Cattle Health Monitoring System Taps Semtech’s LoRa Technology

Semtech has announced that ITK, a French supplier of IoT-based smart agriculture applications, has developed a new cattle health monitoring solution based on Semtech’s LoRa devices. The FarmLife smart agriculture service and its LoRa-enabled sensors detect cattle estrus, drive improved nutrition and predict the onset of disease to help ranchers better monitor their herd.

According to ITK, LoRa devices’ flexibility in deployment makes a key difference for connecting animals and offers the potential for a significant return on investment (ROI). ITK’s solution provides ranchers with tangible, actionable data on the health of their herd to remove variables from ranching and create productive, efficient and profitable ranches.

Offering a flexible solution for the smart agriculture vertical, Semtech’s LoRa devices create applications that help minimize waste, maximize yield, reduce expenses, and offer farms and ranches an opportunity to operate as efficiently as possible. ITK’s LoRa-based sensors deploy simply through a collar equipped to each animal. The collar is non-invasive and immediately begins reporting data on the cow’s health upon deployment. Ranchers monitor their herd from this unique LoRa-based device, which provides the benefits of four value added services: Heat’Live for heat detection, Feed’Live for nutrition optimization, Time’Live for animal welfare, and Vel’Live for calving detection. These services are available through ITK’s FarmLife Cloud platform. In total, deploying ITK’s solution costs less than 30€ per animal annually.

In addition to the 300,000 cows already monitored in Europe, approximately 20 ranches have deployed ITK’s FarmLife platform in North America, connecting cows to the Cloud through network connectivity from X-TELIA, a leading Canadian network provider. Following this initial deployment, farmers claimed they received an ROI in less than a year through an increase in ranch productivity and efficiency. X-TELIA and ITK plan to continue the rollout of this smart agriculture solution in the Canadian market, adding ITK’s San’Phone cattle health monitoring service and its Thermo-bolus sensor to connect up to 2.4 million cows in the coming months.

Semtech | www.semtech.com

LoRa (Part 1)

Where Does This Featherweight Fit In?

In this new article series, Bob discusses LoRa—the Long Range spread spectrum modulation technique that promises to solve a number of the key issues in fulfilling the wireless IoT requirements. In Part 1, Bob starts with an introduction to LoRa, looking at what it is, what are its limitations and how those limitations affect how we use this technology.

By Bob Japenga

I had several friends who wrestled in high school. One friend in particular was a little wiry guy who weighed about 120 pounds. As some of you may know, high school wrestlers compete in as many as 14 weight classes. Each weight class covers a 6- or 7-pound range. My friend was always trying to get to the lowest possible class. To facilitate this, before the weigh-in, he would fast and binge on Ex-Lax. It always seemed to defeat the advantage of the lighter class by coming into the match weakened by those actions.

This begins a new article series on LoRa—the Long Range spread spectrum modulation technique that promises to solve a number of the key issues in fulfilling the wireless Internet-Of-Things (IoT) hype—especially low power and long range (Figure 1). For purposes of this article series, I will be talking about LoRa devices communicating on a LoRaWAN (LoRa Wide Area Network). In this series, I won’t make a distinction and I’ll just call

Figure 1
LoRa is the Long Range spread spectrum modulation technique created to solve a number of the key IoT issues—especially low power and long range.

them both LoRa. Jeff Bachiochi laid a great foundation for understanding LoRa in two articles in his June 2017 (Circuit Cellar 323) [1] and July 2017 (Circuit Cellar 324) [2] articles. In part 1, Jeff provided some of the technical details about chirp spread spectrum and how the data packets are formed in the RF cloud. In particular, he discussed how LoRa achieves such range. If you want to dig even deeper into “LoRa Modulation Basics,” check out the Semtech Application Note by the same name [3].

At the end of part 1 and in part 2, Jeff went into the details of creating a peer-to-peer test module for verifying the range using a single wire for an antenna. I will try to not cover ground already covered by Jeff, but rather start at a high level and work down into more details as the series progress. In particular this month, I want to ask the question: “Is LoRa like my high school buddy? Is it trimmed down so much that it has lost its ability to fulfill the objectives we require to create wireless IoT devices?” So, this month, we will briefly look at what LoRa is. Then we will look at the practical limitations to achieve these amazing distances at such low power. Finally, we will look at the kind of applications for which this very low bandwidth will be ideally suited.

What is LoRa?

The LoRa technology was patented by a French company and later acquired by Semtech. The proprietary nature of this Long Range and Low Power technology affects the costs of LoRa chipsets when compared to LTE Cat M1 and other competing wireless technologies. We have done bill-of-materials for competing designs, and the LoRa chipsets are more expensive. We will talk more about this in a later article. Unlike Bluetooth Mesh which achieves long range through a mesh network, LoRa achieves its range in a star of stars type network. Many devices that connect to one gateway and many gateways connecting to the cloud (Figure 2). And the range specifications are impressive (more than 10 km in rural areas). In my tests, as well as in the tests documented by Jeff in Part 2 of his Circuit Cellar article, the real-world numbers—though not being close to the rural area numbers—are still impressive. Again, more on that in a later article.

Figure 2
LoRa achieves its range in a star of stars type network. Many devices that connect to one gateway and many gateways connecting to the cloud.

LoRa uses sub-gigahertz license free radio frequency bands: the 868 MHz band in Europe, 915 MHz in North America and 433 MHz for Asia. This means that when you design your LoRa devices and your LoRa gateway, you will need to select the radios for your target area. It also means that you cannot have one device that will work in all regions.

