Pre-Provisioned Solutions Provide Scalable IoT Security

Microchip Technology has introduced what it claims is the industry’s first pre-provisioned solution that provides secure key storage for low-, mid- and high-volume device deployments using Microchip’s ATECC608A secure element. Microchip’s Trust Platform for its CryptoAuthentication family enables companies of all sizes to easily implement secure authentication.
Microchip’s Trust Platform consists of a three-tier offering, providing out-of-the-box pre-provisioned, pre-configured or fully customizable secure elements, allowing developers to choose the platform best suited for their individual design. As the first solution to provide ready-to-go secure authentication for the mass market, the first tier–Trust&GO–provides zero-touch pre-provisioned secure elements with a Minimum Orderable Quantity (MOQ) as low as 10 units.

Device credentials are pre-programmed, shipped and locked inside the ATECC608A for automated cloud or LoRaWAN authentication onboarding. In parallel, corresponding certificates and public keys are delivered in a “manifest” file, which is downloadable via Microchip’s purchasing e-commerce store and select distribution partners. In addition to saving up to several months of development time, the solution significantly simplifies provisioning logistics, making it easy for mass market customers to secure and manage edge devices without the overhead cost of third-party provisioning services or certificate authorities.

As the number and types of connected devices proliferates, market fragmentation and security vulnerabilities in the Internet of Things (IoT) have created significant challenges for developers. Hardware-based security is the only way to protect secret keys from physical attacks and remote extraction, but extensive security expertise, development time and costs are required to configure and provision each device.

With companies producing anywhere from hundreds to millions of connected devices per year across the globe, scalability of architecture can be a major barrier to deployments. Manufacturers typically have only been able to support configuring and provisioning for high-volume orders, leaving companies with low- to mid-sized deployments with low performing options.

With the ability to authenticate to any public or private cloud infrastructure, Microchip’s Trust Platform is also flexible and customizable. For customers who want more customization, the program includes the TrustFLEX and TrustCUSTOM platforms. The second tier in the program, TrustFLEX, offers the flexibility to use the customer’s certificate authority of choice while still benefiting from pre-configured use cases.

These use cases include baseline security measures such as Transport Layer Security (TLS) hardened authentication for connecting to any IP-based network using any certificate chain, LoRaWAN authentication, secure boot, Over-the-Air (OTA) updates, IP protection, user data protection and key rotation. This reduces the time and complexity involved in customizing the device without requiring customized part numbers. For customers who would like to entirely customize their designs, the third tier in the program – TrustCUSTOM – provides customer-specific configuration capabilities and custom credential provisioning.

Microchip worked with Amazon Web Services (AWS) to enable a straightforward and simplified onboarding process into AWS IoT services for products designed with all variants of the Microchip Trust Platform.

The ATECC608A provides Common Criteria Joint Interpretation Library (JIL) “high”-rated secure key storage, giving customers confidence that devices implement industry-proven security practices and the highest level of secure key storage. With hardware-based root of trust storage and cryptographic countermeasures, the device protects against the widest classes of known physical attacks. Microchip’s secure manufacturing facilities safely provision keys, ensuring that keys are never exposed to any party during provisioning or the lifetime of the device.

The ATECC608A can be paired with any microcontroller and microprocessor. For rapid prototyping of secure solutions, designers can use the Trust Platform Design Suite, which includes:

  • A guided “use case tool”
  • Executable Python tutorials running on Jupyter notebooks
  • C code examples for each use case
  • A “secret exchange” utility
  • The Trust Platform hardware development kits

Devices in Microchip’s Trust Platform are available in volume production today with the following minimum order quantities (MOQ):

  • Trust&GO for TLS (ATECC608A-TNGTLSx-B): $1.20 with a MOQ of 10 units*
  • Trust&GO for TLS (ATECC608A-TNGTLSx-G): $0.77 with a MOQ of 2000 units*
  • Trust&GO for LoRaWAN (The Things Industries ATECC608A-TNGLORAx-B and Actility ATECC608A-TNGACTU-B): $1.40 with a MOQ of 10 units*
  • TrustFLEX for LoRaWAN any join servers (ATECC608A-TFLXLORAx): $0.938 with a MOQ of 2000 units*
  • TrustFLEX (ATECC608A-TFLXTLSx): $0.845 with a MOQ of 2,000 units*
  • TrustCUSTOM (ATECC608A-TCSTMx): $0.883 with a MOQ of 4,000 units*

*uDFN (x = U) or SO8 (x = S)

Development tools in Microchip’s Trust Platform are available at:

CryptoAuth Trust Platform kit: $13

ATECC608a Trust Platform kit: $14

Microchip Technology | www.microchip.com

LoRa (Part 1)

Where Does This Featherweight Fit In?

