC/DAC and PWM
    • LCD (8-bit parallel RGB/8080/6800) interface and also support for 16/24-bit parallel
    • Camera interface supports 8 or 16-bit DVP image sensor, with clock frequency of up to 40 MHz
    • Full speed USB OTG support
  • Security
    • RSA-3072-based trusted application boot
    • AES256-XTS-based flash encryption to protect sensitive data at rest
    • 4096-bit eFUSE memory with 2048 bits available for application
    • Digital signature peripheral for secure storage of private keys and generation of RSA signatures
  • Power Consumption
    • ESP32-S2 supports fine resolution power control through a selection of clock frequency, duty cycle, Wi-Fi operating modes and individual power control of its internal components.
    • When Wi-Fi is enabled, the chip automatically powers on or off the RF transceiver only when needed, thereby reducing the overall power consumption of the system.
    • ULP co-processor with less than 5 uA idle mode and 24 uA at 1% duty-cycle current consumption. Improved Wi-Fi-connected and MCU-idle-mode power consumption.
  • Software
    • ESP32-S2 supports Espressif’s software development framework (ESP-IDF), which is a mature and production-ready platform, already used by millions of devices deployed in the field. Availability of common cloud connectivity agents and common product features shortens the time to market.

Engineering samples of ESP32-S2 beta are available this month (June).

Espressif Systems | www.espressif.com

Dual-Core MCUs Blend High Performance and Enhanced Security

STMicroelectronics has announced new STM32H7 MCUs which it claims are the industry’s highest-performing Arm Cortex-M general-purpose MCUs, combining dual-core performance with power-saving features and enhanced cyber protection. The new devices leverage a 480 MHz version of the Cortex-M7, the highest performing member of Arm’s Cortex-M family, and add a 240 MHz Cortex-M4 core.

With ST’s smart architecture, efficient L1 cache, and adaptive real-time ART Accelerator, the MCUs set new speed records at 1327 DMIPS and 3224 CoreMark executing from embedded flash. ST’s Chrom-ART Accelerator provides a boost to graphics performance. To maximize energy efficiency, each core operates in its own power domain and can be turned off individually when not needed.
Developers can easily upgrade existing applications through flexible use of the two cores. They can add a sophisticated user interface to an application such as a motor drive formerly hosted on a single-core Cortex-M4 MCU by migrating legacy code to the STM32H7 Cortex-M4 with the new GUI running on the Cortex-M7. Another example is to boost application performance by offloading intensive workloads such as neural networks, checksums, DSP filtering or audio codecs.

The dual-core architecture also helps simplify code development and accelerate time to market in projects where user-interface code may be developed separately from real-time control or communication features.

STM32H7 MCUs come with pre-installed keys and native secure services including Secure Firmware Install (SFI). SFI lets customers order standard products anywhere in the world and have the encrypted firmware delivered to an external programming company without exposing unencrypted code. In addition, built-in support for Secure Boot and Secure Firmware Update (SB-SFU) protects Over the Air (OTA) feature upgrades and patches.

Compared to flash-less processors, STM32H7 MCUs deliver high performance with the extra advantage of up to 2 MB Flash and 1 MB SRAM on-chip, says ST. This helps to better handle space constraints and simplify the design of smart objects in industrial, consumer and medical applications with real-time performance or AI-processing requirements. Moreover, the Cortex-M7 level 1 cache and parallel and serial memory interfaces offer unlimited and fast access to external memory.

Additional advanced features include Error Code Correction (ECC) for all flash and RAM memory to increase safety, multiple advanced 16-bit ADCs, external ambient-temperature range up to 125°C allowing use in severe environments, an Ethernet controller and multiple FD-CAN controllers giving communication-gateway capabilities, and ST’s latest high-resolution timer for generating precision waveforms.

ST has already extended the STM32Cube ecosystem by adding STM32CubeH7 firmware modules with application source code, including graphical solutions based on TouchGFX and STemWin graphical-stack library. There are also new Evaluation, Discovery and Nucleo boards. Developers can leverage all the standard elements of the STM32Cube development environment, including the ST-MC-SUITE motor-control toolkit, STM32Cube.AI machine-learning toolkit, STM32CubeMX, STM32CubeProgrammer and certified partner solutions for STM32.