Although LoRa devices could be used in a peer-to-peer network, the primary intent of the creators was for the LoRa devices to have a means of communicating to the cloud. For LoRa devices to communicate to the cloud, the LoRaWAN protocol was specified and is used by a number of cloud-based LoRa networks. There are three approaches to getting the data from your LoRa devices to the cloud: a private network that you create as part of your system design with your own LoRa gateways; a commercial network like MachineQ being deployed by Comcast, which gives you access to their gateways for which you pay for a data plan like you do a mobile data plan; and a community and open-source network like The Things Network (TTN), which provides free access to local gateways. We will explore these options in a later article. …

Read the full article in the October 351 issue of Circuit Cellar
(Full article word count: 2396 words; Figure count: 5 Figures).

Don’t miss out on upcoming issues of Circuit Cellar. Subscribe today!

Note: We’ve made the October 2017 issue of Circuit Cellar available as a free sample issue. In it, you’ll find a rich variety of the kinds of articles and information that exemplify a typical issue of the current magazine.

Study Compares BehrTech’s Wireless Platform Against LoRa

Behrtech has issued a report evaluating and comparing the quality-of-service (QoS) of its MYTHINGS platform versus LoRa LPWAN under real-world interference conditions. Professor Dr. Thomas Lauterbach from the Nuremberg Institute of Technology conducted the independent study commissioned by Behrtech. Results showed that in a real-world Industrial IoT environment with high levels of interference from other systems and devices, MYTHINGS has considerably higher interference resilience than LoRa. At the same network range, LoRa loses a significant percentage of messages while MYTHINGS reliably transmits all messages. 

Professor Lauterbach said that, in the dense interference scenario, there was a significant difference in the quality-of-service between MYTHINGS and LoRa. Observing both networks at the same signal power, MYTHINGS successfully delivered all messages while the LoRa network lost more than 10 percent of its messages. Even when signal power was increased, there was a four to five percent packet error rate in the LoRa system.
Using a LoRa EU-mode MultiConnect Conduit IoT Starter Kit and the EU-mode MYTHINGS by Behrtech Starter Kit, the study evaluated network performance over both a 60-minute period and a 4-hour period under various external interference conditions based on the LPWAN Interference Model Standard developed by IEEE. Results were measured by Packet Error Rate (PER), which refers to the percentage of unsuccessful message transmissions. Four interference scenarios were used to demonstrate different levels of signal density. The study focused on the dense level scenario which has an interference level equivalent to real-world Industrial IoT environments.

Behrtech | www.behrtech.com

October Circuit Cellar: Sneak Preview

The October issue of Circuit Cellar magazine is out next week! Smart Home technologies, Smart Farming, antenna arrays, rugged SBCs and COMs—this 84-page publication gathers up a great selection of embedded electronics articles for your reading pleasure.

Not a Circuit Cellar subscriber?  Don’t be left out! Sign up today:

 

Here’s a sneak preview of October 2019 Circuit Cellar:

TECHNOLOGIES FOR A CONNECTED WORLD

Smart Home Technologies
By Jeff Child
The evolution of Smart Homes is about more than pure convenience. Smart Home technologies are leveraging IoT concepts to improve energy efficiency and security, thanks to intelligent, connected devices. The topic encompasses things like power-saving motor control systems, predictive maintenance, cloud-based voice assistance, remote monitoring and more. In this article, Circuit Cellar Chief Editor Jeff Child examines the MCU and analog ICs that are serving the needs Smart Home system developers.

MQ Telemetry Transport
By Jeff Bachiochi
Better known by the acronym MQTT, this lightweight messaging protocol is designed to minimize network bandwidth and device resource requirements. In this article, Jeff sets out to use MQTT via a cloud setup that he can do locally. For this, he turns to Eclipse Mosquitto, an open source message broker that implements the MQTT protocol. Jeff steps through the nitty gritty details of his implementation.

LoRa (Part 1)
By Bob Japenga
In this new article series, Bob discusses LoRa—the Long Range spread spectrum modulation technique that promises to solve a number of the key issues in fulfilling the wireless IoT requirements. In Part 1, Bob starts with an introduction to LoRa, looking at what it is, what are its limitations and how those limitations affect how we use this technology.

Smart Farming Device Gives Plants a Voice
By Andrei Florian
Smart Farming has many aspects, and among these the agriculture side. In this project article, Andrei discusses SmartAgro, a device that combines field autonomy with ease of use, allowing farmers to give their plants a “voice.” It lets you visualize the temperature, soil humidity, UV radiation and more wherever you are, in real time and take action when it is most needed—whether that means turning on an irrigation system or preparing for cultivation.

 
RESOURCES FOR ENGINEERS

Product Focus: Rugged SBCs
By Jeff Child
Single board computers are used in such a broad sweep of applications—some that must operate in harsh environmental conditions. Rugged SBCs offer a variety of attributes to serve such needs, including extended temperature range, high shock and vibration resilience and even high humidity protection. This Product Focus section updates readers on this technology trend and provides a product album of representative rugged SBCs.

An Intro to Antenna Arrays
By Robert Lacoste
As an expert in RF technology, Robert has deep knowledge about antennas. And in this era of IoT, his expertise more relevant than ever. That’s because every wireless device has some kind of antenna and these antennas are often the root cause of engineering headaches. With that in mind, in this article Robert discusses the math, technology and design issues that are basic to antenna arrays.

