COM Express Board Offers 16 GB DRAM and Extend Temp. Design

Kontron has introduced its new COMe-m4AL10 (E2) module. The COM Express module is available with either Intel Atom, Intel Pentium or Intel Celeron processors of the latest 5th generation. With dimensions of only 84 mm x 55 mm, it is well suited for space-limited applications. The E2 version is designed for use in the industrial temperature range from -40°C to +85°C. Thanks to its large number of interfaces, significantly improved computing power and excellent performance-per-watt ratio, the COMe-m4AL10 (E2) is suited for use in industrial IoT and Industry 4.0 applications.

Medical imaging, autonomous vehicles, surveillance and security devices benefit as well from the powerful, yet extremely small modules. Thanks to the industrial-grade-by-design versions—specified for industrial temperature operation—and the long-term availability, the new COMe-m4AL10 (E2) meets the special requirements of applications in transportation as well as defense markets.

The COMe-m4AL10 (E2) will be available in five different processor versions, as DualCore or QuadCore processors. The COMe-m4AL10 (E2) supports up to 16 GB LPDDR4 memory down and two independent displays: 1x DP++ (DP/HDMI/DVI) 4096×2160 at 60 Hz and 1x Single Channel LVDS with DPtoLVDS (eDP on request) 3840×2160 at 30 Hz. The module comes with storage options for two SATA II 300 Mbps interfaces and on request with additional eMMC memory (up to 128 GB MLC). In addition to having two serial ports, it provides two superfast USB 3.0 interfaces, up to eight USB 2.0, Gigabit Ethernet, as well as four PCI-Express Gen2 lanes for customer specific expansions.

As an optional feature the new Kontron COMe-m4AL10 (E2) supports the Kontron APPROTECT security solution based on Wibu-Systems CodeMeter. Kontron APPROTECT Licensing also enables new business models such as “pay-per-use” and time-based trial versions. Kontron offers BSPs (Board Support Packages) for the following operating systems: Windows 10, Enterprise, Windows 10 IoT, Linux and VxWorks 7.

Kontron | www.kontron.com

Zigbee Certified Products Surpass 3,000 Milestone

The Zigbee Alliance has announced there are now more than 3,000 Zigbee Certified products and Zigbee Compliant Platforms available to the market. This milestone highlights the growing market for interconnected products for smart homes and buildings. “Hitting the 3,000th certification demonstrates how collaborating across brands and standards is what’s helping our market flourish as everyone wants choice and the ability to easily connect devices to one another,” said Jon Harros, Director of Certification and Testing Programs, Zigbee Alliance.

“Our member companies work in different areas of the IoT realm yet come together to drive innovation and development through Zigbee Certification. Each qualified product and platform further expands the interoperability universe for us all,” said Harros.

The Zigbee Alliance Certification program ensures that quality, interoperable Zigbee products are available for product developers, ecosystem vendors, service providers and their customers. Certifications for Zigbee 3.0 products are on the rise, and, according to the Zigbee alliance, this uptick is a clear indicator that major market influencers are choosing “open” for their IoT product designs.

LEEDARSON, a one-stop ODM shop that offers an array of IoT devices, is one of the top member companies leveraging the Zigbee Certified program to ensure they deliver high quality, interoperable lighting and IoT devices to market.  LEEDARSON is also the first organization to earn certification for a Zigbee 3.0 lightbulb.

Amazon claimed the 3,000th Zigbee Certified product spot with their 2nd Generation Echo Show. The Echo Show features a built-in smart home hub that easily connects to Zigbee-based light bulbs, door locks, sensors and more.

This certification milestone is the resulting work from hundreds of global manufacturers and developers that have designed products using Zigbee-based standards for the smart home, building, and connected city environments. The companies that contributed to this milestone throughout the first half of 2019 include:

Amazon, BEGA Gatenbrink-Leuchten KG, Chameleon Technology, Green Energy Options, Hangzhou Greatstar Industrial, The Kroger Co., Landis+Gyr,  LEEDARSON, Leviton Manufacturing Company, NEXELEC, Qualcomm, Samsung, Schneider Electric, Secure Meters, Sengled, Shenzhen Feibit Electronic Technology, Shenzhen Heiman, Shenzhen Kaifa Technology, Shenzhen Sunricher Technology, Silicon Labs, SmartThings, Somfy, System Level Solutions, Stelpro, Texas Instruments, The Home Depot, Toshiba Corporation, Tuya Xylem, and Yunding Network Technology.

The Zigbee Alliance | www.zigbee.org

Atom E3800 SoC-Based Fanless Computer Targets Industrial IoT

WinSystems has rolled out its SYS-ITX-N-3800 encased computing platform. Based on the Intel Atom E-3800 processor, this space-saving packaged CPU offers consistently reliable performance under extended operating temperatures of -25ºC to +60ºC. Inside its 150 mm x 150 mm x 53 mm rugged aluminum enclosure is an efficient mix of processor and practical input/output options.