In this new article series, Bob discusses LoRa—the Long Range spread spectrum modulation technique that promises to solve a number of the key issues in fulfilling the wireless IoT requirements. In Part 1, Bob starts with an introduction to LoRa, looking at what it is, what are its limitations and how those limitations affect how we use this technology.

By Bob Japenga

I had several friends who wrestled in high school. One friend in particular was a little wiry guy who weighed about 120 pounds. As some of you may know, high school wrestlers compete in as many as 14 weight classes. Each weight class covers a 6- or 7-pound range. My friend was always trying to get to the lowest possible class. To facilitate this, before the weigh-in, he would fast and binge on Ex-Lax. It always seemed to defeat the advantage of the lighter class by coming into the match weakened by those actions.

This begins a new article series on LoRa—the Long Range spread spectrum modulation technique that promises to solve a number of the key issues in fulfilling the wireless Internet-Of-Things (IoT) hype—especially low power and long range (Figure 1). For purposes of this article series, I will be talking about LoRa devices communicating on a LoRaWAN (LoRa Wide Area Network). In this series, I won’t make a distinction and I’ll just call

Figure 1
LoRa is the Long Range spread spectrum modulation technique created to solve a number of the key IoT issues—especially low power and long range.

them both LoRa. Jeff Bachiochi laid a great foundation for understanding LoRa in two articles in his June 2017 (Circuit Cellar 323) [1] and July 2017 (Circuit Cellar 324) [2] articles. In part 1, Jeff provided some of the technical details about chirp spread spectrum and how the data packets are formed in the RF cloud. In particular, he discussed how LoRa achieves such range. If you want to dig even deeper into “LoRa Modulation Basics,” check out the Semtech Application Note by the same name [3].

At the end of part 1 and in part 2, Jeff went into the details of creating a peer-to-peer test module for verifying the range using a single wire for an antenna. I will try to not cover ground already covered by Jeff, but rather start at a high level and work down into more details as the series progress. In particular this month, I want to ask the question: “Is LoRa like my high school buddy? Is it trimmed down so much that it has lost its ability to fulfill the objectives we require to create wireless IoT devices?” So, this month, we will briefly look at what LoRa is. Then we will look at the practical limitations to achieve these amazing distances at such low power. Finally, we will look at the kind of applications for which this very low bandwidth will be ideally suited.

What is LoRa?

The LoRa technology was patented by a French company and later acquired by Semtech. The proprietary nature of this Long Range and Low Power technology affects the costs of LoRa chipsets when compared to LTE Cat M1 and other competing wireless technologies. We have done bill-of-materials for competing designs, and the LoRa chipsets are more expensive. We will talk more about this in a later article. Unlike Bluetooth Mesh which achieves long range through a mesh network, LoRa achieves its range in a star of stars type network. Many devices that connect to one gateway and many gateways connecting to the cloud (Figure 2). And the range specifications are impressive (more than 10 km in rural areas). In my tests, as well as in the tests documented by Jeff in Part 2 of his Circuit Cellar article, the real-world numbers—though not being close to the rural area numbers—are still impressive. Again, more on that in a later article.

Figure 2
LoRa achieves its range in a star of stars type network. Many devices that connect to one gateway and many gateways connecting to the cloud.

LoRa uses sub-gigahertz license free radio frequency bands: the 868 MHz band in Europe, 915 MHz in North America and 433 MHz for Asia. This means that when you design your LoRa devices and your LoRa gateway, you will need to select the radios for your target area. It also means that you cannot have one device that will work in all regions.