STM32H7 dual-core MCUs are entering production and samples are available now. A broad selection of packages is offered, including WLCSP. Budgetary pricing starts at $8.19 for orders of 10,000 pieces The STM32H7 single-core MCUs including the Value line are also available at a budgetary pricing starting from $3.39 for orders of 10,000 pieces.

STMicroelectronics | www.st.com

 

Next Newsletter: Embedded Boards

Coming to your inbox tomorrow: Circuit Cellar’s Embedded Boards newsletter. Tomorrow’s newsletter content focuses on both standard and non-standard embedded computer boards that ease prototyping efforts and let you smoothly scale up to production volumes.

Bonus: We’ve added Drawings for Free Stuff to our weekly newsletters. Make sure you’ve subscribed to the newsletter so you can participate.

Already a Circuit Cellar Newsletter subscriber? Great!
You’ll get your
Embedded Boards newsletter issue tomorrow.

Not a Circuit Cellar Newsletter subscriber?
Don’t be left out! Sign up now:

Our weekly Circuit Cellar Newsletter will switch its theme each week, so look for these in upcoming weeks:

Analog & Power. (7/2) This newsletter content zeros in on the latest developments in analog and power technologies including DC-DC converters, AC-DC converters, power supplies, op amps, batteries and more.

Microcontroller Watch (7/9) This newsletter keeps you up-to-date on latest microcontroller news. In this section, we examine the microcontrollers along with their associated tools and support products.

IoT Technology Focus. (7/16) Covers what’s happening with Internet-of-Things (IoT) technology–-from devices to gateway networks to cloud architectures. This newsletter tackles news and trends about the products and technologies needed to build IoT implementations and devices.

EOG-Controlled Video Game

Eyes as Interface

There’s much be to learned about how electronics can interact with biological signals—not only to record, but also to see how they can be used as inputs for control applications. With ongoing research in fields such as virtual reality and prosthetics, new systems are being developed to interpret different types of signals for practical applications. Learn how these three Cornell graduates use electrooculography (EOG) to control a simple video game by measuring eye movements.

By Eric Cole, Evan Mok and Alex Huang

The human eye naturally acts as a dipole, in which the retina at the back of the eye is negatively charged, and the cornea at the front of the eye is positively charged. EOG is a recording technique that measures this potential difference, and can be used to

Figure 1
Electrode placement for recording. An Ag-AgCl (silver-silver chloride) electrode was placed at each of the labeled points. Points A and B record the EOG signal for the right and left eyes, and point C provides a ground reference.

quantify eye movement [1]. A typical electrode placement pattern for EOG is shown in Figure 1. Each of the electrodes A and B records a voltage related to eye movement, and an electrode at point C serves as a ground reference.

When a user looks left, the cornea is close to electrode B and it records a positive voltage, while the retina is closer to electrode A, yielding a negative voltage. Similarly, looking right produces a negative voltage at B and a positive voltage at A. The difference between VB and VA relative to ground at C changes monotonically with gaze direction, and can be reliably used to model horizontal eye movement.

System Overview

The system we designed uses eye movements to play a video game on a display screen. Electrodes are placed on a player’s head to record only the horizontal EOG signal as shown in Figure 2. This signal is then filtered and amplified via an analog circuit and sent to an ADC on a Microchip Technology PIC32 microcontroller (MCU) (Figure 3). The PIC32 MCU stores the reading as a digital value and uses it to control a cursor on an LCD display screen. A program on the PIC32 continually displays obstacles that move across the screen, and the player moves his or her eyes to control the cursor and avoid obstacles.

Figure 2
Characterization of EOG signal. An example signal output is shown for a gain of approximately 885.

Figure 3
System overview. “Eye recording” is accomplished with the raw electrode signal.

This system is entirely powered without connection to an AC power source, instead using a 9 V battery to provide power for amplification and a chargeable power source to power the PIC32. This choice of a power source was important, because it enforces necessary safety considerations for biomedical recording. Connecting a high voltage source to a human user and accidentally completing a circuit path to AC ground could result in serious injury, so great care was taken to use battery power for this project.

