August Circuit Cellar: Sneak Preview

The August issue of Circuit Cellar magazine is out next week! This 84-page publication rustles up a powerful herd of compelling embedded electronics articles prepared for your reading pleasure.

Not a Circuit Cellar subscriber?  Don’t be left out! Sign up today:

 

Here’s a sneak preview of August 2019 Circuit Cellar:

MCU AND EMBEDDED SYSTEM TECHNOLOGIES

MCUs for Driverless Cars
By Jeff Child
Driverless cars are steadily advancing toward becoming a mainstream phenomenon. Building toward that goal, chip vendors are evolving their driver assistance technologies into complete driver replacement solutions. These solutions make use of powerful microcontroller solutions to analyze a car’s surroundings, process the information and employ control functionality to steer cars safely. Circuit Cellar Chief Editor Jeff Child examines the MCU technology and product trends that are key to driverless vehicle evolution.

Product Focus: Small and Tiny Embedded Boards
By Jeff Child
An amazing amount of computing functionality can be squeezed on to a small form factor board these days. These small—and even tiny—board-level products meet the needs of applications where extremely low SWaP (size, weight and power) beats all other demands. This Product Focus section updates readers on this technology trend and provides a product album of representative small and tiny embedded boards.

Portable Digital Synthesizer
By T.J. Hurd and Ben Roberge
Gone are the days when even a basic music synthesizer was a bulky system requiring highly specialized design knowledge. These two Cornell students developed a portable musical synthesizer using a Microchip PIC32 MCU. The portable system performs digital audio synthesis on the fly and produces sounds that range from simple sine waves to heavily modulated waveforms.

Displays for Embedded Systems
By Jeff Child
Thanks to advances in displays and innovations in graphics ICs, embedded systems can now routinely feature sophisticated graphical user interfaces. What used to require a dedicated board-level graphics/video board, now can be integrated into a chip or just a part of a chip. Circuit Cellar Chief Editor Jeff Child dives into the latest technology trends and product developments in displays for embedded systems.

Building a Twitter Emote Robot
By Ian Kranz, Nikhil Dhawan and Sofya Calvin
Social media is so pervasive these days that it’s hard to image life without it. But digital interactions can be isolating because the physical feedback component gets lost. Using PIC32 MCU technology, these three Cornell students built an emotionally expressive robot which physically reacts to tweets in a live setting. Users can tweet to the robot’s Twitter account and receive near instant feedback as the robot shares its feelings about the tweet via physical means such as sounds, facial expressions and more.

Understanding the Role of Inference Engines in AI
By Geoff Tate, Flex Logix
Artificial Intelligence offers huge benefits for embedded systems. But implementing AI well requires making smart technology choices, especially when it comes to selected a neural inferencing engine. In this article, Flex Logix CEO Geoff Tate explains what inferencing is, how it plays into AI and how embedded system designers can make sure they are using the right solution for their AI processing.


FUN WITH LIGHT AND HEAT

Watt’s Up with LEDs?
By Jeff Bachiochi
When Jeff puts his mind to a technology topic, he goes in deep. In this article, he explores all aspects of LED lighting—including the history, math, science and technology of LEDs. He discusses everything from temperature issues to powering LEDs. After purchasing some LEDs, Jeff embarks on a series of tests and shares his results and insights.

Automating the Art of Toast
By Michael Xiao and Katie Bradford
The emergence of culinary robotics and automation has already begun to revolutionize the way we prepare our meals. In this article, learn how these two Cornell undergraduates designed an advanced toaster that’s able to toast any pattern—image, text or even today’s weather—onto a piece of bread. The project makes use of Microchip’s MIC32 MCU and a Raspberry Pi Zero W board.

Build an RGB LED Controller
By Dirceu R. Rodrigues Jr.
There are a lot of fun and interesting things you can do with LEDs and different ways to control them. In this article, Dirceu describes an alternative approach to control RGB LEDs using the parallel FET dimming technique. He steps through his efforts to design and build an alternative lightning system based on power RGB LEDs. To control them he goes very old school and uses an 8-bit MCU and the BASIC programming language.


… AND MORE FROM OUR EXPERT COLUMNISTS

Energy Monitoring Part 3
By George Novacek
This is the final installment of George’s energy monitoring article series. He discussed the solar power supply in Part 1 and the utility power data acquisition in Part 2. In Part 3, he wraps up the series by looking at the remaining modules that comprise his home energy monitoring setup, including the sensors, the natural gas monitor and the real-time clock.

The Fundamentals of Fuseology
By Robert Lacoste
Just because an electronic device is simple you shouldn’t relegate it to an afterthought in your embedded system design. Such is the case with fuses. Robert explores the fundamentals of this seemingly simple device. In this article, he dives into the history, key specifications and technology of fuses. He also steps you through an experiment to analyze the performance of fuses and shares his results.

Bluetooth Mesh (Part 4)
By Bob Japenga
In this next part of his article series on Bluetooth mesh, Bob looks at how models are defined in the Bluetooth Mesh specification and how practical it is to use them. He looks at the models defined by the Bluetooth SIG and discusses creating your own models for Bluetooth Mesh.

 

 

 

July Circuit Cellar: Sneak Preview

The July issue of Circuit Cellar magazine is out next week! This 84-page publication will make a satisfying thud sound when it lands on your desk and it’s crammed full of excellent embedded electronics articles prepared for you.

Not a Circuit Cellar subscriber?  Don’t be left out! Sign up today:

 

Here’s a sneak preview of July 2019 Circuit Cellar:

CONNECTED SYSTEMS IN ACTION

Embedded Computing
in Railway Systems
Railway systems keep getting more advanced. On both the control side and passenger entertainment side, embedded computers and power supplies play critical roles. Railway systems need sophisticated networking, data collection and real-time control, all while meeting safety standards. Circuit Cellar Chief Editor Jeff Child looks at the latest technology trends and products relevant to railway applications.

Product Focus:
IoT Interface Modules
The fast growing IoT phenomenon is driving demand for highly integrated modules designed for the IoT edge. Feeding those needs, a new crop of IoT modules have emerged that offer pre-certified solutions that are ready to use. This Product Focus section updates readers on this technology trend and provides a product album of representative IoT modules.

TECHNOLOGIES AND TECHNIQUES FOR ENGINEERS

FPGA Signal Processing
Offering the dual benefits of powerful signal processing and system-level integration, FPGAs have become a key technology for embedded system developers. Makers of chip and board-level FPGA products are providing complete solutions to enable developers to meet their application needs. Circuit Cellar Chief Editor Jeff Child explores the latest technology trends and product developments in FPGA signal processing.