Using Digital Potentiometers
By Stuart Ball
A digital potentiometer probably can’t be considered the most glamorous of electronic components. But it is easy to use and versatile. In this article, Stuart digs into the uses, advantages and disadvantages of the digital potentiometer, including how they contrast to mechanical potentiometers.

Semiconductor Fundamentals (Part 2)
By George Novacek
In Part 1 George examined the basic structures that make semiconductors work. But a lot more needs to be said about diodes, which are a key element of semiconductors. In Part 2, George dives deeper, this time looking at the current flow, depletion layer and electron physics that are involved in diode operations. He covers various types of diodes and the details of their operations.

A Hardware Random Number Generator
By Devlin Gualtieri
Men first walked on the Moon fifty years ago. On the same week as that historic event, Dev divided his time between watching the event on television and building a unique desktop novelty circuit, a random digit generator. This circuit used a Nixie tube for display and a handful of TTL integrated circuits to implement a linear feedback shift register. In this article, Dev updates his original design using the CMOS digital circuits available today and a 7-segment LED display. He also presents an improved version that uses a Microchip PIC MCU.


MICRCONTROLLERS DO IT ALL

Application-Specific MCUs
By Jeff Child
In contrast to microprocessors, microcontrollers tend to be used for specific applications. But even among MCUs, there’s distinct difference between general purpose MCUs and MCUs that are designed for very specific application segments, or even sub-segments. Circuit Cellar Chief Editor Jeff Child examines this class of MCUs that target everything from factory automation to appliance control.

The Laser Harp
By Alex Hatzis
Normally, you’d think that taking the strings out of a harp would be a downgrade. But in this article, Cornell student Alex Hatzis presents a system that does just that—replacing the harp strings with red lasers. Phototransistors are used to detect when the beams are intercepted by a person’s hand playing the harp, and some convincing real-time sound synthesis helps to create a new, high tech instrument.

 

 

 

MCUs Suit Up for IoT Security Duties

Connected Confidence

In this IoT era of connected devices, microcontrollers have begun taking on new roles and gaining new capabilities revolving around embedded security. MCU vendors are embedding ever-more sophisticated security features into their MCU devices and other supporting security solutions.

By Jeff Child, Editor-in-Chief

As the Internet-of-Things (IoT) phenomenon proliferates, platforms of all kinds are getting more connected—everything from factories to cars to consumer devices. For their part, microcontrollers (MCUs) are key components in those connected systems. In turn, those MCUs have in recent years had to embed ever-more sophisticated security features on chip.

No single category of technology is the sole piece of the embedded security puzzle. The problems are multi-faceted: preventing intrusions by hackers, encrypting the data in case an intruder gets in, ensuring the components themselves aren’t tampered with—there are many layers to consider. Everything from application software to operating systems to data storage has a role to play in security. For the purposes of this article, we’ll focus on the technology solutions in the form of security-focused MCUs, software tool solutions and dedicated security edge devices. Over the last 12 months, the leading MCU vendors have beefed up those embedded security capabilities in a variety of diverse ways.

According to Julian Watson, senior principal analyst, IoT Connectivity at IHS Markit, the exponential growth of IoT devices is expected to continue on its upward trend and is predicted to jump an average of 12% per year from 27.8 billion units in 2017 to over 135 billion units in 2030. More IoT devices in the market means that more of consumers’ personal data is at risk and designers of these devices need to be responsible for ensuring that the IoT ecosystem is genuinely safe and secure for users.

PSoC MCU for IoT Security

Exemplifying those trends, in February Cypress Semiconductor released a new line of its PSoC 6 MCUs aimed at IoT security. The PSoC 64 Secure MCUs integrate standards-based system layer security software with the hardware layer features available in the ultra-low-power PSoC 6 architecture. Specifically, PSoC 64 Secure MCU devices provide an isolated root-of-trust with true attestation and provisioning services (Figure 1).

Figure 1
Aimed at IoT security. The PSoC 64 Secure MCUs integrate standards-based system layer security software with the hardware layer features available in the ultra-low-power PSoC 6 architecture—such as an isolated root-of-trust with true attestation and provisioning services.

In addition, the product line includes devices that deliver a pre-configured secure execution environment supporting the system software of various IoT platforms, providing TLS authentication, secure storage and secure firmware management. The MCUs also include a rich execution environment for application development, with an embedded RTOS from Cypress’ ModusToolbox suite that manages communication with the secure execution environment.

PSoC 64 Secure MCUs were one of the first Arm Cortex-M processors to be certified as Level 1 compliant within the Arm Platform Security Architecture (PSA) certification scheme, PSA Certified, utilizing a secure Trusted Firmware-M (TF-M) implementation integrated into the Arm Mbed OS open-source embedded operating system. The line is well suited for cloud-connected products that require protection of user data and trustworthy firmware updates, including personal healthcare devices, medical and chronic disease management equipment and home security solutions.

The line of PSoC 64 Secure MCUs is supported in Cypress’ ModusToolbox suite, which will allow designers to select the system firmware of secure IoT platforms—such as Amazon Web Services (AWS), Arm Pelion and Alibaba—to develop their application, and then configure and verify their secure boot images. The MCUs include a hardware-based root-of-trust consisting of secured storage and firmware, establishing a command-based set of trusted services. The root-of-trust includes hardware accelerated cryptography, as well as true random number generation (TRNG).