A secondary oscilloscope program was also necessarily designed to satisfy a key safety need: The ability to view the recorded EOG signal and test the recording hardware while the circuit is isolated. A normal oscilloscope cannot be used for this purpose for the reasons stated earlier. Care was also taken to apply and fasten the electrodes properly before every session.

Recording and Application

Three Ag-AgCl (silver-silver chloride) electrodes are placed around the eyes using a skin-safe adhesive gel—one beside each eye, and one on the forehead as a ground reference—at points A, B, and C respectively, in Figure 1. These electrodes provide the gateway between the biological signal and the digital world, detecting the voltage generated by ions at the skin surface and transducing it into an equivalent electron-based signal.

This voltage is generated directly at the eye, and has some attenuation through the skin surface. A typical magnitude of the raw EOG signal is several millivolts. The voltage readings from the two eye electrodes are sent to a Texas Instruments (TI) INA121 differential amplifier, which amplifies the difference between the two input signals. This yields a negative or positive voltage based on direction of eye movement. The INA121 provides low noise, a high common-mode rejection ratio, and is suitable for the high-input impedance requirement associated with recording biological signals. Figure 4 shows the full schematic of the implementation.

A second amplification stage using a TI LM358-based balanced subtractor configuration provides further amplification. This stage reduces the DC voltage component output from the differential amplifier, while further amplifying the difference to a range of 0 to 3.3 V—the scale allowed by the PIC32 MCU’s on-chip ADC. The resulting signal is a voltage centered at approximately 1.6 V when the user looks straight, with about a 1 V increase or decrease when the user looks left or right, respectively. …

Read the full article in the July 348 issue of Circuit Cellar
(Full article word count: 3023 words; Figure count: 6 Figures.)

Don’t miss out on upcoming issues of Circuit Cellar. Subscribe today!

Note: We’ve made the October 2017 issue of Circuit Cellar available as a free sample issue. In it, you’ll find a rich variety of the kinds of articles and information that exemplify a typical issue of the current magazine.

Tuesday’s Newsletter: IoT Tech Focus

Coming to your inbox tomorrow: Circuit Cellar’s IoT Technology Focus newsletter. Tomorrow’s newsletter covers what’s happening with Internet-of-Things (IoT) technology–-from devices to gateway networks to cloud architectures. This newsletter tackles news and trends about the products and technologies needed to build IoT implementations and devices.

Bonus: We’ve added Drawings for Free Stuff to our weekly newsletters. Make sure you’ve subscribed to the newsletter so you can participate.

Already a Circuit Cellar Newsletter subscriber? Great!
You’ll get your IoT Technology Focus newsletter issue tomorrow.

Not a Circuit Cellar Newsletter subscriber?
Don’t be left out! Sign up now:

Our weekly Circuit Cellar Newsletter will switch its theme each week, so look for these in upcoming weeks:

Embedded Boards.(6/25) The focus here is on both standard and non-standard embedded computer boards that ease prototyping efforts and let you smoothly scale up to production volumes.

Analog & Power. (7/2) This newsletter content zeros in on the latest developments in analog and power technologies including DC-DC converters, AD-DC converters, power supplies, op amps, batteries and more.

Microcontroller Watch (7/9) This newsletter keeps you up-to-date on latest microcontroller news. In this section, we examine the microcontrollers along with their associated tools and support products.

July Circuit Cellar: Sneak Preview

The July issue of Circuit Cellar magazine is out next week! This 84-page publication will make a satisfying thud sound when it lands on your desk and it’s crammed full of excellent embedded electronics articles prepared for you.

Not a Circuit Cellar subscriber?  Don’t be left out! Sign up today:

 

Here’s a sneak preview of July 2019 Circuit Cellar:

CONNECTED SYSTEMS IN ACTION

Embedded Computing
in Railway Systems
Railway systems keep getting more advanced. On both the control side and passenger entertainment side, embedded computers and power supplies play critical roles. Railway systems need sophisticated networking, data collection and real-time control, all while meeting safety standards. Circuit Cellar Chief Editor Jeff Child looks at the latest technology trends and products relevant to railway applications.