Although LoRa devices could be used in a peer-to-peer network, the primary intent of the creators was for the LoRa devices to have a means of communicating to the cloud. For LoRa devices to communicate to the cloud, the LoRaWAN protocol was specified and is used by a number of cloud-based LoRa networks. There are three approaches to getting the data from your LoRa devices to the cloud: a private network that you create as part of your system design with your own LoRa gateways; a commercial network like MachineQ being deployed by Comcast, which gives you access to their gateways for which you pay for a data plan like you do a mobile data plan; and a community and open-source network like The Things Network (TTN), which provides free access to local gateways. We will explore these options in a later article. …

Read the full article in the October 351 issue of Circuit Cellar
(Full article word count: 2396 words; Figure count: 5 Figures).

Don’t miss out on upcoming issues of Circuit Cellar. Subscribe today!

Note: We’ve made the October 2017 issue of Circuit Cellar available as a free sample issue. In it, you’ll find a rich variety of the kinds of articles and information that exemplify a typical issue of the current magazine.

Firms Partner on Integrated Sensor-to-Cloud Monitoring Solutions

Atmosphere and Radio Bridge have announced a partnership that integrates Radio Bridge sensors with Atmosphere’s cloud-based IoT platform for rapid deployment and management of several sensor technologies across multiple low-power wide area networks. An integrated solution was recently deployed for a customer that manages disaster response in the energy industry. The solution was built on the Atmosphere Platform to connect and manage hundreds of Radio Bridge wireless sensors using a combination of Sigfox and LoRaWAN technologies.

Radio Bridge Inc. designs and manufactures long-range wireless sensors for the Internet of Things (IoT) industry using emerging wireless standards such as LoRaWAN and Sigfox. The entire portfolio of sensors products are designed for very long range, low cost, and extended battery life. The sensors are targeted toward the home security, smart city, medical device and industrial automation industries. Radio Bridge offers an optional web-based console for provisioning, monitoring, and configuration of the sensors in the field. Custom design is also available with the goal of achieving seamless sensor-to-cloud solutions for a variety of applications.

Atmosphere | atmosphereiot.com

Radio Bridge | radiobridge.com

Semtech’s LoRa Technology Tapped for Food Temp Monitoring System

Semtech has announced that Laird Connectivity has integrated LoRa devices and LoRaWAN protocol in temperature monitoring sensors developed for the award-winning ComplianceMate solution, created by CM Systems. CM Systems, a provider of monitoring systems for food safety compliance and operational effectiveness, was the first company to incorporate LoRa-based wireless sensors and LoRaWAN networks in a temperature monitoring system for commercial kitchens.
Customers range from large restaurant chains such as Shake Shack, Five Guys and Hard Rock Café to growing regional brands like City Barbeque and Hattie B’s. The IoT solution penetrates stainless steel doors, concrete walls and even multiple stories, while boosting battery efficiency with sensors that can last for years on off-the-shelf batteries. In February 2018, downtown Nashville experienced a power outage after Hattie B’s had closed for the night. With ComplianceMate’s LoRa-based alert system, store management was notified about the failure immediately and was able to safely transport at-risk product to another facility saving $35,000 to $50,000 worth of inventory.

Semtech’s LoRa devices is a widely adopted long-range, low-power solution for IoT that gives telecom companies, IoT application makers and system integrators the feature set necessary to deploy low-cost, interoperable IoT networks, gateways, sensors, module products, and IoT services worldwide. IoT networks based on the LoRaWAN specification have been deployed in 100 countries and Semtech is a founding member of the LoRa Alliance, the fastest growing IoT Alliance for Low Power Wide Area Network applications.

Laird Connectivity | www.lairdtech.com
Semtech | www.semtech.com

 

Semtech LoRa Tech Leveraged for Construction and Mining Gear

Semtech has announced that MachineMax, a provider of smart solutions for fleet management, construction and mining applications, has integrated Semtech’s LoRa devices and wireless radio frequency technology (LoRa Technology) into a new smart construction machine usage tracking solution. With Semtech’s LoRa Technology, MachineMax says they were able to create simple, easy to deploy solutions which effectively monitor machine status from anywhere on a construction or mining site.

Machine idling, where a machine’s engine is running but the machine is not actively in use, accounts for an estimated 37% of the time a construction or mining machine is operating on average. Idling results in an increased amount of fuel waste and machine wear, without creating productive machine output. Previously, monitoring the usage status of a mining or construction fleet was accomplished manually, with site managers continually checking on the use status of machines, an expensive and time consuming task.