Ultra-Small Secure MCUs

The latest MCU from Renesas Electronics with an IoT security twist was rolled out in July. The company announced four new RX651 32-bit MCUs supplied in ultra-small 64-pin BGA and LQFP packages. The MCUs are aimed at addressing advanced security needs for endpoint devices employing compact sensor and communication modules in industrial, network control, building automation and smart metering systems operating at the IoT edge. The new lineup expands Renesas’ RX651 MCU Group with a 64-pin (4.5 mm x 4.5 mm) BGA package that reduces footprint size by 59% compared to the 100-pin LGA, and a 64- pin (10 mm x 10 mm) LQFP that offers a 49% reduction versus the 100-pin LQFP.

Figure 2
The RX651 MCUs integrate connectivity, Trusted Secure IP (TSIP) and trusted flash area protection that enable flash firmware updates in the field through secure network communications.

The RX651 MCUs integrate connectivity, Trusted Secure IP (TSIP) and trusted flash area protection that enable flash firmware updates in the field through secure network communications (Figure 2). The increase in endpoint devices operating at the edge has increased the need for secure over-the-air (OTA) firmware updates. The new RX651 devices support this reprogramming requirement with integrated TSIP, enhanced flash protection and other technology advancements that offer a more secure and stable solution than other available solutions on the market. …

Read the full article in the September 350 issue of Circuit Cellar
(Full article word count: 2873 words; Figure count: 6 Figures.)

Vendor list:

Cypress Semiconductor | www.cypress.com
Maxim Integrated | www.maximintegrated.com
Microchip | www.microchip.com
NXP Semiconductor | www.nxp.com
Renesas Electronics America | www.renesas.com
STMicroelectronics | www.st.com
The Things Industries | www.thethingsindustries.com

Don’t miss out on upcoming issues of Circuit Cellar. Subscribe today!

Note: We’ve made the October 2017 issue of Circuit Cellar available as a free sample issue. In it, you’ll find a rich variety of the kinds of articles and information that exemplify a typical issue of the current magazine.

Semtech LoRa Tech Leveraged for Construction and Mining Gear

Semtech has announced that MachineMax, a provider of smart solutions for fleet management, construction and mining applications, has integrated Semtech’s LoRa devices and wireless radio frequency technology (LoRa Technology) into a new smart construction machine usage tracking solution. With Semtech’s LoRa Technology, MachineMax says they were able to create simple, easy to deploy solutions which effectively monitor machine status from anywhere on a construction or mining site.

Machine idling, where a machine’s engine is running but the machine is not actively in use, accounts for an estimated 37% of the time a construction or mining machine is operating on average. Idling results in an increased amount of fuel waste and machine wear, without creating productive machine output. Previously, monitoring the usage status of a mining or construction fleet was accomplished manually, with site managers continually checking on the use status of machines, an expensive and time consuming task.

MachineMax developed a LoRa-based solution which can be easily deployed onto fleet machines in under a minute. The devices attach magnetically and gather real-time data on machine usage status, such as whether or not a machine is idle. With real-time data on when a machine is in use, site managers can make more efficient use of a machine’s time to prevent idling, reducing the amount of fuel used and prolonging machine life.

Semtech’s LoRa devices and wireless radio frequency technology is a widely adopted long-range, low-power solution for IoT that gives telecom companies, IoT application makers and system integrators the feature set necessary to deploy low-cost, interoperable IoT networks, gateways, sensors, module products and IoT services worldwide. IoT networks based on the LoRaWAN specification have been deployed in 100 countries and Semtech is a founding member of the LoRa Alliance.

Semtech | www.semtech.com

 

Cloud-Based Geolocation Service is LoRaWAN-Compatible

Semtech has announced the availability of LoRa Cloud Geolocation, a new cloud-based geolocation service that is compatible with the LoRaWAN protocol and almost any network server. The geolocation service can be easily integrated to provide a low-cost, performance-optimized solution, and is the first of a variety of cloud services products that Semtech will be offering to support IoT application development.

Over the past year, Semtech has trialed a free Cloud-based geolocation service with hundreds of users providing positive feedback on the ease-of-use and the performance of the service. LoRa Cloud Geolocation was in beta test this year with limited partners and over the coming quarter, many more users are expected to integrate the new service into their platforms. The new Cloud-based geolocation service was designed to support flexibility in deployment options providing geolocation service availability to any IoT devices.

Semtech is currently onboarding early customers and general availability with sign-up via a new LoRa Cloud services portal is expected in the summer of 2019. Different pricing tiers will be available for selection.

LoRa Cloud Geolocation Features:

  • Simple API accepting signal-strength, signal-to-noise ratio and time of arrival data from LoRaWAN-based gateways and returning an estimated location.
  • Supporting all LoRaWAN-based gateways, with or without accurate time of arrival data
  • Compatible with all LoRaWAN-based devices on all LoRaWAN-based networks
  • Options for including multiple packets (uplinks) in a single query for improved accuracy
  • 100% stateless with all required data included in the query
  • No device identity required – total device anonymity ensured
  • Support for multiple antennae per gateway
  • Deploy in public Cloud or on-premise

Semtech | www.semtech.com

 

IoT Monitoring System for Commercial Fridges

Using LoRa Technology

IoT implementations can take many shapes and forms. Learn how these four Camosun College students developed a system to monitor all the refrigeration units in a commercial kitchen simultaneously. The system uses Microchip PIC MCU-based monitoring units and wireless communication leveraging the LoRa wireless protocol.