Product Focus:
IoT Interface Modules
The fast growing IoT phenomenon is driving demand for highly integrated modules designed for the IoT edge. Feeding those needs, a new crop of IoT modules have emerged that offer pre-certified solutions that are ready to use. This Product Focus section updates readers on this technology trend and provides a product album of representative IoT modules.

TECHNOLOGIES AND TECHNIQUES FOR ENGINEERS

FPGA Signal Processing
Offering the dual benefits of powerful signal processing and system-level integration, FPGAs have become a key technology for embedded system developers. Makers of chip and board-level FPGA products are providing complete solutions to enable developers to meet their application needs. Circuit Cellar Chief Editor Jeff Child explores the latest technology trends and product developments in FPGA signal processing.

Macros for AVR Assembler Programming
The AVR microcontroller instruction set provides a simplicity that makes it good for learning the root principles of machine programming. There’s also a rich set of macros available for the AVR that ease assembler-level programming. In this article, Wolfgang Matthes steps you through these principles, with the goal of helping programmers “think low-level, write high-level” when they approach embedded systems software development.

Inrush Current Limiters in Action
At the moment a high-power system is switched on, high loads can result in serious damage—even when the extra load is only for short time. Inrush current limiters (ICLs) can help prevent these issues. In this article, TDK Electronics’ Matt Reynolds examines ICLs based on NTC and PTC thermistors, discussing the underlying technology and the device options.

A Look at Cores with TrustZone-M
It’s not so easy to keep up with all the new security features on the latest and greatest embedded processors—especially while you’re busy focusing on the more fundamental and unique aspects of your design. In this article, Colin O’Flynn helps out by examining the new processor cores using TrustZone-M, a feature that helps you secure even low-cost and lower power system designs.

PROJECTS THAT REUSE & RECYCLE

Energy Monitoring Part 2
In Part 1 of this article series, George Novacek began describing an MCU-based system he built to monitor his household energy. Here, he continues that discussion, this time focusing on the electrical power tracking module. As the story shows, he stuck to a design challenge of building the system with as many components he already had in his component bins.

Variable Frequency Drive Part 1
Modern appliances claim to be more efficient, but they’re certainly not designed to last as long as older models. In this project article, Brian Millier describes how he reused subsystems from a defunct modern washing machine to power his bandsaw. The effort provides valuable insights on how to make use of the complete 3-phase Variable Frequency Drive (VFD) borrowed from the washing machine.

FUN PROJECT ARTICLES WITH ALL THE DETAILS

Windless Wind Chimes (Part 2)
In part 1 of this article series, Jeff Bachiochi built a system to simulate breezes randomly playing the sounds of suspended wind chimes. In part 2 the effort evolves into a less random, more orchestrated project. Jeff decided this time to craft a string of chromatically tuned chimes, similar to what an orchestra might use so the project could be used to play music. The project relies on MIDI, an industry standard music technology protocol designed to create and share music and artistic works.

Building a Smart Frying Pan
There’s almost no limit to what an MCU can be used for—-including objects that previously had no electronics at all. In this article, learn how Cornell University graduate Joseph Dwyer build a Microchip PIC32 MCU-based system that wirelessly measures and controls the temperature of a pan on a stove. The system improves both the safety and reliability of cooking on the stove, and has potentially interesting commercial applications.

EOG-Controlled Video Game
There’s much be to learned about how electronics can interact with biological signals—not only to record, but also to see how they can be used as inputs for control applications. With ongoing research in fields such as virtual reality and prosthetics, new systems are being developed to interpret different types of signals for practical applications. Learn how Cornell graduates  Eric Cole, Evan Mok and Alex Huang use electrooculography (EOG) to control a simple video game by measuring eye movement.

Infineon Technologies to Acquire Cypress Semiconductor

Infineon Technologies and Cypress Semiconductor have announced that the companies have signed a definitive agreement under which Infineon will acquire Cypress for US $23.85 per share in cash, corresponding to an enterprise value of €9.0 billion.

With the addition of Cypress, Infineon expects to strengthen its focus on structural growth drivers and serve a broader range of applications. This will accelerate the company’s path of profitable growth of recent years. Cypress has a differentiated portfolio of microcontrollers as well as software and connectivity components that are highly complementary to Infineon’s leading power semiconductors, sensors and security solutions.