This system is optimally engineered to satisfy diverse embedded system requirements and easily mount in tight spaces. Processing performance is a solid match for Windows 10 IoT and Linux operating systems, enabling long product life cycle solutions for Industrial IoT, energy management and medical designs.

The versatile SYS-ITX-N-3800 supplies a complete system in a small form factor box that can be easily expanded or configured for different application requirements. It provides superb connectivity with two USB 3.0 host channels, an RS-232/422/485 serial port, VGA and DisplayPort. A half-size Mini-Card connector further extends expansion capabilities. The package also features +12V input power, includes a mounting kit for a 2.5” SATA SSD, and supports fanless operation. And, it is built with the durability required to deliver high-reliability performance within harsh operating environments.

WinSystems | www.winsystems.com

Fanless Industrial IoT Gateway Boasts Small Form Factor

WIN Enterprises has announced the PL-80580, a fanless, small form factor for use as an Industrial IoT (IIoT) Gateway, and for networking applications requiring the small footprint and temperature tolerance of industrial applications. The small footprint of the PL-80580 (216 mm x 142 mm x 37.5 mm) also provides a good fit for robotics, cart-based medical and digital signage applications.

The unit features a choice of three Intel Atom E3800 3-D processors with Tri-gate design in single-, dual, and quad-core versions with 2x GbE LAN ports. The Intel processor is high performance, low-power consuming at 5 W, 7 w or 10 W. The E3845 SoC provides up to 1.91 GHz performance with its quad-core design. CPUs are partnered with the Intel i210AT GbE LAN controller. System I/O includes 1x USB 3.0, 2x USB 2.0, 2x Intel PCIe GbE, and 1x RS-232/422/485 & 3x RS232, plus expansion capabilities. The unit is RoHS, FCC, and CE compliant.

Features:

  • Intel Atom Processor E3800 SoC (up to 1.91 GHz)
  • Supports -10°C~60°C operating temperature range
  • 1 x HDMI, 1 x VGA1 x SATA III, 1 x Half-size mSATA
  • 2 x Intel i210AT Gigabit Ethernet
  • 4 x COM, USB 2.0, USB 3.0
  • 1 x Full-size mini-PCIe, 1 x Half-size mini-PCIe (mSATA)
  • DC 8V-32V input

WIN Enterprises will customize the PL-80580 based on customer’s specific market requirements.

WIN Enterprises | www.win-ent.com

 

IIoT Software Update Boosts Interoperability and Scalability

Moxa has announced the release of the latest software update for its industrial network management software, MXview. The software update enables system developers to easily integrate MXview into both IT and OT systems, as well as manage large-scale networks at multiple sites. MXview has a user-friendly interface to help developers view network status quickly and conveniently.
MXview supports a web widget that provides a URL for users to integrate MXview into SCADA systems and other web-based applications. In addition to integrating MXview into OT applications, MXview now supports RESTful API, which provides IT engineers with more options to manage and control their industrial networks with their own dashboard to reduce maintenance effort. The updated MXview offers a centralized monitoring approach for up to 10 different sites that have a maximum of 2,000 network devices per site.

In order to simplify network management, MXview allows users to get the information they require from the main control dashboard. MXview provides a one-page dashboard that allows users to quickly check the status of the network and uses a web-based software design that allows devices on industrial networks to be monitored via a web browser. Furthermore, the interface of MXview supports six languages, including English, Simplified and Traditional Chinese, French, German and Japanese.

MXview Industrial Network Management Software features:

  • Easily integrated into third-party applications with a web widget and RESTful API interface.
  • Central management of device monitoring, configurations, and firmware for 10 different sites with 20,000 devices.
  • The network dashboard provides a convenient way to check the network status.
  • Discovers and visualizes network devices and physical connections automatically.
  • Multiple options for events and notifications with self-defined thresholds and durations.

Moxa | www.moxa.com

 

Firms Team Up on Advanced IIoT and Edge Analytics Solutions

Eurotech and Horsa have announced a partnership to enable final users to reduce production costs by taking advantage of the integration of high computational capabilities and analytics at the edge. Eurotech’s expertise in embedded hardware and Operational Technology and Horsa’s advanced IT and analytics skills enable innovative business models by creating Manufacturing Execution Systems (MES) that combine high computational performance and machine learning at the edge with advanced IT solutions and software to build an open, integrated, managed and flexible IoT infrastructure
Eurotech’s Multi-service IoT Edge Gateways provide IoT connectivity to industrial machinery in the field, providing native support for the most common field communication protocols, as well as edge computing and machine learning capabilities for data collection and management. The valuable data collected by this intelligent edge infrastructure are integrated with Horsa’s leading enterprise IT solutions in order to perform advanced analytics for IoT applications, from simple anomaly detection and alert management to predictive maintenance and full quality control systems.