By Tyler Canton, Akio Yasu, Trevor Ford and Luke Vinden

In 2017, the commercial food service industry created an estimated 14.6 million wet tons of food in the United States [1]. The second leading cause of food waste in commercial food service, next to overproduction, is product loss due to defects in product quality and/or equipment failure [2].

While one of our team members was working as the chef of a hotel in Vancouver, more than once he’d arrive at work to find that the hotel’s refrigeration equipment had failed overnight or over the weekend, and that thousands of dollars of food had become unusable due to being stored at unsafe temperatures. He always saw this as an unnecessary loss—especially because the establishment had multiple refrigeration units and ample space to move product around. In this IoT age, this is clearly a preventable problem.

For our Electronics & Computer Engineering Technologist Capstone project, we set forth to design a commercial refrigeration monitoring system that would concurrently monitor all the units in an establishment, and alert the chefs or managers when their product was not being stored safely. This system would also allow the chef to check in on his/her product at any time for peace of mind (Figure 1).

Figure 1
This was the first picture we took of our finished project assembled. This SLA printed enclosure houses our 10.1″ LCD screen, a Raspberry Pi Model 3B and custom designed PCB.

We began with some simple range testing using RFM95W LoRa modules from RF Solutions, to see if we could reliably transmit data from inside a steel box (a refrigerator), up several flights of stairs, through concrete walls, with electrical noise and the most disruptive interference: hollering chefs. It is common for commercial kitchens to feel like a cellular blackout zone, so reliable communication would be essential to our system’s success.

System Overview

We designed our main unit to be powered and controlled by a Raspberry Pi 3B (RPi) board. The RPi communicates with an RFM95W LoRa transceiver using Serial Peripheral Interface (SPI). This unit receives temperature data from our satellite units, and displays the temperatures on a 10.1″ LCD screen from Waveshare. A block diagram of the system is shown in Figure 2. We decided to go with Node-RED flow-based programming tool to design our GUI. This main unit is also responsible for logging the data online to a Google Form. We also used Node-RED’s “email” nodes to alert the users when their product is stored at unsafe temperatures. In the future, we plan to design an app that can notify the user via push notifications. This is not the ideal system for the type of user that at any time has 1,000+ emails in their inbox, but for our target user who won’t allow more than 3 or 4 to pile up it has worked fine.

Figure 2
The main unit can receive temperature data from as many satellite units as required. Data are stored locally on the Raspberry Pi 3B, displayed using a GUI designed by Node-RED and logged online via Google Sheets.

We designed an individual prototype (Figure 3) for each satellite monitoring unit, to measure the equipment’s temperature and periodically transmit the data to a centralized main unit through LoRa communication. The units were intended to operate at least a year on a single battery charge. These satellites, controlled by a Microchip Technology PIC24FJ64GA704 microcontroller (MCU), were designed with an internal Maxim Integrated DS18B20 digital sensor (TO-92 package) and an optional external Maxim

Figure 3
This enclosure houses the electronics responsible for monitoring the temperatures and transmitting to the main unit. These were 3D printed on Ultimaker 3 printers.

Integrated DS18B20 (waterproof stainless steel tube package) to measure the temperature using the serial 1-Wire interface.

Hardware

All our boards were designed using Altium Designer 2017 and manufactured by JLCPCB. We highly recommend JLCPCB for PCB manufacturing. On a Tuesday we submitted our order to the website, and the finished PCB’s were manufactured, shipped, and delivered within a week. We were amazed by the turnaround time and the quality of the boards we received for the price ($2 USD / 10 PCB).

Figure 4
The main unit PCB’s role is simply to allow the devices to communicate with each other. This includes the RFM95W LoRa transceivers, RPi, LCD screen and a small fan

Main Unit Hardware: As shown in Figure 4, our main board’s purpose is communicating with the RPi and the LCD. We first had to select an LCD display for the main unit. This was an important decision, as it was the primary human interface device (HID) between the system and its user. We wanted a display that was around 10″—a good compromise between physical size and readability. Shortly after beginning our search, we learned that displays between 7″ and 19″ are not only significantly more difficult to come by, but also significantly more expensive. Thankfully, we managed to source a 10.1″ display that met our budget from robotshop.com. On the back of the display was a set of female header pins designed to interface with the first 26 pins of the RPi’s GPIO pins. The only problem with the display was that we needed access to those same GPIO pins to interface with the rest of our peripherals.

Figure 5
Our main board, labeled Mr. Therm, was designed to attach directly to the LCD screen headers. RPi pins 1-26 share the same connectivity as the main board and the LCD.

We initially planned on fixing this problem by placing our circuit board between the RPi and the display, creating a three-board-stack. Upon delivery and initial inspection of the display, however, we noticed an undocumented footprint that was connected to all the same nets directly beneath the female headers. We quickly decided to abandon the idea of the three-board-stack and decided instead to connect our main board to that unused footprint in the same way the RPi connects to display (Figure 5). This enabled us to interface all three boards, while maintaining a relatively thin profile. The main board connects four separate components to the rest of the circuit. It connects the RFM95W transceiver to the RPi, front panel buttons, power supply and a small fan.

Read the full article in the April 345 issue of Circuit Cellar
(Full article word count: 3378 words; Figure count: 11 Figures.)

Don’t miss out on upcoming issues of Circuit Cellar. Subscribe today!