According to their joint press release, combining these technology assets will enable comprehensive advanced solutions for high-growth applications such as electric drives, battery-powered devices and power supplies. The combination of Infineon’s security expertise and Cypress’s connectivity know-how will accelerate entry into new IoT applications in the industrial and consumer segments. In automotive semiconductors, the expanded portfolio of microcontrollers and NOR flash memories will offer great potential, especially in light of their growing importance for advanced driver assistance systems and new electronic architectures in vehicles.

Under the terms of the agreement, Infineon will offer US$23.85 in cash for all outstanding shares of Cypress. This corresponds to a fully diluted enterprise value for Cypress of €9.0 billion. The offer price represents a 46 percent premium to Cypress’s unaffected 30-day volume-weighted average price during the period from 15 April to 28 May 2019, the last trading day prior to media reports regarding a potential sale of Cypress.

Cypress expects to continue its quarterly cash dividend payments until the transaction closes. This includes Cypress’s previously announced quarterly cash dividend of US$0.11 per share, payable on July 18, 2019 to holders of record of Cypress’s common stock at the close of business on June 27, 2019.

The funding of the acquisition is fully underwritten by a consortium of banks. Infineon is committed to retaining a solid investment grade rating and, consequently, Infineon intends to ultimately finance approximately 30 percent of the total transaction value with equity and the remainder with debt as well as cash on hand. The financial policy to preserve a strategic cash reserve remains in place.

The acquisition is subject to approval by Cypress’s shareholders and the relevant regulatory bodies as well as other customary conditions. The closing is expected by the end of calendar year 2019 or early 2020.

Cypress Semiconductor | www.cypress.com
Infineon Technologies | www.infineon.com

MCUs with EtherCAT Target Industrial Applications

Renesas Electronics has introduced the RX72M Group of RX MCUs featuring an EtherCAT slave controller for industrial Ethernet communication. The new product group offers a high-performance, single-chip MCU solution with large memory capacities for industrial equipment requiring control and communication functions such as compact industrial robots, programmable logic controllers, remote I/O and industrial gateways.
According to Renesas, the use of EtherCAT in industrial Ethernet is growing fast, and is currently used on dedicated MCUs, ICs, and high-end SoC devices specialized for EtherCAT communication. The new RX72M Group achieves the superior performance of a 1396 CoreMark score at 240 MHz as measured by EEMBC Benchmarks, and it is capable of both application processing and EtherCAT communication. Combining a motor-control MCU with on-chip EtherCAT slave functions allows industrial application developers reduce their bill of materials (BOM) and support the miniaturization levels required for industrial equipment design.

The RX72M Group is the first RX MCU group to include an EtherCAT slave controller featuring the RX family’s highest SRAM capacity—1 MB of SRAM—and 4 MB of Flash memory. The large-capacity SRAM allows the MCUs to run multiple memory-intensive middleware systems, such as TCP/IP, web servers, and file systems, at high speed without the use of external memory. It also provides flexibility for the support of future functional expansions, such as OPC United Architecture (OPC UA) with no additional memory required. The on-board flash memory operates as two 2 MB banks, which enables stable operation of the end equipment, such as executing a program in one flash memory while simultaneously conducting background rewrites in the other flash memory.

Key features of the RX72M MCUs:

  • The first EtherCAT slave controller for industrial Ethernet communication in an RX MCU
  • High performance with a CoreMark benchmark score of 1396 at up to 240 MHz, and the first embedded double precision floating point unit (FPU) in an RX MCU
  • High-speed flash memory system supporting readout up to 120 MHz, creating high-performance and low-variability execution environment
  • Dedicated trigonometric function (sin, cos, arctan and hypot fucntions) accelerators and register bank save function supporting high-precision motor control implementation – a feature shared with the Renesas RX72T motor-control MCUs
  • Reliable cryptography functions such as encryption module and memory protection function in hardware to protect encryption keys – this prevents application systems from being copied without authorization and supports authentication for genuine equipment
  • Flexible package options including 176-pin LQFP and 176-pin BGA configurations as well as the first 224-pin BGA package for RX MCUs, which offers additional space saving for size-constrained designs

Samples of the RX72M Group of MCUs are available now. Renesas will begin mass production orders starting September 2019.