Eurotech | www.eurotech.com

Horsa | www.horsa.com

 

Tiny PLC Reference Design Serves Digital Factory Needs

Digital factories require a surprising amount of analog and power technology. Exemplifying that trend, Maxim Integrated Products offers its new programmable logic controller (PLC) reference design called Go-IO. Go-IO embeds 17 configurable I/Os in a space one-half the size of a credit card and enables productivity-enhancing self-diagnostic capabilities in automated factory subsystems. System designers are striving to bring greater intelligence into Industry 4.0 digital factory equipment while meeting the stringent size and power demands of PLCs.
Digital factories can dynamically adjust the manufacturing line on the fly based on new or changing requirements. To fully realize industrial convergence, automated equipment must also possess self-diagnostic and optimization capabilities. Go-IO pushes intelligence closer to the edge, enabling active monitoring and communication of equipment health and status information as well as higher throughput and productivity. The reference design also meets increasingly stringent size and power requirements of PLCs, providing a 10x smaller solution with 50% less power consumption compared to its predecessor, the Pocket IO.

The flexible, rugged, open-source Go-IO reference design is ideal for industrial automation, building automation and industrial robotics applications. It has 12 highly integrated ICs, 17 IOs supporting multiple digital IO configurations, a 4-channel IO-Link master to provide a universal IO interface to both analog and digital sensors, and a robust 25 Mbps isolated RS-485 communications channel that provides a reliable, multi-drop data network for uploading time-sensitive health and status information into a local data lake or the cloud.

Go-IO contains the following technologies:

  • MAX14819 low-power, dual-channel, IO-Link master transceiver with sensor/actuator power-supply controllers.
  • MAX22192 8-channel octal digital input with isolated Serial Peripheral Interface (SPI), wire break detection and accurate input current limiters in a 6 mm x 10 mm package. The MAX22192 was announced today as part of Maxim’s expanded Digital IO portfolio. (Read today’s digital input press release)
  • MAX14912 8-channel digital output driver featuring 640mA high-side switches or push-pull configurable outputs, capable of achieving 200 kHz switching rates while providing proprietary fast, safe demagnetization inductive kickback protection.
  • MAXM22511 integrated 2.5 kVRMS isolated power and digital isolated RS-485 transceiver module supporting 25 Mbps data rates with ±35 kV ESD protection in a compact 9.5 mm x 11.5 mm package. (Read the October 31, 2018 press release)
  • MAX14483/MAX14130 6-channel, 3.75 kVRMS galvanic low-power digital isolator in a compact 20-pin SSOP package/4-channel 1 kVRMS galvanic digital isolator in a small 16-pin QSOP.
  • MAXM15462 Himalaya uSLIC voltage regulator ICs and power modules for cooler, smaller and simpler industrial power supplies.

The Go-IO is available as MAXREFDES212# at Maxim’s website for $495. The reference design consists of an application processor, baseboard and the Go-IO module.

Maxim Integrated | www.maximintegrated.com

PICMG to Demo IIoT Development Concept at Sensors Expo

The PCI Industrial Computer Manufacturers Group (PICMG), a not-for-profit consortium of companies and organizations that collaboratively develop open specifications will have a booth at Sensors Expo (#1642) to promote its concepts for a new IIoT specification.  Live demonstrations will be performed to illustrate PICMG’s approach to connect sensor and the controller endpoints using new Internet of Things (IoT) methodologies.

Doug Sandy, CTO of PICMG, will hold a tutorial on Thursday June 28th in the Live Embedded Theater on the subject “Making Sense of Industrial IoT”.  Part of the PICMG tutorial and booth live demonstrations will be to illustrate RESTful API “put, get, delete” commands for the connected sensor/computer interaction. PICMG has a working agreement with the DMTF to utilize the well-known Redfish APIs. The new PICMG specification will intend to develop a meta-data model that encompasses a breadth of individual data models for IoT. The booth will include information on a concept for a developer’s kit geared to help legacy sensors and PLCs become “IoT enabled”. PICMG will also have details on its existing embedded market open specifications for high-performance industrial computing.

PICMG | www.picmg.org

Tiny, Rugged IoT Gateways Offer 10-Year Linux Support

By Eric Brown

Moxa has announced the UC-2100 Series of industrial IoT gateways along with its new UC 3100 and UC 5100 Series, but it offered details only on the UC-2100. All three series will offer ruggedization features, compact footprints, and on some models, 4G LTE support. They all run Moxa Industrial Linux and optional ThingsPro Gateway data acquisition software on Arm-based SoCs.