Note: We’ve made the October 2017 issue of Circuit Cellar available as a free sample issue. In it, you’ll find a rich variety of the kinds of articles and information that exemplify a typical issue of the current magazine.

RPi-Based IoT gateway Offers Cellular, Zigbee, Z-Wave or LoRa

By Eric Brown

Newark Element14 and Avnet have announced a Raspberry Pi based “SmartEdge Industrial IoT Gateway” with 2x Ethernet, Wi-Fi/BT, CAN, serial and optional Zigbee, Z-Wave or LoRa.

Avnet, which last year launched the Zynq UltraScale+ based ‘Ultra96 96Boards CE SBC, announced plans for the Avnet SmartEdge Industrial IoT Gateway at the CES show in early January. At Embedded World last month, Premier Farnell revealed more details on the Raspberry Pi based IoT gateway, which will launch this summer at Newark Element14 in North America and Farnell Element14 in Europe.


Avnet SmartEdge Industrial IoT Gateway 
(click image to enlarge)
The Avnet SmartEdge Industrial IoT Gateway will support Avnet’s IoT Connectplatform to enable cloud connectivity to Microsoft Azure. The Linux-driven embedded PC will support industrial automation applications such as remote monitoring, predictive maintenance, process control, and automation.

Premier Farnell did not say which Raspberry Pi is under the hood, but based on the WiFi support, it would appear to be the RPi 3 Model B rather than the B+. The limited specs announced for the gateway include 8GB eMMC, an HDMI port, and TPM 2.0 security. The image suggests there are also at least 2x USB ports and a coincell battery holder for a real-time clock.

For communications, you get dual 10/100 Ethernet ports as well as 2.4GHz WiFi and BLE 4.2 with an integrated antenna and external mount. The gateway also provides a mini-PCIe interface for optional cellular modems. In addition, the enclosure “features space for an additional internal accessory to provide Zigbee, Z-Wave, or LoRa capabilities, for example, or for multiple accessories through case expansion,” say Premier Farnell.

The system is further equipped with CAN-BUS and RS-232/485 interfaces with Modbus and DeviceNet support, as well as isolated digital I/O. There’s also a 40-pin expansion header for Raspberry Pi HATs and other add-on boards. The system has a wide-range 12-24V DC input plus DIN rail and wall mounting.

Further information

The Avnet SmartEdge Industrial IoT Gateway will launch this summer at Newark Element14 in North America and Farnell Element14 in Europe, with pricing undisclosed. More information is available in the Premier Farnell announcement and more may eventually appear on the Avnet website.

This article originally appeared on LinuxGizmos.com on March 4..

Avnet | www.avnet.com

Farnell Element14 | www.element14.com

Newark Element14 | www.newark.com

April Circuit Cellar: Sneak Preview

The April issue of Circuit Cellar magazine is out next week (March 20th)!. We’ve worked hard to cook up a tasty selection of in-depth embedded electronics articles just for you. We’ll be serving them up to in our 84-page magazine.

Not a Circuit Cellar subscriber?  Don’t be left out! Sign up today:

 

Here’s a sneak preview of April 2019 Circuit Cellar:

VIDEO AND DISPLAY TECHNOLOGIES IN ACTION

Video Technology in Drones
Because video is the main mission of the majority of commercial drones, video technology has become a center of gravity in today’s drone design decisions. The topic covers everything including single-chip video processing, 4k HD video capture, image stabilization, complex board-level video processing, drone-mounted cameras, hybrid IR/video camera and mesh-networks. In this article, Circuit Cellar’s Editor-in-Chief, Jeff Child, looks at the technology and trends in video technology for drones.

Building an All-in-One Serial Terminal
Many embedded systems require as least some sort of human interface. While Jeff Bachiochi was researching alternatives to mechanical keypads, he came across the touchscreen display products from 4D Systems. He chose their inexpensive, low-power 2.4-inch, resistive touch screen as the basis for his display subsystem project. He makes use of the display’s Espressif Systems ESP8266 processor and Arduino IDE support to turn the display module into a serial terminal with a serial TTL connection to other equipment.

MICROCONTROLLERS ARE EVERYWHERE

Product Focus: 32-Bit Microcontrollers
As the workhorse of today’s embedded systems, 32-bit microcontrollers serve a wide variety of embedded applications-including the IoT. MCU vendors continue to add more connectivity, security and I/O functionality to their 32-bit product families. This Product Focus section updates readers on these trends and provides a product album of representative 32-bit MCU products.

Build a PIC32-Based Recording Studio
In this project article, learn how Cornell students Radhika Chinni, Brandon Quinlan, Raymond Xu built a miniature recording studio using the Microchip PIC32. It can be used as an electric keyboard with the additional functionality of recording and playing back multiple layers of sounds. There is also a microphone that the user can use to make custom recordings.

WONDERFUL WORLD OF WIRELESS

Low-Power Wireless Comms
The growth in demand for IoT solutions has fueled the need for products and technology to do wireless communication from low-power edge devices. Using technologies including Bluetooth Low-Energy (BLE), wireless radio frequency technology (LoRa) and others, embedded system developers are searching for ways to get efficient IoT connectivity while drawing as little power as possible. Circuit Cellar Chief Editor Jeff Child explores the latest technology trends and product developments in low-power wireless communications.

Bluetooth Mesh (Part 2)
Continuing his article series on Bluetooth mesh, this month Bob Japenga looks at the provisioning process required to get a device onto a Bluetooth mesh network. Then he examines two application examples and evaluates the various options for each example.