Macros for AVR Assembler Programming
The AVR microcontroller instruction set provides a simplicity that makes it good for learning the root principles of machine programming. There’s also a rich set of macros available for the AVR that ease assembler-level programming. In this article, Wolfgang Matthes steps you through these principles, with the goal of helping programmers “think low-level, write high-level” when they approach embedded systems software development.

Inrush Current Limiters in Action
At the moment a high-power system is switched on, high loads can result in serious damage—even when the extra load is only for short time. Inrush current limiters (ICLs) can help prevent these issues. In this article, TDK Electronics’ Matt Reynolds examines ICLs based on NTC and PTC thermistors, discussing the underlying technology and the device options.

A Look at Cores with TrustZone-M
It’s not so easy to keep up with all the new security features on the latest and greatest embedded processors—especially while you’re busy focusing on the more fundamental and unique aspects of your design. In this article, Colin O’Flynn helps out by examining the new processor cores using TrustZone-M, a feature that helps you secure even low-cost and lower power system designs.

PROJECTS THAT REUSE & RECYCLE

Energy Monitoring Part 2
In Part 1 of this article series, George Novacek began describing an MCU-based system he built to monitor his household energy. Here, he continues that discussion, this time focusing on the electrical power tracking module. As the story shows, he stuck to a design challenge of building the system with as many components he already had in his component bins.

Variable Frequency Drive Part 1
Modern appliances claim to be more efficient, but they’re certainly not designed to last as long as older models. In this project article, Brian Millier describes how he reused subsystems from a defunct modern washing machine to power his bandsaw. The effort provides valuable insights on how to make use of the complete 3-phase Variable Frequency Drive (VFD) borrowed from the washing machine.

FUN PROJECT ARTICLES WITH ALL THE DETAILS

Windless Wind Chimes (Part 2)
In part 1 of this article series, Jeff Bachiochi built a system to simulate breezes randomly playing the sounds of suspended wind chimes. In part 2 the effort evolves into a less random, more orchestrated project. Jeff decided this time to craft a string of chromatically tuned chimes, similar to what an orchestra might use so the project could be used to play music. The project relies on MIDI, an industry standard music technology protocol designed to create and share music and artistic works.

Building a Smart Frying Pan
There’s almost no limit to what an MCU can be used for—-including objects that previously had no electronics at all. In this article, learn how Cornell University graduate Joseph Dwyer build a Microchip PIC32 MCU-based system that wirelessly measures and controls the temperature of a pan on a stove. The system improves both the safety and reliability of cooking on the stove, and has potentially interesting commercial applications.

EOG-Controlled Video Game
There’s much be to learned about how electronics can interact with biological signals—not only to record, but also to see how they can be used as inputs for control applications. With ongoing research in fields such as virtual reality and prosthetics, new systems are being developed to interpret different types of signals for practical applications. Learn how Cornell graduates  Eric Cole, Evan Mok and Alex Huang use electrooculography (EOG) to control a simple video game by measuring eye movement.

Integration Trend Leads PCB Design Tool Evolution

Comprehensive Solutions

After decades of evolving their PCB design tool suites, the leading tool vendors have the basics of PCB design nailed down. In recent years, these companies have continued to enhance their tools suites while also addressing a myriad of issues related to not just the PCB design itself, but the whole process surrounding it.

By Jeff Child, Editor-in-Chief

PCB design tools continue to evolve, as tool vendors scramble to keep pace with faster, highly integrated electronics. Automated, rules-based chip placement is getting more sophisticated and tools are addressing the broader picture of the PCB design process.

Over the last 12 months, PCB tool vendors have packed a smorgasbord of new features and capabilities into their PCB design software packages. The offerings include improved 3D design, design-phase signal integrity checks, advances in multi-board design functions, new design-for-manufacturing (DFM) features and more. Tool vendors are also tightening the links between IC, packaging and PCB design domains.

Improving DRCs

Exemplifying all those trends, In March, Mentor released the latest version of its Xpedition Enterprise design tool suite. According to Mentor, the VX.2.5 release offers new and improved features and functionality with an emphasis on ease of use and team productivity. The release includes advancements in design complexity management, improved reliability, quality, team collaboration and IP management. This includes new design rule checks (DRCs) for system design and NX 3D model support in EDM.

In Xpedition VX.2.5 new system design rule checks were created to review system integrity. Rule checks include cross-probing from integrity results to the specific item of interest can be enabled, verification that reference designators are unique in a single board and ensuring that the board connectors have been placed inside a board outline (Figure 1). Cable declarations are locked and names forwarded to the cable designer insuring that the required information is ready for “correct by construction” cable design.

Figure 1
In Xpedition, VX.2.5 new system design rule checks were created to review system integrity. Rule checks include cross-probing from integrity results to the specific item of interest.

Using the generic schematic symbol pin order for connectors doesn’t always achieve the desired results, says Mentor. In VX.2.5, users can now use the library symbol pin order column to easily edit pin numbers and the order. Pin orders can now be easily copied from an Excel spreadsheet and the connectors can be place by the pin numbers alpha-numeric value.

EDM in VX.2.5, along with Siemens NX, breaks down barriers with 3D model management. NX models can now be imported and exported in the EDM library cockpit ensuring tight integration, model integrity and accelerates collaboration. In VX.2.5, EDM Collaborate now enables users to view the net class and net topology information in the properties view. Whether you are viewing the schematic or layout, the information is available in properties and when selecting a net.

Routing Enhancements

Xpedition VX.2.5 also has a new capability called Semi Trunk routing that’s been added to Sketch Planning. This capability allows the user to create a Sketch plan that will only be routed on one end of the plan. By choosing the new command, Route Semi-Trunk, the Sketch plan will be optimized for the end opposite the Route to Dot, and then routed. This can help the user to pre-route interfaces that may still require placement or pin and gate swapping optimization. To complete optimization of an FPGA or ASIC and ensure the placement of the interface is complete, users can easily Reverse the Sketch plan to optimize the other end.

The new Xpedition version adds an advanced graphic orientation triad that enables users to quickly and easily control the 3D view. It also brings improvements to the online 3D DRC enabling users to identify critical interference issues quickly. From the hazard explorer users can select on interference issues and jump to their location to both view and resolve issues in the 3D environment.