MachineMax developed a LoRa-based solution which can be easily deployed onto fleet machines in under a minute. The devices attach magnetically and gather real-time data on machine usage status, such as whether or not a machine is idle. With real-time data on when a machine is in use, site managers can make more efficient use of a machine’s time to prevent idling, reducing the amount of fuel used and prolonging machine life.

Semtech’s LoRa devices and wireless radio frequency technology is a widely adopted long-range, low-power solution for IoT that gives telecom companies, IoT application makers and system integrators the feature set necessary to deploy low-cost, interoperable IoT networks, gateways, sensors, module products and IoT services worldwide. IoT networks based on the LoRaWAN specification have been deployed in 100 countries and Semtech is a founding member of the LoRa Alliance.

Semtech | www.semtech.com

 

Cloud-Based Geolocation Service is LoRaWAN-Compatible

Semtech has announced the availability of LoRa Cloud Geolocation, a new cloud-based geolocation service that is compatible with the LoRaWAN protocol and almost any network server. The geolocation service can be easily integrated to provide a low-cost, performance-optimized solution, and is the first of a variety of cloud services products that Semtech will be offering to support IoT application development.

Over the past year, Semtech has trialed a free Cloud-based geolocation service with hundreds of users providing positive feedback on the ease-of-use and the performance of the service. LoRa Cloud Geolocation was in beta test this year with limited partners and over the coming quarter, many more users are expected to integrate the new service into their platforms. The new Cloud-based geolocation service was designed to support flexibility in deployment options providing geolocation service availability to any IoT devices.

Semtech is currently onboarding early customers and general availability with sign-up via a new LoRa Cloud services portal is expected in the summer of 2019. Different pricing tiers will be available for selection.

LoRa Cloud Geolocation Features:

  • Simple API accepting signal-strength, signal-to-noise ratio and time of arrival data from LoRaWAN-based gateways and returning an estimated location.
  • Supporting all LoRaWAN-based gateways, with or without accurate time of arrival data
  • Compatible with all LoRaWAN-based devices on all LoRaWAN-based networks
  • Options for including multiple packets (uplinks) in a single query for improved accuracy
  • 100% stateless with all required data included in the query
  • No device identity required – total device anonymity ensured
  • Support for multiple antennae per gateway
  • Deploy in public Cloud or on-premise

Semtech | www.semtech.com

 

RPi-Based IoT gateway Offers Cellular, Zigbee, Z-Wave or LoRa

By Eric Brown

Newark Element14 and Avnet have announced a Raspberry Pi based “SmartEdge Industrial IoT Gateway” with 2x Ethernet, Wi-Fi/BT, CAN, serial and optional Zigbee, Z-Wave or LoRa.

Avnet, which last year launched the Zynq UltraScale+ based ‘Ultra96 96Boards CE SBC, announced plans for the Avnet SmartEdge Industrial IoT Gateway at the CES show in early January. At Embedded World last month, Premier Farnell revealed more details on the Raspberry Pi based IoT gateway, which will launch this summer at Newark Element14 in North America and Farnell Element14 in Europe.


Avnet SmartEdge Industrial IoT Gateway 
(click image to enlarge)
The Avnet SmartEdge Industrial IoT Gateway will support Avnet’s IoT Connectplatform to enable cloud connectivity to Microsoft Azure. The Linux-driven embedded PC will support industrial automation applications such as remote monitoring, predictive maintenance, process control, and automation.

Premier Farnell did not say which Raspberry Pi is under the hood, but based on the WiFi support, it would appear to be the RPi 3 Model B rather than the B+. The limited specs announced for the gateway include 8GB eMMC, an HDMI port, and TPM 2.0 security. The image suggests there are also at least 2x USB ports and a coincell battery holder for a real-time clock.

For communications, you get dual 10/100 Ethernet ports as well as 2.4GHz WiFi and BLE 4.2 with an integrated antenna and external mount. The gateway also provides a mini-PCIe interface for optional cellular modems. In addition, the enclosure “features space for an additional internal accessory to provide Zigbee, Z-Wave, or LoRa capabilities, for example, or for multiple accessories through case expansion,” say Premier Farnell.

The system is further equipped with CAN-BUS and RS-232/485 interfaces with Modbus and DeviceNet support, as well as isolated digital I/O. There’s also a 40-pin expansion header for Raspberry Pi HATs and other add-on boards. The system has a wide-range 12-24V DC input plus DIN rail and wall mounting.