Build a Prescription Reminder
Pharmaceuticals prescribed by physicians are important to patients both old and young. But these medications will only do their job if taken according to a proper schedule. In this article, Devlin Gualtieri describes his Raspberry-Rx Prescription Reminder project, a network-accessible, the Wi-Fi connected, Raspberry Pi-based device that alerts a person when a particular medication should be administered. It also keeps a log of the actual times when medications were administered.

ENGINEERING TIPS, TRICKS AND TECHNIQUES

The Art of Current Probing
In his February column, Robert Lacoste talked about oscilloscope probes—or more specifically, voltage measurement probes. He explained how selecting the correct probe for a given measurement, and using it as it properly, is as important as having a good scope. In this article, Robert continues the discussion with another common measurement task: Accurately measuring current using an oscilloscope.

Software Engineering
There’s no doubt that achieving high software quality is human-driven endeavor. No amount of automated code development can substitute for best practices. A great tool for such efforts is the IEEE Computer Society’s Guide to the Software Engineering Body of Knowledge. In this article, George Novacek discusses some highlights of this resource, and why he has frequently consulted this document when preparing development plans.

HV Differential Probe
A high-voltage differential probe is a critical piece of test equipment for anyone who wants to safely examine high voltage signals on a standard oscilloscope. In his article, Andrew Levido describes his design of a high-voltage differential probe with features similar to commercial devices, but at a considerably lower cost. It uses just three op amps in a classic instrumentation amplifier configuration and provides a great exercise in precision analog design.

Firms Team Up to Provide End-to-End LoRa Security Solution

Microchip Technology, in partnership with The Things Industries, has announced the what it claims is industry’s first end-to-end security solution that adds secure, trusted and managed authentication to LoRaWAN devices at a global scale. The solution brings hardware-based security to the LoRa ecosystem, combining the MCU- and radio-agnostic ATECC608A-MAHTN-T CryptoAuthentication device with The Things Industries’ managed join servers and Microchip’s secure provisioning service.

The joint solution significantly simplifies provisioning LoRaWAN devices and addresses the inherent logistical challenges that come with managing LoRaWAN authentication keys from inception and throughout the life of a device. Traditionally, network and application server keys are unprotected in the edge node, and unmonitored, as LoRaWAN devices pass through various supply chain steps and are installed in the field.

The Common Criteria Joint Interpretation Library (JIL) “high”-rated ATECC608A comes pre-configured with secure key storage, keeping a device’s LoRaWAN secret keys isolated from the system so that sensitive keys are never exposed throughout the supply chain nor when the device is deployed. Microchip’s secure manufacturing facilities safely provision keys, eliminating the risk of exposure during manufacturing. Combined with The Things Industries’ agnostic secure join server service to the LoRaWAN network and application server providers, the solution decreases the risk of device identity corruption by establishing a trusted authentication when a device connects to a network.

Similar to how a prepaid data plan works for a mobile device, each purchase of an ATECC608A-MAHTN-T device comes with one year of managed LoRaWAN join server service through The Things Industries. Once a device identifies itself to join a LoRaWAN network, the network contacts The Things Industries join server to verify that the identity comes from a trusted device and not a fraudulent one. The temporary session keys are then sent securely to the network server and application server of choice. The Things Industries’ join server supports any LoRaWAN network, from commercially operated networks to private networks built on open-source components. After the one-year period, The Things Industries provides the option to extend the service.

Microchip and The Things Industries have also partnered to make the onboarding process of LoRaWAN devices seamless and secure. LoRaWAN device identities are claimed by The Things Industries’ join server with minimal intervention, relieving developers from needing expertise in security. Customers can not only choose any LoRaWAN network but can also migrate to any other LoRaWAN join server by rekeying the device. This means there is not a vendor lock-in and customers have full control over where and how the device keys are stored.

The ATECC608A is agnostic and can be paired with any MCU and LoRa radio. Developers can deploy secure LoRaWAN devices by combining the ATECC608A with the SAM L21 MCU, supported by the Arm Mbed OS LoRaWAN stack, or the recently-announced SAM R34 System-in-Package with Microchip’s LoRaWAN stack. For rapid prototyping, designers can use the CryptoAuthoXPRO socket board and The Things Industries provisioned parts in samples with the SAM L21 Xplained Pro (atsamd21-xpro) or SAM R34 Xplained Pro (DM320111).

The ATECC608A-MAHTN-T device for The Things Industries, including the initial year of prepaid TTN service, is available in volume production for $0.81 each in 10,000-unit quantities.

Microchip Technology | www.microchip.com

 

Utility Metering Solution Taps Semtech’s LoRa Technology

Semtech has announced that Lemonbeat, an IoT solution provider, has integated Semtech’s LoRa devices and wireless radio frequency technology (LoRa Technology) into its smart metering solutions for easier reading and collection of utility usage. Lemonbeat’s LoRa-connected smart meters work by utilizing embedded LoRa-based IoT technology to connect the meter to their own purpose-built receiver units.

Using this connectivity, meters send data through multiple floors in bigger buildings or all way in to the street, where network operators conveniently collect the data without having to enter the building. Using the meters’ other radio frequency, Lemonbeat Radio, meters provide customers accurate data on their energy consumption. With a third-party application, individuals can view and analyze this data, and change their habits accordingly.