Several additional electrical DRC checks are included in the new release. For signal integrity, a new reference rule covers traces vs. specific power nets. There is also a new Min/Max routed comp-to-comp length rule. Additionally, there is a novel Adjacent layer routing parallel coupling check as well as a new trace width check in BGA area vs. pin pad width. For power integrity, there is a new check for stitching via spacing. For ESD, there is a new check to ensure that components are aligned and finally, for Safety, there is a new rule that checks the distance between soldermask/silkscreen and any objects.

In version VX.2.5, the tool now integrates directly with HyperLynx advanced solvers for automatic board parasitic extraction. You can also select nets on the schematics, extract layout parasitic effects of selected nets, insert generated parasitic effects into simulation and evaluate the parasitic effects both with and without parasitics.

Marrying IC and PCB Design

One of the strengths of the PCB design tools from Cadence Design Systems is an ability to tie capabilities between the IC, packaging and PCB domains. One example is its Cadence’s OrbitIO interconnect designer (Figure 2). The tool revamps the cross-fabric planning and assessment process by unifying silicon, package and board data in a single canvas environment. This enables engineers to achieve the optimal balance of connectivity for performance, cost and manufacturability prior to implementation. That means fewer iterations and shorter development cycles.

Figure 2
Cadence’s PCB design tools feature an ability to tie capabilities between the IC, packaging and PCB domains. Its OrbitIO interconnect designer and Sigrity Technologies are two examples.

According to Cadence, the combination of growing functional integration at both the die and package level, combined with the latest high-performance interfaces, requires greater planning and coordination across all fabrics to achieve product performance objectives. That leaves little room for inefficient and error-prone methodologies.

The OrbitIO system planner provides an environment capable of uniting design content from various sources for the purpose of planning, then communicating the data back to their respective implementation tools for completion. It enables rapid exploration and evaluation of connectivity scenarios providing immediate feedback on the impact to adjacent devices and fabrics. Planning results and route plans are directly exchanged with package design resources whether it’s an internal group or outsourced assembly and test (OSAT) provider. As part of an overall Cadence co-design solution, OrbitIO interconnect designer can seamlessly exchange silicon, package and PCB data with their corresponding implementation tools.

Another way that Cadence provides solutions between different design domains is with its Sigrity family of signal integrity tools. The 2018 release of Sigrity features an upgraded interconnect modeling technology crafted to address latest trends on PCB and IC package design. With signal speeds climbing to 32 Gbps and faster, the need to strategically model PCBs and connectors as one structure is now required, says Cadence.

The new Cadence Sigrity 3D Workbench, included with the Sigrity PowerSI 3D EM Extraction Option (3DEM), enables system designers to import mechanical structures, such as cables and connectors, and merge them with the PCB so that critical 3D structures that cross from the board to the connector can be modeled and optimized as one structure. Updates to the PCB can be automatically back-annotated to the PCB layout tool.

DFM Partnerships

One the newest additions to the Cadence portfolio is its DesignTrue DFM technology. In September the company launched a broad ecosystem with nine initial PCB manufacturing partners to enable customers to easily get the partners’ technology files they need to ensure PCB design manufacturability early in the design process. The goal is to reduce rework, shorten design cycles and accelerate new product introduction.

According to Cadence, design engineer customers have received savings from half to two-thirds fewer technical queries (TQs) from manufacturers when they’ve used the Cadence DesignTrue DFM technology due to using tailor-made spacing, annular ring, copper features and mask rules to assure they are designing the board correctly the first time.

Cadence DesignTrue DFM functionality flags manufacturing rule violations in real time during the PCB layout process with both the Allegro and OrCAD design tools. In contrast, other PCB design tools demand designers wait until the design is complete to do DFM signoff on manufacturing outputs, which often requires significant rework and schedule delays, says Cadence. Nine PCB manufacturers have already become Cadence DesignTrue partners, allowing them to distribute their manufacturing rules to Cadence customers. These include Bay Area Circuits, CircuitHub, Mass Design, Multek, OSH Park, Rocket EMS, Sierra Circuits, Tempo Automation and Würth Elektronik.

Customers can view participating manufacturers and request DesignTrue DFM technology files directly, eliminating the lengthy and error-prone manual entry of hundreds of rules. DFM rules are checked in real time as part of the PCB layout process, reducing the amount of DFM errors found in the manufacturing output. These checks prevent crucial manufacturing errors and limit iterations required to fix such errors.

3D, Multi-Board and More

For its part, Altium typically announces a new version of its Altium Design PCB software once a year. In December, the launch of Altium Designer version 19 introduced a number of new features aimed at enabling a convenient and connected design including multi-board capability, 3D modelling, enhanced HDI, routing automation and more (Figure 3).

Figure 3
Altium Designer version 19 introduces several new features including multi-board capability, 3D modelling, enhanced HDI, routing automation and more.

The version features an advanced Layer Stack Manager. It lets users easily define stackups and exploit comprehensive editing type functionality from the convenience of their layer stack management tool. Routing improvements in version 19 enable designers to complete and perfect routing in a fraction of the time with new capabilities in ActiveRoute like the Move Component feature, Glossing Pushed Routes and Follow Mode.

A new Properties panel in Altium Designer lets designers edit their Thermal Relief settings for one or multiple vias in a single edit action. And support is provided to allow designers to expertly model microvias and HDI stackups on their boards to accommodate high input/output densities of advanced component packages.

Also provided in Altium Designer 19 is a refined documentation process that lets users utilize new, realistic board region views and create highly customizable fabrication and assembly drawings in Draftsman. A real-time BOM (bill of materials) management capability enables you to generate and build comprehensive BOM reports quickly and accurately with access to the latest supplier information and parts availability in ActiveBOM. And new parts search and components panels provide immediate access to component libraries and parts availability from major providers, with the ability to place components directly from the panel.

The new release improves multi-board modeling and collaboration. It simplifies object mating with a single-point selection for each object with MCAD-like editing functionality, powered by a new 3D engine. Version 19 also lets users actualize layer-less design concepts with the ability to print electronic circuits directly onto a substrate that becomes a part of the product.

Front-Loading Design Intent

In the 2018 release of Zuken’s system-level PCB design environment, CR-8000 features were added to support the unique requirements of high-density, high-speed, multi-board designs. With support for system-level engineering and 2D/3D multi-board implementation capabilities, the CR-8000 family of applications spans the complete PCB engineering lifecycle: from system level planning through implementation and design for manufacturability. The CR-8000 environment also includes 3D IC packaging and chip/package/board co-design.