Renesas Electronics | www.renesas.com

 

 

Tuesday’s Newsletter: Microcontroller Watch

Coming to your inbox tomorrow: Circuit Cellar’s Microcontroller Watch newsletter. Tomorrow’s newsletter keeps you up-to-date on latest microcontroller news. In this section, we examine the microcontrollers along with their associated tools and support products.

Bonus: We’ve added Drawings for Free Stuff to our weekly newsletters. Make sure you’ve subscribed to the newsletter so you can participate.

Already a Circuit Cellar Newsletter subscriber? Great!
You’ll get your Microcontroller Watch newsletter issue tomorrow.

Not a Circuit Cellar Newsletter subscriber?
Don’t be left out! Sign up now:

Our weekly Circuit Cellar Newsletter will switch its theme each week, so look for these in upcoming weeks:

IoT Technology Focus. (6/18) Covers what’s happening with Internet-of-Things (IoT) technology–-from devices to gateway networks to cloud architectures. This newsletter tackles news and trends about the products and technologies needed to build IoT implementations and devices.

Embedded Boards.(6/25) The focus here is on both standard and non-standard embedded computer boards that ease prototyping efforts and let you smoothly scale up to production volumes.

Analog & Power. (7/2) This newsletter content zeros in on the latest developments in analog and power technologies including DC-DC converters, AC-DC converters, power supplies, op amps, batteries and more.

IDE for ST’s STM32Cube MCU Ecosystem Available for Free

STMicroelectronics (ST) is offering a free all-in-one STM32 development tool now as part of its STM32Cube software ecosystem. The STM32CubeIDE leverages ST’s 2017 acquisition of embedded-development-tool vendor Atollic. It is offered under industry-standard open license terms and adds dedicated STM32-specific features to simplify and accelerate STM32 MCU-based embedded designs. These include the STM32CubeMX tool for configuring the MCU and managing the project build.
The STM32Cube ecosystem boasts downloads of STM32CubeMX currently averaging more than 250,000 per year, according to ST. The complete STM32Cube ecosystem also contains the STM32CubeProgrammer for MCU programming and STM32CubeMonitor series for monitoring application behavior, as well as individual MCU-specific embedded software packages. The STM32CubeIDE is available now and is free to download from www.st.com/stm32cubeide

STMicroelectronics | www.st.com

 

Tuesday’s Newsletter: Analog & Power

Coming to your inbox on Tuesday: Circuit Cellar’s Analog & Power newsletter. This newsletter content zeros in on the latest developments in analog and power technologies including ADCs, DACs, DC-DC converters, AC-DC converters, power supplies, op amps, batteries and more.

Bonus: We’ve added Drawings for Free Stuff to our weekly newsletters. Make sure you’ve subscribed to the newsletter so you can participate.

Already a Circuit Cellar Newsletter subscriber? Great!
You’ll get your Analog & Power newsletter issue tomorrow.

Not a Circuit Cellar Newsletter subscriber?
Don’t be left out! Sign up now:

Our weekly Circuit Cellar Newsletter will switch its theme each week, so look for these in upcoming weeks:

Microcontroller Watch. (6/11) This newsletter keeps you up-to-date on latest microcontroller news. In this section, we examine the microcontrollers along with their associated tools and support products.

IoT Technology Focus. (6/18) Covers what’s happening with Internet-of-Things (IoT) technology–-from devices to gateway networks to cloud architectures. This newsletter tackles news and trends about the products and technologies needed to build IoT implementations and devices.

Embedded Boards.(6/25) The focus here is on both standard and non-standard embedded computer boards that ease prototyping efforts and let you smoothly scale up to production volumes.

Tuesday’s Newsletter: IoT Tech Focus

Coming to your inbox tomorrow: Circuit Cellar’s IoT Technology Focus newsletter. Tomorrow’s newsletter covers what’s happening with Internet-of-Things (IoT) technology–-from devices to gateway networks to cloud architectures. This newsletter tackles news and trends about the products and technologies needed to build IoT implementations and devices.