 

Moxa UC-2111 or UC-2112 (left) and UC-2101 (click image to enlarge)

Based on Debian 9 and a Linux 4.4 kernel, the new Moxa Industrial Linux (MIL) is a “high-performance, industrial-grade Linux distribution” that features a container-based virtual-machine-like middleware abstraction layer between the OS and applications,” says Moxa. Multiple isolated systems can run on a single control host “so that system integrators and engineers can easily change the behavior of an application without worrying about software compatibility,” says the company.

MIL provides 10-year long-term Linux support, and is aimed principally at industries that require long-term software, such as power, water, oil & gas, transportation and building automation industries. In December, Moxa joined the Linux Foundation’s Civil Infrastructure Platform (CIP) project, which is developing a 10-year SLTS Linux kernel for infrastructure industries. MIL appears to be in alignment with CIP standards.

Diagrams of ThingsPro Gateway (top) and the larger ThingsPro eco-system (bottom) (click images to enlarge)

Moxa’s ThingsPro Gateway software enables “fast integration of edge data into cloud services for large-scale IIoT deployments,” says Moxa. The software supports Modbus data acquisition, LTE connectivity, MQTT communication, and cloud client interfaces such as Amazon Web Services (AWS) and Microsoft Azure. C and Python APIs are also available.

 

Moxa’s UC-3100 (source: Hanser Konstruktion), and at right, the similarly Linux-driven, ThingsPro ready UC-8112 (click images to enlarge)

Although we saw no product pages on the UC-3100 and UC-5100, Hanser Konstruktion posted a short news item on the UC-3100 with a photo (above) and a few details. This larger, rugged system supports WiFi and LTE with two antenna pairs, and offers a USB port in addition to dual LAN and dual serial ports.

The new systems follow several other UC-branded IoT gateways that run Linux on Arm. The only other one to support ThingsPro is the UC-8112, a member of the UC-8100 family. This UC-8100 is similarly ruggedized, and runs Linux on a Cortex-A8 SoC.

UC-2100

The UC-2100 Series gateways runs MIL on an unnamed Cortex-A8 SoC clocked at 600MHz except for the UC-2112, which jumps to 1GHz. There are five different models, all with 9-48 VDC 3-pin terminal blocks and a maximum consumption of 4 Watts when not running cellular modules.

The five UC-2100 models have the following dimensions, weights, and maximum input currents:

  • UC-2101 — 50 x 80 x 28mm; 190 g; 200 mA
  • UC-2102 — 50 x 80 x 28mm; 190 g; 330 mA
  • UC-2104 — 57 x 80 x 30.8mm; 220 g; 800 mA
  • UC-2111 — 77 x 111 x 25.5mm; 290 g; 350 mA
  • UC-2112 — 77 x 111 x 25.5mm; 290 g; 450 mA

All five UC-2100 variants default to a -10 to 60°C operating range except for the UC-2104, which moves up to -10 to 70°C. In addition, they are all available in optional -40 to 75°C versions.

Other ruggedization features are the same, including anti-vibration protection per IEC 60068-2-64 and anti-shock per IEC 60068-2-2. A variety of safety, EMC, EMI, EMS, and hazardous environment standards are also listed.

The first three models ship with 256MB DDR3, while the UC-2111 and UC-2112 offer 512MB. These two are also the only ones to offer micro-SD slots. All five systems ship with 8GB eMMC loaded with the MIL distribution.

The UC-2100 systems vary in the number and type of their auto-sensing, 1.5 kV isolated Ethernet ports. The UC-2101 and UC-2104 each have a single 10/100Mbps port, while the UC-2102 and UC-2111 have two. The UC-2112 has one 10/100 and one 10/100/1000 port. The UC-2104 is the only model with a mini-PCIe socket for 4G or WiFi.

The UC-2111 and UC-2112 offer 2x RS-232/422/48 ports while the UC-2101 has one. It would appear that the UC-2102 and UC-2104 lack serial ports altogether except for the RS-232 console port available on all five systems.

The UC-2100 provides push buttons and dip switches, an RTC, a watchdog, and LEDs, the number of which depend on the model. A wall kit is standard, and DIN-rail mounting is optional. TPM 2.0 is also optional. A 5-year hardware warranty is standard.

Further information

The UC-2100 Series gateways appear to be available for order, with pricing undisclosed. More information may be found on Moxa’s UC-2100 product page. More information about the UC-2100, as well as the related, upcoming UC-3100 and UC-5100 Series, will be on tap at Hannover Messe 2018, April 23-27, at the Arm Booth at Hall 6, Booth A46.

Moxa | www.moxa.com

This article originally appeared on LinuxGizmos.com on April 16.