Among the enhancements to the latest version of CR-8000 is the front-loading of design intent (Figure 4). This means enabling efficient front-loading of design constraints and specifications to the design creation process, coupled with sophisticated placement and routing capabilities for physical layout. This increases efficiency and ensures quality through streamlined collaboration across the PCB design chain.

Figure 4
In CR-8000 2018, a front-loading capability enables improved layout control by enabling hardware engineers to assign and edit topology templates and clearance classes to selected signals.

Front-loading of design intent from Design Gateway to Design Force has been achieved by adding an enhanced, unified constraint browser for both applications. This enables hardware engineers to assign topology templates, modify differential signals and assign clearance classes to individual signals. Using a rule stack editor during the circuit design phase, hardware engineers can now load design rules that include differential pair routing and routing width stacks directly from the design rule library into their schematic. Here, they can modify and assign selected rules for improved cross talk and differential pair control. Finally, an enhanced component browser enables component variants to be managed in the schematic, and assigned in a user-friendly table.

In Zuken’s CR-8000 2018, manual routing is supported by a new auto complete and route function that layout designers can use to complete manually routed traces in an automated way. Designers also have the option to look for paths on different layers while automatically inserting vias.

A new bus routing function allows layout designers to sketch paths for multiple nets to be routed over dense areas. An added benefit is the routing of individual signals to the correct signal length as per the hardware engineer’s front-loaded constraints, to meet timing skew and budgets. If modifications to fully placed and routed boards are required, an automatic re-route function allows connected component pins to remain connected with a simple reroute operation during the move process. In all operations, clearance and signal length specifications are automatically controlled and adjusted by powerful algorithms.

Design for Manufacturing

To address manufacturing requirements for high-speed design, CR-8000 2018 enables the automatic stitching of vias in poured conductive areas to be specified in comprehensive detail—for example inside area online, perimeter outline or both inside and perimeter. DFM has been enhanced to include checks for non-conductor items, such as silkscreen and assembly drawing placed reference designators. A design rule check makes sure component reference designators are listed in the same order as the parts for visual inspection accuracy.

Because many product engineers do not work with EDA tools, intelligent PDF documentation is required, especially in 3D. Design Force now supports creation of PRC files commonly used for 3D printing. The PRC files can be opened in PDF authoring applications such as Adobe Acrobat, where they are realized as a 3D PDF file complete with 3D models and bookmarks to browse the design.

There’s no doubt that PCB design tools have advanced way beyond the days when placement and routing were the only duties on their plates. As PCB designs—and the ICs populating them—grow ever more complex, PCB design tool vendors must race to keep up with advanced integrated tool solutions.

RESOURCES

Altium | www.altium.com
Bay Area Circuits | bayareacircuits.com
Cadence Design Systems | www.cadence.com
Mentor, a Siemens Company | www.mentor.com
Zuken | www.zuken.com

This article appeared in the June 347 issue of Circuit Cellar

Don’t miss out on upcoming issues of Circuit Cellar. Subscribe today!

Note: We’ve made the October 2017 issue of Circuit Cellar available as a free sample issue. In it, you’ll find a rich variety of the kinds of articles and information that exemplify a typical issue of the current magazine.

Infineon, Xilinx and Xylon Team Up for Safety-Critical MCU Effort

Infineon Technologies has announced an effort with Xilinx and Xylon to produce a new Xylon IP core called logiHSSL. It enables high-speed communication between Infineon’s AURIX TC2xx and TC3xx microcontrollers and Xilinx’ SoC, MPSoC and FPGA devices via the Infineon High Speed Serial Link (HSSL). This serial link supports baudrates of up to 320 Mbaud at a net payload data-rate of up to 84%. The HSSL is an Infineon native interface, low-cost in regards to pin-count because it requires only five pins-–-two LVDS with two pins each and one CLK pin. So far, the HSSL interface is used to exchange data between AURIX devices and customer ASICs for performance or functional extension.

Now, the new IP core will allow system developers to combine safety and security provided by AURIX with the wide range of functional possibilities brought to the table by the Xilinx devices. Linked devices can access and control each other’s internal and connected resources through the HSSL.

To support development activities the partners are offering a starter kit. It includes a Xilinx evaluation kit, an Infineon AURIX evaluation board and a Xylon FMC board. Kit deliverables include the reference design with the test software application, Xylon’s logicBRICKS evaluation licenses, documentation and technical support.

The new IP core and the development kit will be available this month (March 2019).

Infineon Technologies | www.infineon.com
Xilinx | www.xilinx.com
Xylon | www.logicbricks.com

January Circuit Cellar: Sneak Preview

Happy New Years! The January issue of Circuit Cellar magazine is coming soon. Don’t miss this 1st issue of Circuit Cellar 2019. Enjoy pages and pages of great, in-depth embedded electronics articles.

Not a Circuit Cellar subscriber?  Don’t be left out! Sign up today:

 

Here’s a sneak preview of January 2019 Circuit Cellar:

TRENDS & CHOICES IN EMBEDDED COMPUTING

Comms and Control for Drones
Consumer and commercial drones represent one of the most dynamic areas of embedded design today. Chip, board and system suppliers are offering improved ways for drones to do more processing on board the drone, while also providing solutions for implementing the control and communication subsystems in drones. This article by Circuit Cellar’s Editor-in-Chief Jeff Child looks at the technology and products available today that are advancing the capabilities of today’s drones.

Choosing an MPU/MCU for Industrial Design
By Microchip Technology’s Jacko Wilbrink
As MCU performance and functionality improve, the traditional boundaries between MCUs and microprocessor units (MPUs) have become less clear. In this article, Jacko examines the changing landscape in MPU vs. MCU capabilities, OS implications and the specifics of new SiP and SOM approaches for simplifying higher-performance computing requirements in industrial applications.

Product Focus: COM Express Boards
The COM Express architecture has found a solid and growing foothold in embedded systems. COM Express boards provide a complete computing core that can be upgraded when needed, leaving the application-specific I/O on the baseboard. This Product Focus section updates readers on this technology and provides a product album of representative COM Express products.

MICROCONTROLLERS ARE DOING EVERYTHING

Connecting USB to Simple MCUs
By Stuart Ball
Sometimes you want to connect a USB device such as a flash drive to a simple microcontroller. Problem is most MCUs cannot function as a USB host. In this article, Stuart steps through the technology and device choices that solve this challenge. He also puts the idea into action via a project that provides this functionality.