Bonus: We’ve added Drawings for Free Stuff to our weekly newsletters. Make sure you’ve subscribed to the newsletter so you can participate.

Already a Circuit Cellar Newsletter subscriber? Great!
You’ll get your IoT Technology Focus newsletter issue tomorrow.

Not a Circuit Cellar Newsletter subscriber?
Don’t be left out! Sign up now:

Our weekly Circuit Cellar Newsletter will switch its theme each week, so look for these in upcoming weeks:

Embedded Boards.(5/28) The focus here is on both standard and non-standard embedded computer boards that ease prototyping efforts and let you smoothly scale up to production volumes.

Analog & Power. (6/4) This newsletter content zeros in on the latest developments in analog and power technologies including DC-DC converters, AD-DC converters, power supplies, op amps, batteries and more.

Microcontroller Watch (6/11) This newsletter keeps you up-to-date on latest microcontroller news. In this section, we examine the microcontrollers along with their associated tools and support products.

June Circuit Cellar: Sneak Preview

The June issue of Circuit Cellar magazine is out next week!. We’ve been tending our technology crops to bring you a rich harvest of in-depth embedded electronics articles. We’ll have this 84-page magazine brought to your table very soon..

Not a Circuit Cellar subscriber?  Don’t be left out! Sign up today:

 

Here’s a sneak preview of June 2019 Circuit Cellar:

TOOLS AND CONCEPTS FOR ENGINEERS

Integrated PCB Design Tools
After decades of evolving their PCB design tool software packages, the leading tool vendors have the basics of PCB design nailed down. In recent years, these companies have continued to come up with new enhancements to their tool suites, addressing a myriad of issues related to not just the PCB design itself, but the whole process surrounding it. Circuit Cellar Chief Editor Jeff Child looks at the latest integrated PCB design tool solutions.

dB for Dummies: Decibels Demystified
Understanding decibels—or dB for short—may seem intimidating. Frequent readers of this column know that Robert uses dB terms quite often—particularly when talking about wireless systems or filters. In this article, Robert Lacoste discusses the math underlying decibels using basic concepts. The article also covers how they are used to express values in electronics and even includes a quiz to help you hone your decibel expertise.

Understanding PID
As a means for implementing feedback control systems, PID is an important concept in electronics engineering. In this article, Stuart Ball explains how PID can be applied and explains the concept by focusing on a simple circuit design.

DESIGNING CONNECTED SYSTEMS

Sensor Connectivity Trends
While sensors have always played a key role in embedded systems, the exploding Internet of Things (IoT) phenomenon has pushed sensor technology to the forefront. Any IoT implementation depends on an array of sensors that relay input back to the cloud. Circuit Cellar Chief Editor Jeff Child dives into the latest technology trends and product developments in sensors with an emphasis on their connectivity aspects.

Bluetooth Mesh (Part 3)
In this next part of his article series on Bluetooth mesh, Bob Japenga looks at how to create secure provisioning for a Bluetooth Mesh network without requiring user intervention. He takes a special look at an attack which Bluetooth’s asymmetric key encryption is vulnerable to called Man-in-the-Middle.

PONDERING POWER AND ENERGY

Product Focus: AC-DC Converters
To their peril, embedded system developers often treat their choice of power supply as an afterthought. But choosing the right AC-DC converter is critical to the ensuring your system delivers power efficiently to all parts of your system. This Product Focus section updates readers on these trends and provides a product album of representative AC-DC converter products.

Energy Monitoring (Part 1)
The efficient use of energy is a topic moving ever more front and center these days as climate change and energy costs begin to affect our daily lives. Curious to discover how efficient his own energy consumption was, George Novacek built an MCU-based system to monitor his household energy. And, in order to make sure this new device wasn’t adding more energy use, he chose to make the energy monitoring system solar-powered.

Building a PoE Power Subsystem
Power-over-Ethernet (PoE) allows a single cable to provide both data interconnection and power to devices. In this article, Maxim Integrated’s  and Maxim Integrated’s Thong Huynh and Suhei Dhanani explore the key issues involved in implementing rugged PoE systems. Topics covered include standards compliance, interface controller selection, DC-DC converter choices and more.