Dual-Mode Bluetooth Module for the Industrial IoT

U‑blox has announced the new NINA‑B2 dual‑mode Bluetooth 4.2 stand‑alone module, enabling industrial IoT applications thanks to its built‑in secure boot and wide temperature ranges. It comes pre‑flashed with U‑blox connectivity software which supports many common use cases such as Beacon, GATT client, GATT server and serial port. NINA‑B2 is configured easily using AT commands over UART, without requiring deep knowledge of the Bluetooth protocol. Because it’s already tested and certified globally, it also reduces development costs and speeds time to market.

NINA‑B2’s built‑in secure boot guarantees that the software is authenticated by U‑blox and has therefore not been tampered with. This provides a secure operating environment for the Bluetooth module. NINA‑B2 is very compact, at 10 mm x 10.6 mm x 2.2mm (without antenna) and 10 mm x 14 mm x 3.8 mm (with antenna).

Most of the Bluetooth modules at this scale are single‑mode Bluetooth low energy or Bluetooth BR/EDR devices. NINA‑B2’s size makes it an easy fit in any IoT device. It is also pin‑compatible with the U‑blox NINA family, allowing it to be easily swapped in or out with other NINA modules, with their different radio technologies such as Bluetooth low energy and Wi‑Fi.

Apart from industrial automation such as machine control devices, industrial terminals and products for remote control, possible applications also include wireless‑connected and configurable equipment, point of sale, telematics and health devices. NINA‑B2 is expected to go into production in summer 2018.

U-Blox | www.u-blox.com

Texting and IoT Embedded Devices (Part 1)

Fun with the ESP8266 SoC

Can texting be leveraged for use in IoT Wi-Fi devices? Jeff has been using Wi-Fi widgets for a lot of IoT projects lately. This month Jeff lays the groundwork for describing a project that will involve texting. He starts off with a look at Espressif System’s ESP8266EX SoC.

By Jeff Bachiochi

Believe it or not, texting while driving as of this writing is still legal in a few states. About 10% of all motor vehicles deaths in the US can be traced back to distracted drivers. Granted that includes any distraction—however cell phone distraction has quickly become a serious issue. While hazards exist for any technology, common sense should tell you this is a dangerous act.

When the technology is used correctly, texting can deliver essential information quickly—without requiring both (or many) parties to be active at the same time. This allows you to make better use of your time. I still use email for much of my correspondence, however it’s great to be able to send your spouse a text to add milk to the grocery list—after they’ve already left for the store! And even though I chuckle when I see two people sitting next to each other texting, it is a sad commentary on emerging lifestyles.

I’ve been using Wi-Fi widgets for a lot of IoT projects lately. The cost to enter the fray is low, and with free tools it’s easy to get started. This month’s article is a about a project that will involve text, even though that may not be apparent at first. Let’s start off slowly, laying the groundwork for those who have been thinking about building this kind of project. We’ll then quickly build from this foundation into crafting a useful gadget.

A Look at the ESP8266EX

The innovative team of chip-design specialists, software/firmware developers and marketers at Espressif System developed and manufactures the ESP8266EX system-on-chip (SoC). This 32-bit processor runs at 80 MHz and embeds 2.4 GHz Wi-Fi functionality—802.11 b/g/n, supporting WPA/WPA2—as well as the normal gamut of general-purpose I/O and peripherals. It has a 64 KB boot ROM, 64 KB instruction RAM and 96 KB data RAM. Their WROOM module integrates the ESP8266 with a serial EEPROM and an RF front end with a PCB antenna for a complete IoT interface.

Anyone who has ever used a dial-up modem is most likely familiar with the term AT command set. The Hayes command set is a specific command language originally developed in 1981 by Dennis Hayes for the Hayes 300 baud Smartmodem. Each command in the set begins with the letters AT+ followed by a command word used for high-level control of internal functions. For the modem these enabled tasks like dialing the phone or sending data. As an application for the WROOM, an AT command set seemed like a perfect match. This allows an embedded designer to use the device to achieve a goal without ever having to “get their hands dirty.”

This photo shows the ESP-01 and ESP-07 modules along with the FTDI 232 USB-to-serial converter used for programming either module.

I first learned of the ESP8266 years ago and purchased the ESP-01 on eBay. It was around $5 at the time (Photo 1). I used it along with the MEGA 2560—my favorite Arduino module because of its high number of I/Os and multiple hardware UARTs. With the ESP-01 connected to a serial port on an Arduino, an application could directly talk with the ESP-01 and get the Arduino connected to your LAN. From this point, the world is under your control thanks to the AT Wi-Fi and TCP commands.