Vision System Enables Overlaid Images
By Daniel Edens and Elise Weir
In this project article, learn how these two Cornell students designed a system to overlay images from a visible light camera and an infrared camera. They use software running on a PIC32 MCU to interface the two types of cameras. The MCU does the computation to create the overlaid images, and displays them on an LCD screen.

DATA ACQUISITION AND MEASUREMENT

Data Acquisition Alternatives
By Jeff Child
While the fundamentals of data acquisition remain the same, its interfacing technology keeps evolving and changing. USB and PCI Express brought data acquisition off the rack, and onto the lab bench top. Today solutions are emerging that leverage Mini PCIe, Thunderbolt and remote web interfacing. Circuit Cellar’s Editor-in-Chief, Jeff Child, dives into the latest technology trends and product developments in data acquisition.

High-Side Current Sensing
By Jeff Bachiochi
Jeff says he likes being able to measure things—for example, being able to measure load current so he can predict how long a battery will last. With that in mind, he recently found a high-side current sensing device, Microchip’s EMC1701. In his article, Jeff takes you through the details of the device and how to make use of it in a battery-based system.

Power Analysis Capture with an MCU
By Colin O’Flynn
Low-cost microcontrollers integrate many powerful peripherals in them. You can even perform data capture directly to internal memory. In his article, Colin uses the ChipWhisperer-Nano as a case study in how you might use such features which would otherwise require external programmable logic.

TOOLS AND TECHNIQUES FOR EMBEDDED SYSTEM DESIGN

Easing into the IoT Cloud (Part 2)
By Brian Millier
In Part 1 of this article series Brian examined some of the technologies and services available today enabling you to ease into the IoT cloud. Now, in Part 2, he discusses the hardware features of the Particle IoT modules, as well as the circuitry and program code for the project. He also explores the integration of a Raspberry Pi solution with the Particle cloud infrastructure.

Hierarchical Menus for Touchscreens
By Aubrey Kagan
In his December article, Aubrey discussed his efforts to build a display subsystem and GUI for embedded use based on a Noritake touchscreen display. This time he shares how he created a menu system within the constraints of the Noritake graphical display system. He explains how he made good use of Microsoft Excel worksheets as a tool for developing the menu system.

Real Schematics (Part 2)
By George Novacek
The first part of this article series on the world of real schematics ended last month with wiring. At high frequencies PCBs suffer from the same parasitic effects as any other type of wiring. You can describe a transmission line as consisting of an infinite number of infinitesimal resistors, inductors and capacitors spread along its entire length. In this article George looks at real schematics from a transmission line perspective.

Chip-Level Solutions Feed AI Needs

Embedded Supercomputing

Gone are the days when supercomputing meant big, rack-based systems in an air conditioned room. Today, embedded processors, FPGAs and GPUs are able to do AI and machine learning operations, enabling new types of local decision making in embedded systems.

By Jeff Child, Editor-in-Chief

Embedded computing technology has evolved way past the point now where complete system functionality on a single chip is remarkable. Today, the levels of compute performance and parallel processing on an IC means that what were once supercomputing levels of capabilities can now be implemented in in chip-level solutions.

While supercomputing has become a generalized term, what system developers are really interested in are crafting artificial intelligence, machine learning and neural networking using today’s embedded processing. Supplying the technology for these efforts are the makers of leading-edge embedded processors, FPGAs and GPUs. In these tasks, GPUs are being used for “general-purpose computing on GPUs”, a technique also known as GPGPU computing.

With all that in mind, embedded processor, GPU and FPGA companies have rolled out a variety of solutions over the last 12 months, aimed at performing AI, machine learning and other advanced computing functions for several demanding embedded system application segments.

FPGAS Take AI Focus

Back March, FPGA vendor Xilinx announced its plans to launch a new FPGA product category it calls its adaptive compute acceleration platform (ACAP). Following up on that, in October the company unveiled Versal—the first of its ACAP implementations. Versal ACAPs combine scalar processing engines, adaptable hardware engines and intelligent engines with advanced memory and interfacing technologies to provide heterogeneous acceleration for any application. But even more importantly, according to Xilinx, the Versal ACAP’s hardware and software can be programmed and optimized by software developers, data scientists and hardware developers alike. This is enabled by a host of tools, software, libraries, IP, middleware and frameworks that facilitate industry-standard design flows.

Built on TSMC’s 7-nm FinFET process technology, the Versal portfolio combines software programmability with domain-specific hardware acceleration and adaptability. The portfolio includes six series of devices architected to deliver scalability and AI inference capabilities for a host of applications across different markets, from cloud to networking to wireless communications to edge computing and endpoints.

The portfolio includes the Versal Prime series, Premium series and HBM series, which are designed to deliver high performance, connectivity, bandwidth, and integration for the most demanding applications. It also includes the AI Core series, AI Edge series and AI RF series, which feature the AI Engine (Figure 1). The AI Engine is a new hardware block designed to address the emerging need for low-latency AI inference for a wide variety of applications and also supports advanced DSP implementations for applications like wireless and radar.

Figure 1
Xilinx’s AI Engine is a new hardware block designed to address the emerging need for low-latency AI inference for a wide variety of applications. It also supports advanced DSP implementations for applications like wireless and radar.

It is tightly coupled with the Versal Adaptable Hardware Engines to enable whole application acceleration, meaning that both the hardware and software can be tuned to ensure maximum performance and efficiency. The portfolio debuts with the Versal Prime series, delivering broad applicability across multiple markets and the Versal AI Core series, delivering an estimated 8x AI inference performance boost compared to industry-leading GPUs, according to Xilinx.

Low-Power AI Solution

Following the AI trend, back in May Lattice Semiconductor unveiled Lattice sensAI, a technology stack that combines modular hardware kits, neural network IP cores, software tools, reference designs and custom design services. In September the company unveiled expanded features of the sensAI stack designed for developers of flexible machine learning inferencing in consumer and industrial IoT applications. Building on the ultra-low power (1 mW to 1 W) focus of the sensAI stack, Lattice released new IP cores, reference designs, demos and hardware development kits that provide scalable performance and power for always-on, on-device AI applications.