Further information

The Avnet SmartEdge Industrial IoT Gateway will launch this summer at Newark Element14 in North America and Farnell Element14 in Europe, with pricing undisclosed. More information is available in the Premier Farnell announcement and more may eventually appear on the Avnet website.

This article originally appeared on LinuxGizmos.com on March 4..

Avnet | www.avnet.com

Farnell Element14 | www.element14.com

Newark Element14 | www.newark.com

April Circuit Cellar: Sneak Preview

The April issue of Circuit Cellar magazine is out next week (March 20th)!. We’ve worked hard to cook up a tasty selection of in-depth embedded electronics articles just for you. We’ll be serving them up to in our 84-page magazine.

Not a Circuit Cellar subscriber?  Don’t be left out! Sign up today:

 

Here’s a sneak preview of April 2019 Circuit Cellar:

VIDEO AND DISPLAY TECHNOLOGIES IN ACTION

Video Technology in Drones
Because video is the main mission of the majority of commercial drones, video technology has become a center of gravity in today’s drone design decisions. The topic covers everything including single-chip video processing, 4k HD video capture, image stabilization, complex board-level video processing, drone-mounted cameras, hybrid IR/video camera and mesh-networks. In this article, Circuit Cellar’s Editor-in-Chief, Jeff Child, looks at the technology and trends in video technology for drones.

Building an All-in-One Serial Terminal
Many embedded systems require as least some sort of human interface. While Jeff Bachiochi was researching alternatives to mechanical keypads, he came across the touchscreen display products from 4D Systems. He chose their inexpensive, low-power 2.4-inch, resistive touch screen as the basis for his display subsystem project. He makes use of the display’s Espressif Systems ESP8266 processor and Arduino IDE support to turn the display module into a serial terminal with a serial TTL connection to other equipment.

MICROCONTROLLERS ARE EVERYWHERE

Product Focus: 32-Bit Microcontrollers
As the workhorse of today’s embedded systems, 32-bit microcontrollers serve a wide variety of embedded applications-including the IoT. MCU vendors continue to add more connectivity, security and I/O functionality to their 32-bit product families. This Product Focus section updates readers on these trends and provides a product album of representative 32-bit MCU products.

Build a PIC32-Based Recording Studio
In this project article, learn how Cornell students Radhika Chinni, Brandon Quinlan, Raymond Xu built a miniature recording studio using the Microchip PIC32. It can be used as an electric keyboard with the additional functionality of recording and playing back multiple layers of sounds. There is also a microphone that the user can use to make custom recordings.

WONDERFUL WORLD OF WIRELESS

Low-Power Wireless Comms
The growth in demand for IoT solutions has fueled the need for products and technology to do wireless communication from low-power edge devices. Using technologies including Bluetooth Low-Energy (BLE), wireless radio frequency technology (LoRa) and others, embedded system developers are searching for ways to get efficient IoT connectivity while drawing as little power as possible. Circuit Cellar Chief Editor Jeff Child explores the latest technology trends and product developments in low-power wireless communications.

Bluetooth Mesh (Part 2)
Continuing his article series on Bluetooth mesh, this month Bob Japenga looks at the provisioning process required to get a device onto a Bluetooth mesh network. Then he examines two application examples and evaluates the various options for each example.

Build a Prescription Reminder
Pharmaceuticals prescribed by physicians are important to patients both old and young. But these medications will only do their job if taken according to a proper schedule. In this article, Devlin Gualtieri describes his Raspberry-Rx Prescription Reminder project, a network-accessible, the Wi-Fi connected, Raspberry Pi-based device that alerts a person when a particular medication should be administered. It also keeps a log of the actual times when medications were administered.

ENGINEERING TIPS, TRICKS AND TECHNIQUES

The Art of Current Probing
In his February column, Robert Lacoste talked about oscilloscope probes—or more specifically, voltage measurement probes. He explained how selecting the correct probe for a given measurement, and using it as it properly, is as important as having a good scope. In this article, Robert continues the discussion with another common measurement task: Accurately measuring current using an oscilloscope.

Software Engineering
There’s no doubt that achieving high software quality is human-driven endeavor. No amount of automated code development can substitute for best practices. A great tool for such efforts is the IEEE Computer Society’s Guide to the Software Engineering Body of Knowledge. In this article, George Novacek discusses some highlights of this resource, and why he has frequently consulted this document when preparing development plans.