The ESP8266 literature states the Wi-Fi stack only requires about 20% of the processing power. Meanwhile, 80% is still available for user application programming and development.
So why not eliminate the Arduino’s Atmel processor altogether and put your Arduino code right in the 8266? Espressif Systems has an SDK and while it provides a development and programming environment, the Arduino IDE is comfortable for many. And it offers the installation of third-party platform packages using the Boards Manager. That means you can add support for the ESP8266EX and use much of the code you’ve already written.

Using the ESP-01

Since the ESP-01 has only 8 pins, adding the necessary hardware is pretty simple. This low power device runs on 2.5 V to 3.6 V, so you must make appropriate level corrections if you wish to use it with 5 V devices like Arduino boards. …

Read the full article in the March 332 issue of Circuit Cellar

Don’t miss out on upcoming issues of Circuit Cellar. Subscribe today!
Note: We’ve made the October 2017 issue of Circuit Cellar available as a free sample issue. In it, you’ll find a rich variety of the kinds of articles and information that exemplify a typical issue of the current magazine.

IoT: From Device to Gateway

Modules for the Edge

Connecting to the IoT edge requires highly integrated technology, blending wireless connectivity and intelligence. Feeding those needs, a variety of IoT modules have emerged that offer pre-certified solutions that are ready to use.

By Jeff Child, Editor-in-Chief

he Internet of Things (IoT) is one of the most dynamic areas of embedded systems design today. Opportunities are huge as organizations large and small work to develop IoT implementations. IoT implementations are generally comprised of three main parts: the devices in the field, the cloud and the network (gateways) linking them together. This article focuses on the “things” side—in other words, the smart, connected edge devices of the IoT. For more on IoT gateways, see “IoT Gateway Advances Take Diverse Paths“ (Circuit Cellar 328, November 2017).

Because this sub-segment of technology is growing and changing so fast, it’s impossible to get a handle on everything that’s happening. The scope that comprises IoT edge devices includes a combination of embedded processors and microcontrollers that provide intelligence. It also includes various wireless, cellular and other connectivity solutions to connect to the network. And it includes sensors to collect data and battery technologies to keep the devices running.

Connecting the various nodes of an IoT implementation can involve a number of wired and wireless network technologies. But it’s rare that an IoT system can be completely hardwired end to end. Most IoT systems of any large scale depend on a variety of wireless technologies including Wi-Fi, Bluetooth, Zigbee and even cellular networking.

What’s most interesting among all that, are not those individual pieces themselves, but rather an emerging crop of modular IoT products that combine intelligence and connectivity, while also taking on the vital certifications needed to get IoT implementations up and running. With all that in mind, the last 12 months have seen an interesting mix of module-based products aimed directly at IoT.

Certified IoT Modules

Exemplifying those trends, in September 2017, STMicroelectronics (ST)introduced the SPBTLE-1S, a ready-to-use Bluetooth Low Energy (BLE) module that integrates all the components needed to complete the radio subsystem (Photo 1). The BLE module integrates ST’s proven BlueNRG-1 application-processor SoC and balun, high-frequency oscillators and a chip antenna.

Photo 1
The SPBTLE-1S is a BLE module that integrates all the components needed to complete the radio subsystem. It’s BQE-approved, and FCC, IC and CE-RED certified to simplify end-product approval for North America and EU markets.

Developers can use this module to bypass hardware design and RF-circuit layout challenges. The SPBTLE-1S is BQE-approved, and FCC, IC and CE-RED (Radio Equipment Directive) certified to simplify end-product approval for North America and EU markets. ST’s Bluetooth 4.2 certified BLE protocol stack is included, and the supporting Software-Development Kit (SDK) contains a wide range of Bluetooth profiles and sample application code.

The device is packaged in a space-efficient 11.5 mm x 13.5 mm outline and has a wide supply-voltage range of 1.7 V to 3.6 V. The SPBTLE-1S module is well suited for small, battery-operated objects powered by various types of sources such as a primary button cell or rechargeable Li-ion battery. High RF output power of +5 dBm and good receiver sensitivity help to maximize communication range and reliability.

The BlueNRG-1 SoC at the heart of the SPBTLE-1S implements the complete BLE physical layer (PHY), link layer and network/application-processing engine comprising a low-power ARM Cortex-M0 core with 160 KB flash, 24 KB RAM with data retention and a security co-processor. The SoC also implements smart power management, with a DC/DC converter capable of powering the SPBTLE-1S module to ensure optimum energy efficiency. Users can leverage an extensive set of interfaces, including a UART, two I²C ports, SPI port, single-wire debug and 14 GPIOs, as well as peripherals including two multifunction timers, a 10-bit ADC, watchdog timer and real-time clock and a DMA controller. There is also a PDM stream processor interface, which is ideal for developing voice-controlled applications.