Embedded system developers can build a variety of solutions enabled by sensAI. They can build stand-alone iCE40 UltraPlus/ECP5 FPGA based always-on, integrated solutions, with latency, security and form factor benefits. Alternatively, they can use CE40 UltraPlus as an always-on processor that detects key phrases or objects, and wakes-up a high-performance AP SoC / ASIC for further analytics only when required, reducing overall system power consumption. And, finally, you can use the scalable performance/power benefits of ECP5 for neural network acceleration, along with I/O flexibility to seamlessly interface to on-board legacy devices including sensors and low-end MCUs for system control.

Figure 2
Human face detection application example. iCE40 UlraPlus enables AI with an always-on image sensor, while consuming less than 1 mW of active power.

Updates to the sensAI stack include a new CNN (convolutional neural networks) Compact Accelerator IP core for improved accuracy on iCE40 UltraPlus FPGA and enhanced CNN Accelerator IP core for improved performance on ECP5 FPGAs. Software tools include an updated neural network compiler tool with improved ease-of-use and both Caffe and TensorFlow support for iCE40 UltraPlus FPGAs. Also provided are reference designs enabling human presence detection and hand gesture recognition reference designs and demos (Figure 2). New iCE40 UltraPlus development platform support includes a Himax HM01B0 UPduino shield and DPControl iCEVision board.. …

Read the full article in the December 341 issue of Circuit Cellar

Don’t miss out on upcoming issues of Circuit Cellar. Subscribe today!

Note: We’ve made the October 2017 issue of Circuit Cellar available as a free sample issue. In it, you’ll find a rich variety of the kinds of articles and information that exemplify a typical issue of the current magazine.

December Circuit Cellar: Sneak Preview

The December issue of Circuit Cellar magazine is coming soon. Don’t miss this last issue of Circuit Cellar in 2018. Pages and pages of great, in-depth embedded electronics articles prepared for you to enjoy.

Not a Circuit Cellar subscriber?  Don’t be left out! Sign up today:

 

Here’s a sneak preview of December 2018 Circuit Cellar:

AI, FPGAs and EMBEDDED SUPERCOMPUTING

Embedded Supercomputing
Gone are the days when supercomputing levels of processing required a huge, rack-based systems in an air-conditioned room. Today, embedded processors, FPGAs and GPUs are able to do AI and machine learning kinds of operation, enable new types of local decision making in embedded systems. In this article, Circuit Cellar’s Editor-in-Chief, Jeff Child, looks at these technology and trends driving embedded supercomputing.

Convolutional Neural Networks in FPGAs
Deep learning using convolutional neural networks (CNNs) can offer a robust solution across a wide range of applications and market segments. In this article written for Microsemi, Ted Marena illustrates that, while GPUs can be used to implement CNNs, a better approach, especially in edge applications, is to use FPGAs that are aligned with the application’s specific accuracy and performance requirements as well as the available size, cost and power budget.

NOT-TO-BE-OVERLOOKED ENGINEERING ISSUES AND CHOICES

DC-DC Converters
DC-DC conversion products must juggle a lot of masters to push the limits in power density, voltage range and advanced filtering. Issues like the need to accommodate multi-voltage electronics, operate at wide temperature ranges and serve distributed system requirements all add up to some daunting design challenges. This Product Focus section updates readers on these technology trends and provides a product gallery of representative DC-DC converters.

Real Schematics (Part 1)
Our magazine readers know that each issue of Circuit Cellar has several circuit schematics replete with lots of resistors, capacitors, inductors and wiring. But those passive components don’t behave as expected under all circumstances. In this article, George Novacek takes a deep look at the way these components behave with respect to their operating frequency.

Do you speak JTAG?
While most engineers have heard of JTAG or have even used JTAG, there’s some interesting background and capabilities that are so well know. Robert Lacoste examines the history of JTAG and looks at clever ways to use it, for example, using a cheap JTAG probe to toggle pins on your design, or to read the status of a given I/O without writing a single line of code.

PUTTING THE INTERNET-OF-THINGS TO WORK

Industrial IoT Systems
The Industrial Internet-of-Things (IIoT) is a segment of IoT technology where more severe conditions change the game. Rugged gateways and IIoT edge modules comprise these systems where the extreme temperatures and high vibrations of the factory floor make for a demanding environment. Here, Circuit Cellar’s Editor-in-Chief, Jeff Child, looks at key technology and product drives in the IIoT space.

Internet of Things Security (Part 6)
Continuing on with his article series on IoT security, this time Bob Japenga returns to his efforts to craft a checklist to help us create more secure IoT devices. This time he looks at developing a checklist to evaluate the threats to an IoT device.

Applying WebRTC to the IoT
Web Real-time Communications (WebRTC) is an open-source project created by Google that facilitates peer-to-peer communication directly in the web browser and through mobile applications using application programming interfaces. In her article, Callstats.io’s Allie Mellen shows how IoT device communication can be made easy by using WebRTC. With WebRTC, developers can easily enable devices to communicate securely and reliably through video, audio or data transfer.

WI-FI AND BLUETOOTH IN ACTION

IoT Door Security System Uses Wi-Fi
Learn how three Cornell students, Norman Chen, Ram Vellanki and Giacomo Di Liberto, built an Internet connected door security system that grants the user wireless monitoring and control over the system through a web and mobile application. The article discusses the interfacing of a Microchip PIC32 MCU with the Internet and the application of IoT to a door security system.

Self-Navigating Robots Use BLE
Navigating indoors is a difficult but interesting problem. Learn how these two Cornell students, Jane Du and Jacob Glueck, used Received Signal Strength Indicator (RSSI) of Bluetooth Low Energy (BLE) 4.0 chips to enable wheeled, mobile robots to navigate towards a stationary base station. The robot detects its proximity to the station based on the strength of the signal and moves towards what it believes to be the signal source.

IN-DEPTH PROJECT ARTICLES WITH ALL THE DETAILS

Sun Tracking Project
Most solar panel arrays are either fixed-position, or have a limited field of movement. In this project article, Jeff Bachiochi set out to tackle the challenge of a sun tracking system that can move your solar array to wherever the sun is coming from. Jeff’s project is a closed-loop system using severs, opto encoders and the Microchip PIC18 microcontroller.

Designing a Display System for Embedded Use
In this project article, Aubrey Kagan takes us through the process of developing an embedded system user interface subsystem—including everything from display selection to GUI development to MCU control. For the project he chose a 7” Noritake GT800 LCD color display and a Cypress Semiconductor PSoC5LP MCU.