HV Differential Probe
A high-voltage differential probe is a critical piece of test equipment for anyone who wants to safely examine high voltage signals on a standard oscilloscope. In his article, Andrew Levido describes his design of a high-voltage differential probe with features similar to commercial devices, but at a considerably lower cost. It uses just three op amps in a classic instrumentation amplifier configuration and provides a great exercise in precision analog design.

Firms Team Up to Provide End-to-End LoRa Security Solution

Microchip Technology, in partnership with The Things Industries, has announced the what it claims is industry’s first end-to-end security solution that adds secure, trusted and managed authentication to LoRaWAN devices at a global scale. The solution brings hardware-based security to the LoRa ecosystem, combining the MCU- and radio-agnostic ATECC608A-MAHTN-T CryptoAuthentication device with The Things Industries’ managed join servers and Microchip’s secure provisioning service.

The joint solution significantly simplifies provisioning LoRaWAN devices and addresses the inherent logistical challenges that come with managing LoRaWAN authentication keys from inception and throughout the life of a device. Traditionally, network and application server keys are unprotected in the edge node, and unmonitored, as LoRaWAN devices pass through various supply chain steps and are installed in the field.

The Common Criteria Joint Interpretation Library (JIL) “high”-rated ATECC608A comes pre-configured with secure key storage, keeping a device’s LoRaWAN secret keys isolated from the system so that sensitive keys are never exposed throughout the supply chain nor when the device is deployed. Microchip’s secure manufacturing facilities safely provision keys, eliminating the risk of exposure during manufacturing. Combined with The Things Industries’ agnostic secure join server service to the LoRaWAN network and application server providers, the solution decreases the risk of device identity corruption by establishing a trusted authentication when a device connects to a network.

Similar to how a prepaid data plan works for a mobile device, each purchase of an ATECC608A-MAHTN-T device comes with one year of managed LoRaWAN join server service through The Things Industries. Once a device identifies itself to join a LoRaWAN network, the network contacts The Things Industries join server to verify that the identity comes from a trusted device and not a fraudulent one. The temporary session keys are then sent securely to the network server and application server of choice. The Things Industries’ join server supports any LoRaWAN network, from commercially operated networks to private networks built on open-source components. After the one-year period, The Things Industries provides the option to extend the service.

Microchip and The Things Industries have also partnered to make the onboarding process of LoRaWAN devices seamless and secure. LoRaWAN device identities are claimed by The Things Industries’ join server with minimal intervention, relieving developers from needing expertise in security. Customers can not only choose any LoRaWAN network but can also migrate to any other LoRaWAN join server by rekeying the device. This means there is not a vendor lock-in and customers have full control over where and how the device keys are stored.

The ATECC608A is agnostic and can be paired with any MCU and LoRa radio. Developers can deploy secure LoRaWAN devices by combining the ATECC608A with the SAM L21 MCU, supported by the Arm Mbed OS LoRaWAN stack, or the recently-announced SAM R34 System-in-Package with Microchip’s LoRaWAN stack. For rapid prototyping, designers can use the CryptoAuthoXPRO socket board and The Things Industries provisioned parts in samples with the SAM L21 Xplained Pro (atsamd21-xpro) or SAM R34 Xplained Pro (DM320111).

The ATECC608A-MAHTN-T device for The Things Industries, including the initial year of prepaid TTN service, is available in volume production for $0.81 each in 10,000-unit quantities.

Microchip Technology | www.microchip.com

 

Utility Metering Solution Taps Semtech’s LoRa Technology

Semtech has announced that Lemonbeat, an IoT solution provider, has integated Semtech’s LoRa devices and wireless radio frequency technology (LoRa Technology) into its smart metering solutions for easier reading and collection of utility usage. Lemonbeat’s LoRa-connected smart meters work by utilizing embedded LoRa-based IoT technology to connect the meter to their own purpose-built receiver units.

Using this connectivity, meters send data through multiple floors in bigger buildings or all way in to the street, where network operators conveniently collect the data without having to enter the building. Using the meters’ other radio frequency, Lemonbeat Radio, meters provide customers accurate data on their energy consumption. With a third-party application, individuals can view and analyze this data, and change their habits accordingly.