IoT Module for Development

Riding the IoT wave, all the major microcontroller vendors have beefed up their module-based IoT solutions in order to make it easier for developers to design in their MCUs. One example along those lines is the LPC54018 IoT module, developed by NXP in partnership with Embedded Artists. …

Read the full article in the March 332 issue of Circuit Cellar

Don’t miss out on upcoming issues of Circuit Cellar. Subscribe today!
Note: We’ve made the October 2017 issue of Circuit Cellar available as a free sample issue. In it, you’ll find a rich variety of the kinds of articles and information that exemplify a typical issue of the current magazine.

MPU-Based SOM Meets Industrial IoT Linux Needs

Microchip Technology has unveiled a new System on Module (SOM) featuring the SAMA5D2 microprocessor (MPU). The ATSAMA5D27-SOM1 contains the recently released ATSAMA5D27C-D1G-CU System in Package (SiP). The SOM simplifies IoT design by integrating the power management, non-volatile boot memory, Ethernet PHY and high-speed DDR2 memory onto a small, single-sided printed circuit board (PCB). There is a great deal of design effort and complexity associated with creating an industrial-grade MPU-based system running a Linux operating system. Even developers with expertise in the area spend a lot of time on PCB layout to guarantee signal integrity for the high-speed interfaces to DDR memory and PHY while complying with EMC standards.

The SAMA5D2 family of products provides an extremely flexible design experience no matter the level of expertise. For example, the SOM—which integrates multiple external components and eliminates key design challenges around EMI, ESD and signal integrity—can be used to expedite development time. Customers can solder the SOM to their board and take it to production, or it can be used as a reference design along with the free schematics, design and Gerber files and complete bill of materials which are available online. Customers can also transition from the SOM to the SiP or the MPU itself, depending on their design needs. All products are backed by Microchip’s customer-driven obsolescence policy which ensures availability to customers for as long as needed.

The Arm Cortex-A5-based SAMA5D2 SiP, mounted on the SOM PCB or available separately, integrates 1 Gbit of DDR2 memory, further simplifying the design by removing the high- speed memory interface constraints from the PCB. The impedance matching is done in the package, not manually during development, so the system will function properly at normal and low- speed operation. Three DDR2 memory sizes (128 Mb, 512 Mb and 1 Gb) are available for the SAMA5D2 SiP and optimized for bare metal, RTOS and Linux implementations.

Microchip customers developing Linux-based applications have access to the largest set of device drivers, middleware and application layers for the embedded market at no charge. All of Microchip’s Linux development code for the SiP and SOM are mainlined in the Linux communities. This results in solutions where customers can connect external devices, for which drivers are mainlined, to the SOM and SIP with minimal software development.

The SAMA5D2 family features the highest levels of security in the industry, including PCI compliance, providing an excellent platform for customers to create secured designs. With integrated Arm TrustZone and capabilities for tamper detection, secure data and program storage, hardware encryption engine, secure boot and more, customers can work with Microchip’s security experts to evaluate their security needs and implement the level of protection that’s right for their design. The SAMA5D2 SOM also contains Microchip’s QSPI NOR Flash memory, a Power Management Integrated Circuit (PMIC), an Ethernet PHY and serial EEPROM memory with a Media Access Control (MAC) address to expand design options.

The SOM1-EK1 development board provides a convenient evaluation platform for both the SOM and the SiP. A free Board Support Package (BSP) includes the Linux kernel and drivers for the MPU peripherals and integrated circuits on the SOM. Schematics and Gerber files for the SOM are also available.

The ATSAMA5D2 SiP is available in four variants starting with the ATSAMA5D225C-D1M- CU in a 196-lead BGA package for $8.62 each in 10,000 units. The ATSAMA5D27-SOM1 is available now for $39.00 each in 100 units The ATSAMA5D27-SOM1-EK1 development board is available for $245.00.

Microchip Technology | www.microchip.com

IoT Platform Gets Thread Certification

Express Logic has announced that its Industrial Grade X-Ware IoT Platform is an official Thread Certified Product, and the only such solution from an independent RTOS provider. Created by the Thread Group, Thread is a reliable, low-power, secure, and scalable mesh networking solution that provides a foundation on which any application layer can run.

The X-Ware IoT Platform, powered by Express Logic’s high-performance ThreadX RTOS and NetX Duo dual IPv4/IPv6 TCP/IP stack, provides industrial-grade implementations of IPv6 over Low Power Wireless Personal Area Networks (6LoWPAN), Constrained Application Protocol (CoAP), and Datagram Transport Layer Security (DTLS).

According to Express Logic, Thread certification provides more than just protocol compliance. Rather than measuring against single reference implementations, Thread testing validates each device’s specification conformance against a blended network comprised of four reference stacks to ensure device interoperability and reduce risk and time to market. Compliance to the Thread certification protocols and standards is administered and regulated by UL a global, independent, safety and certification company with more than a century of expertise in implementing certification solutions and standards.