November Circuit Cellar: Sneak Preview

The November issue of Circuit Cellar magazine is coming soon. Clear your decks for a new stack of in-depth embedded electronics articles prepared for you to enjoy.

Not a Circuit Cellar subscriber?  Don’t be left out! Sign up today:

 

Here’s a sneak preview of November 2018 Circuit Cellar:

SOLUTIONS FOR SYSTEM DESIGNS

3D Printing for Embedded Systems
Although 3D printing for prototyping has existed for decades, it’s only in recent years that it’s become a mainstream tool for embedded systems development. Today the ease of use of these systems has reached new levels and the types of materials that can be used continues to expand. This article by Circuit Cellar’s Editor-in-Chief, Jeff Child looks at the technology and products available today that enable 3D printing for embedded systems.

Add GPS to Your Embedded System
We certainly depend on GPS technology a lot these days, and technology advances have brought fairly powerful GPS functionally into our pockets. Today’s miniaturization of GPS receivers enables you to purchase an inexpensive but capable GPS module that you can add to your embedded system designs. In this article, Stuart Ball shows how to do this and take advantage of the GPS functionality.

FCL for Servo Drives
Servo drives are a key part of many factory automation systems. Improving their precision and speed requires attention to fast-current loops and related functions. In his article, Texas Instruments’ Ramesh Ramamoorthy gives an overview of the functional behavior of the servo loops using fast current loop algorithms in terms of bandwidth and phase margin.

FOCUS ON ANALOG AND POWER

Analog and Mixed-Signal ICs
Analog and mixed-signal ICs play important roles in a variety of applications. These applications depend heavily on all kinds of interfacing between real-world analog signals and the digital realm of processing and control. Circuit Cellar’s Editor-in-Chief, Jeff Child, dives into the latest technology trends and product developments in analog and mixed-signal chips.

Sleeping Electronics
Many of today’s electronic devices are never truly “off.” Even when a device is in sleep mode, it draws some amount of power—and drains batteries. Could this power drain be reduced? In this project article, Jeff Bachiochi addresses this question by looking at more efficient ways to for a system to “play dead” and regulate power.

BUILDING CONNECTED SYSTEMS FOR THE IoT EDGE

Easing into the IoT Cloud (Part 1)
There’s a lot of advantages for the control/monitoring of devices to communicate indirectly with the user interface for those devices—using some form of “always-on” server. When this server is something beyond one in your home, it’s called the “cloud.” Today it’s not that difficult to use an external cloud service to act as the “middleman” in your system design. In this article, Brian Millier looks at the technologies and services available today enabling you to ease in to the IoT cloud.

Sensors at the Intelligent IoT Edge
A new breed of intelligent sensors has emerged aimed squarely at IoT edge subsystems. In this article, Mentor Graphics’ Greg Lebsack explores what defines a sensor as intelligent and steps through the unique design flow issues that surround these kinds of devices.

FUN AND INTERESTING PROJECT ARTICLES

MCU-Based Project Enhances Dance Game
Microcontrollers are perfect for systems that need to process analog signals such as audio and do real-time digital control in conjunction with those signals. Along just those lines, learn how two Cornell students Michael Solomentsev and Drew Dunne recreated the classic arcade game “Dance Dance Revolution” using a Microchip Technology PIC32 MCU. Their version performs wavelet transforms to detect beats from an audio signal to synthesize dance move instructions in real-time without preprocessing.

Building an Autopilot Robot (Part 2)
In part 1 of this two-part article series, Pedro Bertoleti laid the groundwork for his autopiloted four-wheeled robot project by exploring the concept of speed estimation and speed control. In part 2, he dives into the actual building of the robot. The project provides insight to the control and sensing functions of autonomous electrical vehicles.

… AND MORE FROM OUR EXPERT COLUMNISTS

Embedded System Security: Live from Las Vegas
This month Colin O’Flynn summarizes a few interesting presentations from the Black Hat conference in Las Vegas. He walks you through some attacks on bitcoin wallets, x86 backdoors and side channel analysis work—these and other interesting presentations from Black Hat.

Highly Accelerated Product Testing
It’s a fact of life that every electronic system eventually fails. Manufacturers use various methods to weed out most of the initial failures before shipping their product. In this article, George Novacek discusses engineering attempts to bring some predictability into the reliability and life expectancy of electronic systems. In particular, he focuses on Highly Accelerated Lifetime Testing (HALT) and Highly Accelerated Stress Screening (HASS).

September Circuit Cellar: Sneak Preview

The September issue of Circuit Cellar magazine is coming soon. Clear your decks for a new stack of in-depth embedded electronics articles prepared for you to enjoy.

Not a Circuit Cellar subscriber?  Don’t be left out! Sign up today:

 

Here’s a sneak preview of September 2018 Circuit Cellar:

MOTORS, MOTION CONTROL AND MORE

Motion Control for Robotics
Motion control technology for robotic systems continues to advance, as chip- and board-level solutions evolve to meet new demands. These involve a blending of precise analog technologies to control position, torque and speed with signal processing to enable accurate, real-time motor control. Here, Circuit Cellar’s Editor-in-Chief, Jeff Child, looks the latest technology and product advances in motion control for robotics.

Electronic Speed Control (Part 3)
Radio-controlled drones are one among many applications that depend on the use of an Electronic Speed Controller (ESC) as part of its motor control design. After observing the operation of a number of ESC modules, in this part Jeff Bachiochi focuses in more closely on the interaction of the ESC with the BLDC motor.

BUILDING CONNECTED SYSTEMS

Product Focus: IoT Gateways
IoT gateways are a smart choice to facilitate bidirectional communication between IoT field devices and the cloud. Gateways also provide local processing and storage capabilities for offline services as well as near real-time management and control of edge devices. This Product Focus section updates readers on these technology trends and provides a product gallery of representative IoT gateways.

Wireless Weather Station
Integrating wireless technologies into embedded systems has become much easier these days. In this project article, Raul Alvarez Torrico describes his home-made wireless weather station that monitors ambient temperature, relative humidity, wind speed and wind direction, using Arduino and a pair of cheap Amplitude Shift Keying (ASK) radio modules.

FOCUS ON ANALOG AND POWER TECHNOLOGY

Frequency Modulated DDS
Prompted by a reader’s query, Ed became aware that you can no longer get crystal oscillator modules tuned to specific frequencies. With that in mind, Ed set out to build a “Channel Element” replacement around a Teensy 3.6 board and a DDS module. In this article, Ed Nisley explains how the Teensy’s 32-bit datapath and 180 MHz CPU clock affect the DDS frequency calculations. He then explores some detailed timings.