Semtech’s LoRa devices and wireless radio frequency technology is a widely adopted long-range, low-power solution for IoT that gives telecom companies, IoT application makers and system integrators the feature set necessary to deploy low-cost, interoperable IoT networks, gateways, sensors, module products, and IoT services worldwide. IoT networks based on the LoRaWAN specification have been deployed in over 100 countries and Semtech is a founding member of the LoRa Alliance.

Lemonbeat | www.lemonbeat.com

Semtech | www.semtech.com

IoT System Monitors Water Quality in French Polynesia

Kontron, along with teams from Assystem Pacific, Bioceanor and Easy Global Market (EGM), are installing intelligent systems to monitor water quality in the Pacific Ocean. They are working together under the leadership of System Factory, the Cluster 4.0 for France’s “Region Sud”, dedicated to the engineering of complex systems. These systems, set up at the Centre de Recherches Insulaires et Observatoire de l’Environnement (CRIOBE), aim to measure the physico-chemical parameters of the water in the Opunohu lagoon in Moorea and monitor its pollution.

Connected buoys developed by Bioceanor in collaboration with EGM now make it possible to monitor the environment of coral reefs using data collected in real time. Monitored parameters include temperature, salinity, turbidity and even certain pollutants. A box PC developed by Kontron acts as both a LoRaWAN-compatible IoT gateway and a network server. It converts the status information sent by these sensors into MQTT streams and enables continuous secure retrieval and remote analysis of this data. Assystem Pacifique and Easy Global Market teams integrated this networked LoRa system.

According to Kontron, the next step will be to build a 24- to 48-hour forecasting system based on the analysis of the collected data. In addition, the collaboration between System Factory and local organizations in French Polynesia will continue. Assystem, Bioceanor, Easy Global Market (EGM) and Kontron presented the technology used in the system at the System Factory Day on December 11 at the Palais du Commerce et de la Mer in Toulon.

Kontron | www.kontron.com

 

LoRa SiP Devices Provide Low Power IoT Node Solution

Microchip Technology has introduced a highly integrated LoRa System-in-Package (SiP) family with an ultra-low-power 32-bit MCU, sub-GHz RF LoRa transceiver and software stack. The SAM R34/35 SiPs come with certified reference designs and interoperability with major LoRaWAN gateway and network providers. The devices also provide the ultra-low power consumption in sleep modes, offering extended battery life in remote IoT nodes.

Most LoRa end devices remain in sleep mode for extended periods of time, only waking up occasionally to transmit small data packets. Powered by the ultra-low-power SAM L21 Arm Cortex-M0+ based MCU, the SAM R34 devices provide sleep modes as low as 790 nA to significantly reduce power consumption and extend battery life in end applications. Highly integrated in a compact 6 mm x 6 mm package, the SAM R34/35 family is well suited for a broad array of long-range, low-power IoT applications that require small form factor designs and multiple years of battery life.

In addition to ultra-low-power consumption, the simplified development process means developers can accelerate their designs by combining their application code with Microchip’s LoRaWAN stack and quickly prototype with the ATSAMR34-XPRO development board (DM320111), which is supported by the Atmel Studio 7 Software Development Kit (SDK). The development board is certified with the Federal Communications Commission (FCC), Industry Canada (IC) and Radio Equipment Directive (RED), providing developers with the confidence that their designs will meet government requirements across geographies.
LoRa technology is designed to enable low-power applications to communicate over longer ranges than Zigbee, Wi-Fi and Bluetooth using the LoRaWAN open protocol. Ideal for a range of applications such as smart cities, agricultural monitoring and supply chain tracking, LoRaWAN enables the creation of flexible IoT networks that can operate in both urban and rural environments. According to the LoRa Alliance, the number of LoRaWAN operators has doubled from 40 to 80 over the last 12 months, with more than 100 countries actively developing LoRaWAN networks.

The SAM R34/35 family is supported by Microchip’s LoRaWAN stack, as well as a certified and proven chip-down package that enables customers to accelerate the design of RF applications with reduced risk. With support for worldwide LoRaWAN operation from 862 to 1,020 MHz, developers can use a single part variant across geographies, simplifying the design process and reducing inventory burden. The SAM R34/35 family supports Class A and Class C end devices as well as proprietary point-to-point connections.