The X-Ware IoT Platform contains no open source, is high performance, and boasts an extremely small footprint. The X-Ware IoT Platform automatically scales to use only what is needed by the application, making it well suited for the smallest low-power IoT devices. In addition to the performance and size advantages of the X-Ware IoT Platform, ThreadX and NetX Duo have attained the highest level of safety certifications. They include IEC 61508 SIL 4, IEC 62304 Class C, ISO 26262 ASIL D, EN 50128 SW-SIL 4, UL 60730-1 Annex H, CSA E60730-1 Annex H, IEC 60730-1 Annex H, 60335-1 Annex R and IEC 60335-1 Annex R, 1998.

Thread certification will also allow developers to confidently leverage the entire X-Ware IoT Platform solution, including the safety-certified FileX, GUIX, and USBX solutions and technologies, knowing it will seamlessly connect to other Thread-certified devices.

Express Logic | www.rtos.com

Thread Group | www.threadgroup.org

Fanless SBC Targets Industrial IoT

Technologic Systems is now shipping its newest single board computer, the TS-7553-V2. The board is developed around the NXP i.MX6 UltraLite, a high performance  processor family featuring an advanced implementation of a single ARM Cortex-A7 core, which operates at speeds up to 696 MHz. While able to support a wide range of embedded applications, the TS-7553-V2 was specifically designed to target the industrial Internet of Things (IIoT) sector.

ts-7553-v2The TS-7553-V2 was designed with connectivity in mind. An on-board Xbee interface, capable of supporting Xbee or NimbleLink, provides a simple path to adding a variety of Wireless interfaces. An Xbee radio can be used to link in with a local 2.4GHz or sub 1 GHz mesh networks, allowing for gateway or node deployments. Either Digi or NimbleLink offer cellular radios for this socket, providing cellular connectivity for applications such as remote equipment monitoring and control. There is also the option for a cellular modem via daughter card. This allows transmission of serial data via TCP, UDP or SMS over the cellular network. The TS-7553-V2 also includes an on board WiFi b/g/n and Bluetooth 4.0 option, providing even more connectivity.

Further radio expansion can be accomplished with the two internal USB interfaces (one on a standard USB Type A connector, and the second on simple pin headers). The USB interfaces enable support for multiple proprietary networks via a dongle or USB connected device. This provides the opportunity to run mesh, LoRa, ZigBee, automotive WiFi or other protocols with the TS-7553-v2 . All of these radio options combined with the on board 10/100Base-T Ethernet create the opportunity to communicate seamlessly with up to 5 different networks simultaneously from a single point.

The TS-75553-V2 supports standard interfaces including:

  •     10/100 Ethernet
  •     TTL UART
  •     4 USB ports (3 host interfaces and, 1 device)
  •     3 RS-232 Serial/COM ports
  •     RS-485 port
  •     CAN bus
  •     Up to 5 GPIO

A Nine-Axis Micro-Electro-Mechanical System (MEMS) motion tracking device containing a gyroscope, accelerometer and compass are optional on-board in for asset management, fleet management and other applications which would require sensing motion or vibration in the environment.

A low cost monochrome 128x64px LCD with 4 button keypad is available for Human Machine Interface (HMI) applications.  The keypad offers intuitive operation using 4 tactile function keys and the LCD is ideal for simple visualization tasks, even in harsh environments.  If HMI is not a consideration compact, lightweight, rugged enclosures are available to contain your gateway in a secure fanless enclosure. Both enclosures are DIN mountable.

Technologic Systems has taken the lead in combating read/write errors to memory that can prove fatal to Operating Systems. TS-SILO is an optional feature which will provide up to 30 seconds of reserve power in the event of a power failure. This precious extra time gives the board time to gracefully power down and ensures file system integrity. Additionally, for heavy data logging applications The TS-7553-V2 is the first SBC from Technologic Systems to include Ferroelectric RAM (FeRAM or FRAM). FeRAM advantages over flash include: lower power usage, faster write performance and a much greater maximum read/write endurance, allowing a user to keep running data logs without prematurely wearing out their flash memory. Combined these two features provide you with insurance from abrupt power loss, read/write errors and startup difficulties.

Applications with strict low power requirements will appreciate the work that’s been done to reduce power consumption to less than 2 W in typical conditions and a 9 mW sleep mode. Power over Ethernet (PoE) is supported via a daughter card, if desired.

Development can begin out-of-the-box with pre-installed Linux and utilities for controlling DIO, UARTS, CAN bus, and more. A complete board support package is provided, as well as access to our software repository and online support. Third party application support can be provided via the Technologic Systems’ Partner Network.

Technologic Systems | www.embeddedARM.com