Semtech’s LoRa devices and wireless radio frequency technology is a widely adopted long-range, low-power solution for IoT that gives telecom companies, IoT application makers and system integrators the feature set necessary to deploy low-cost, interoperable IoT networks, gateways, sensors, module products, and IoT services worldwide. IoT networks based on the LoRaWAN specification have been deployed in over 100 countries and Semtech is a founding member of the LoRa Alliance.

Lemonbeat | www.lemonbeat.com

Semtech | www.semtech.com

IoT System Monitors Water Quality in French Polynesia

Kontron, along with teams from Assystem Pacific, Bioceanor and Easy Global Market (EGM), are installing intelligent systems to monitor water quality in the Pacific Ocean. They are working together under the leadership of System Factory, the Cluster 4.0 for France’s “Region Sud”, dedicated to the engineering of complex systems. These systems, set up at the Centre de Recherches Insulaires et Observatoire de l’Environnement (CRIOBE), aim to measure the physico-chemical parameters of the water in the Opunohu lagoon in Moorea and monitor its pollution.

Connected buoys developed by Bioceanor in collaboration with EGM now make it possible to monitor the environment of coral reefs using data collected in real time. Monitored parameters include temperature, salinity, turbidity and even certain pollutants. A box PC developed by Kontron acts as both a LoRaWAN-compatible IoT gateway and a network server. It converts the status information sent by these sensors into MQTT streams and enables continuous secure retrieval and remote analysis of this data. Assystem Pacifique and Easy Global Market teams integrated this networked LoRa system.

According to Kontron, the next step will be to build a 24- to 48-hour forecasting system based on the analysis of the collected data. In addition, the collaboration between System Factory and local organizations in French Polynesia will continue. Assystem, Bioceanor, Easy Global Market (EGM) and Kontron presented the technology used in the system at the System Factory Day on December 11 at the Palais du Commerce et de la Mer in Toulon.

Kontron | www.kontron.com

 

LoRa SiP Devices Provide Low Power IoT Node Solution

Microchip Technology has introduced a highly integrated LoRa System-in-Package (SiP) family with an ultra-low-power 32-bit MCU, sub-GHz RF LoRa transceiver and software stack. The SAM R34/35 SiPs come with certified reference designs and interoperability with major LoRaWAN gateway and network providers. The devices also provide the ultra-low power consumption in sleep modes, offering extended battery life in remote IoT nodes.

Most LoRa end devices remain in sleep mode for extended periods of time, only waking up occasionally to transmit small data packets. Powered by the ultra-low-power SAM L21 Arm Cortex-M0+ based MCU, the SAM R34 devices provide sleep modes as low as 790 nA to significantly reduce power consumption and extend battery life in end applications. Highly integrated in a compact 6 mm x 6 mm package, the SAM R34/35 family is well suited for a broad array of long-range, low-power IoT applications that require small form factor designs and multiple years of battery life.

In addition to ultra-low-power consumption, the simplified development process means developers can accelerate their designs by combining their application code with Microchip’s LoRaWAN stack and quickly prototype with the ATSAMR34-XPRO development board (DM320111), which is supported by the Atmel Studio 7 Software Development Kit (SDK). The development board is certified with the Federal Communications Commission (FCC), Industry Canada (IC) and Radio Equipment Directive (RED), providing developers with the confidence that their designs will meet government requirements across geographies.
LoRa technology is designed to enable low-power applications to communicate over longer ranges than Zigbee, Wi-Fi and Bluetooth using the LoRaWAN open protocol. Ideal for a range of applications such as smart cities, agricultural monitoring and supply chain tracking, LoRaWAN enables the creation of flexible IoT networks that can operate in both urban and rural environments. According to the LoRa Alliance, the number of LoRaWAN operators has doubled from 40 to 80 over the last 12 months, with more than 100 countries actively developing LoRaWAN networks.

The SAM R34/35 family is supported by Microchip’s LoRaWAN stack, as well as a certified and proven chip-down package that enables customers to accelerate the design of RF applications with reduced risk. With support for worldwide LoRaWAN operation from 862 to 1,020 MHz, developers can use a single part variant across geographies, simplifying the design process and reducing inventory burden. The SAM R34/35 family supports Class A and Class C end devices as well as proprietary point-to-point connections.

Microchip’s SAM R34/35 LoRa family is available in six device variants. SAM R34 devices in a 64-lead TFBGA package begin at $3.76 each in 10,000-unit quantities. SAM R35 devices are available without a USB interface starting at $3.66 each in 10,000-unit quantities.

Microchip Technology | www.microchip.com

Smart Vehicles Leverage Semtech’s LoRa Technology

Semtech has announced that EasyReach Solutions, an Indian startup specializing in smart IoT solutions for industrial applications, has incorporated Semtech’s LoRa devices and wireless radio frequency technology (LoRa Technology) into its industrial and smart vehicle monitoring products. EasyReach’s LoRa-enabled sensors have been developed to include electrical current testing, temperature reading and GPS capabilities. All sensors are compatible with the LoRaWAN protocol and have been verified for GPS tracking ability over eight kilometers line of sight.
According to EasyReach, the LoRa Technology allows the company to remotely monitor its equipment and vehicles in new ways and to more intelligently manage its industrial resources. Meanwhile, the flexible capabilities of the sensors allow the solution to scale to its needs. EasyReach’s LoRa-based applications for smart industry include sensors for steam traps, concrete mixers, forklifts, diesel tankers, back hoes, water meters, and trucks.

Semtech | www.semtech.com