Microchip’s SAM R34/35 LoRa family is available in six device variants. SAM R34 devices in a 64-lead TFBGA package begin at $3.76 each in 10,000-unit quantities. SAM R35 devices are available without a USB interface starting at $3.66 each in 10,000-unit quantities.

Microchip Technology | www.microchip.com

Smart Vehicles Leverage Semtech’s LoRa Technology

Semtech has announced that EasyReach Solutions, an Indian startup specializing in smart IoT solutions for industrial applications, has incorporated Semtech’s LoRa devices and wireless radio frequency technology (LoRa Technology) into its industrial and smart vehicle monitoring products. EasyReach’s LoRa-enabled sensors have been developed to include electrical current testing, temperature reading and GPS capabilities. All sensors are compatible with the LoRaWAN protocol and have been verified for GPS tracking ability over eight kilometers line of sight.
According to EasyReach, the LoRa Technology allows the company to remotely monitor its equipment and vehicles in new ways and to more intelligently manage its industrial resources. Meanwhile, the flexible capabilities of the sensors allow the solution to scale to its needs. EasyReach’s LoRa-based applications for smart industry include sensors for steam traps, concrete mixers, forklifts, diesel tankers, back hoes, water meters, and trucks.

Semtech | www.semtech.com

 

Semtech LoRa Technology Leveraged for Flood Sensor System

Semtech has announced that Green Stream has incorporated Semtech’s LoRa devices and wireless radio frequency technology (LoRa Technology) and Senet’s LoRaWAN-based network into its autonomous flood sensor systems for use in coastal areas, including towns and cities.

Green Stream’s solutions use LoRa Technology, a proven technology used in IoT environmental solutions. Green Stream’s end-to-end flood monitoring solutions are designed using commercial, off-the-shelf ultrasonic sensors and easy-to-deploy LoRa-enabled gateways. The data is communicated over a LoRaWAN-based network provided by Senet, a leading provider of Cloud-based LoRaWAN services platforms that enable the on-demand build out and management of IoT connectivity. The Green Stream LoRa-based flood sensors are autonomous, requiring no external power or wired network connection.

Each sensor is a self-contained, weather-proof, solar-powered unit that comes with a universal mounting bracket and extension arm. These sensors are small enough to be installed on top of crosswalks, light or electric poles, and bridges. The rugged sensor gateway is positioned above a body of water or over dry land.

Semtech | www.semtech.com

Cypress and Semtech Team up on Integrated LoRaWAN Solution

Cypress Semiconductor has announced it has collaborated with Semtech on a compact, two-chip LoRaWAN-based module deployed by Onethinx. The highly-integrated Onethinx module is ideal for smart city applications that integrate multiple sensors and are in harsh radio environments. Using Cypress’ PSoC 6 microcontroller’s (MCU) hardware-based Secure Element functionality and Semtech’s LoRa devices and wireless radio frequency technology (LoRa Technology), the solution enables a multi-layer security architecture that isolates trust anchors for highly protected device-to-cloud connectivity.

In addition, the PSoC 6 MCU’s integrated Bluetooth Low Energy (BLE) connectivity provides a simple, low-power, out-of-band control channel. The PSoC 6 device is the industry’s lowest power, most flexible Arm Cortex-M dual-core MCU with a power slope as low as 22-μA/MHz active power for the Cortex-M4 core. The device is a natural fit with Semtech’s latest LoRa radio chip family, which offers 50% power savings in receive mode and 20% longer range over previous-generation devices.

Security is a primary concern for many smart city applications. The Onethinx module utilizes the integrated Secure Element functionality in the PSoC 6 MCU to give each LoRaWAN-based device a secret identity to securely boot, on-board, and deliver data to the cloud application. Using its mutual authentication capabilities, the PSoC 6 MCU-based, LoRa-equipped device can also receive authenticated over-the-air firmware updates.

Key provisioning and management services are provided by IoT security provider and member of the Bosch group, ESCRYPT, for a complete end-to-end, secure LoRaWAN solution. The module, offered by Cypress partner Onethinx, connects to Bosch Sensortec’s Cross Domain Development Kit (XDK) for Micro-Electromechanical Systems (MEMS) sensors and to the provisioning system from ESCRYPT to securely connect.

Cypress Semiconductor | www.cypress.com

Semtech | www.semtech.com