Taming Your Wind Turbine
While you can buy off-the-shelf wind power generators these days, they tend to get bad reviews from users. The problem is that harnessing wind energy takes some “taming” of the downstream electronics. In this article, Alexander Pozhitkov discusses his characterization project for a small wind turbine. This provides a guide for designing your own wind energy harvesting system.

MORE PROJECT ARTICLES WITH ALL THE DETAILS

Windless Wind Chimes (Part 1)
Wind chimes make a pleasant sound during the warm months when windows are open. But wouldn’t it be nice to simulate those sounds during the winter months when your windows are shut? In part 1 of this project article, Jeff Bachiochi builds a device that simulates a breeze randomly playing suspended wind chimes. Limited to the standard 5-note pentatonic chimes, this device is based on a Microchip PIC18 low power microcontroller.

GPS Guides Robotic Car
In this project article, Raul Alvarez-Torrico builds a robotic car that navigates to a series of GPS waypoints. Using the Arduino UNO for a controller, the design is aimed at robotics beginners that want to step things up a notch. In the article, Raul discusses the math, programing and electronics hardware choices that went into this project design.

Haptic Feedback Electronic Travel Aid
Time-of-flight sensors have become small and affordable in the last couple years. In this article, learn how Cornell graduates Aaheli Chattopadhyay, Naomi Hess and Jun Ko detail creating a travel aid for the visually impaired with a few time-of-flight sensors, coin vibration motors, an Arduino Pro Mini, a Microchip PIC32 MCU, a flashlight and a sock.

Tuesday’s Newsletter: Microcontroller Watch

Coming to your inbox tomorrow: Circuit Cellar’s Microcontroller Watch newsletter. Tomorrow’s newsletter keeps you up-to-date on latest microcontroller news. In this section, we examine the microcontrollers along with their associated tools and support products.

Bonus: We’ve added Drawings for Free Stuff to our weekly newsletters. Make sure you’ve subscribed to the newsletter so you can participate.

Already a Circuit Cellar Newsletter subscriber? Great!
You’ll get your Microcontroller Watch newsletter issue tomorrow.

Not a Circuit Cellar Newsletter subscriber?
Don’t be left out! Sign up now:

Our weekly Circuit Cellar Newsletter will switch its theme each week, so look for these in upcoming weeks:

IoT Technology Focus. (5/21) Covers what’s happening with Internet-of-Things (IoT) technology–-from devices to gateway networks to cloud architectures. This newsletter tackles news and trends about the products and technologies needed to build IoT implementations and devices.

Embedded Boards.(5/28) The focus here is on both standard and non-standard embedded computer boards that ease prototyping efforts and let you smoothly scale up to production volumes.

Analog & Power. (6/4) This newsletter content zeros in on the latest developments in analog and power technologies including DC-DC converters, AD-DC converters, power supplies, op amps, batteries and more.

Tuesday’s Newsletter: Analog & Power

Coming to your inbox on Tuesday: Circuit Cellar’s Analog & Power newsletter. This newsletter content zeros in on the latest developments in analog and power technologies including ADCs, DACs, DC-DC converters, AD-DC converters, power supplies, op amps, batteries and more.

Bonus: We’ve added Drawings for Free Stuff to our weekly newsletters. Make sure you’ve subscribed to the newsletter so you can participate.

Already a Circuit Cellar Newsletter subscriber? Great!
You’ll get your Analog & Power newsletter issue tomorrow.

Not a Circuit Cellar Newsletter subscriber?
Don’t be left out! Sign up now:

Our weekly Circuit Cellar Newsletter will switch its theme each week, so look for these in upcoming weeks:

Microcontroller Watch. (5/14) This newsletter keeps you up-to-date on latest microcontroller news. In this section, we examine the microcontrollers along with their associated tools and support products.

IoT Technology Focus. (5/21) Covers what’s happening with Internet-of-Things (IoT) technology–-from devices to gateway networks to cloud architectures. This newsletter tackles news and trends about the products and technologies needed to build IoT implementations and devices.

Embedded Boards.(5/28) The focus here is on both standard and non-standard embedded computer boards that ease prototyping efforts and let you smoothly scale up to production volumes.