Power Supplies / Batteries
Sometimes power decisions are left as an afterthought in system designs. But your choice of power supply or battery strategy can have a major impact on your system’s capabilities. Circuit Cellar’s Editor-in-Chief, Jeff Child, dives into the latest technology trends and product developments in power supplies and batteries.

Murphy’s Laws in the DSP World (Part 3)
Unpredictable issues crop up when you move from the real world of analog signals and enter the world of digital signal processing (DSP). In Part 3 of this article series, Mike Smith and Mai Tanaka focuses on strategies for how to—or how to try to—avoid Murphy’s Laws when doing DSP.

SYSTEM DESIGN ISSUES IN VIDEO AND IMAGING

Virtual Emulation for Drones
Drone system designers are integrating high-definition video and other features into their SoCs. Verifying the video capture circuitry, data collection components and UHD-4K streaming video capabilities found in drones is not trivial. In his article, Mentor’s Richard Pugh explains why drone verification is a natural fit for hardware emulation because emulation is very efficient at handling large amounts of streamed data.

LIDAR 3D Imaging on a Budget
Demand is on the rise for 3D image data for use in a variety of applications, from autonomous cars to military base security. That has spurred research into high precision LIDAR systems capable of creating extremely clear 3D images to meet this demand. Learn how Cornell student Chris Graef leveraged inexpensive LIDAR sensors to build a 3D imaging system all within a budget of around $200.

AND MORE FROM OUR EXPERT COLUMNISTS

Velocity and Speed Sensors
Automatic systems require real-life physical attributes to be measured and converted to electrical quantities ready for electronic processing. Velocity is one such attribute. In this article, George Novacek steps through the math, science and technology behind measuring velocity and the sensors used for such measurements.

Recreating the LPC Code Protection Bypass
Microcontroller fuse bits are used to protect code from being read out. How well do they work in practice? Some of them have been recently broken. In this article Colin O’Flynn takes you through the details of such an attack to help you understand the realistic threat model.

FPGA Solutions Evolve to Meet AI Needs

Brainy System ICs

Long gone now are the days when FPGAs were thought of as simple programmable circuitry for interfacing and glue logic. Today, FPGAs are powerful system chips with on-chip processors, DSP functionality and high-speed connectivity.

By Jeff Child, Editor-in-Chief

Today’s FPGAs have now evolved to the point that calling them “systems-on-chips” is redundant. It’s now simply a given that the high-end lines of the major FPGA vendors have general-purpose CPU cores on them. Moreover, the flavors of signal processing functionality on today’s FPGA chips are ideally suited to the kind of system-oriented DSP functions used in high-end computing. And even better, they’ve enabled AI (Artificial Intelligence) and Machine Learning kinds of functionalities to be implemented into much smaller, embedded systems.

In fact, over the past 12 months, most of the leading FPGA vendors have been rolling out solutions specifically aimed at using FPGA technology to enable AI and machine learning in embedded systems. The two main FPGA market leaders Xilinx and Intel’s Programmable Solutions Group (formerly Altera) have certainly embraced this trend, as have many of their smaller competitors like Lattice Semiconductor and QuickLogic. Meanwhile, specialists in so-called e-FPGA technology like Archonix and Flex Logix have their own compelling twist on FPGA system computing.

Project Brainwave

Exemplifying the trend toward FPGAs facilitating AI processing, Intel’s high-performance line of FPGAs is its Stratix 10 family. According to Intel, the Stratix 10 FPGAs are capable of 10 TFLOPS, or 10 trillion floating point operations per second (Figure 1). In May Microsoft announced its Microsoft debuted its Azure Machine Learning Hardware Accelerated Models powered by Project Brainwave integrated with the Microsoft Azure Machine Learning SDK. Azure’s architecture is developed with Intel FPGAs and Intel Xeon processors.

Figure 1
Stratix 10 FPGAs are capable of 10 TFLOPS or 10 trillion floating point operations per second.

Intel says its FPGA-powered AI is able to achieve extremely high throughput that can run ResNet-50, an industry-standard deep neural network requiring almost 8 billion calculations without batching. This is possible using FPGAs because the programmable hardware—including logic, DSP and embedded memory—enable any desired logic function to be easily programmed and optimized for area, performance or power. And because this fabric is implemented in hardware, it can be customized and can perform parallel processing. This makes it possible to achieve orders of magnitudes of performance improvements over traditional software or GPU design methodologies.

In one application example, Intel cites an effort where Canada’s National Research Council (NRC) is helping to build the next-generation Square Kilometer Array (SKA) radio telescope to be deployed in remote regions of South Africa and Australia, where viewing conditions are most ideal for astronomical research. The SKA radio telescope will be the world’s largest radio telescope that is 10,000 times faster with image resolution 50 times greater than the best radio telescopes we have today. This increased resolution and speed results in an enormous amount of image data that is generated by these telescopes, processing the equivalent of a year’s data on the Internet every few months.

NRC’s design embeds Intel Stratix 10 SX FPGAs at the Central Processing Facility located at the SKA telescope site in South Africa to perform real-time processing and analysis of collected data at the edge. High-speed analog transceivers allow signal data to be ingested in real time into the core FPGA fabric. After that, the programmable logic can be parallelized to execute any custom algorithm optimized for power efficiency, performance or both, making FPGAs the ideal choice for processing massive amounts of real-time data at the edge.

ACAP for Next Gen

For its part, Xilinx’s high-performance product line is its Virtex UltraScale+ device family (Figure 2). According to the company, these provide the highest performance and integration capabilities in a FinFET node, including the highest signal processing bandwidth at 21.2 TeraMACs of DSP compute performance. They deliver on-chip memory density with up to 500 Mb of total on-chip integrated memory, plus up to 8 GB of HBM Gen2 integrated in-package for 460 GB/s of memory bandwidth. Virtex UltraScale+ devices provide capabilities with integrated IP for PCI Express, Interlaken, 100G Ethernet with FEC and Cache Coherent Interconnect for Accelerators (CCIX).

Figure 2
Virtex UltraScale+ FPGAs provide a signal processing bandwidth at 21.2 TeraMACs. They deliver on-chip memory density with up to 500 Mb of total on-chip integrated memory, plus up to 8 GB of HBM Gen2 integrated in-package for 460 GB/s of memory bandwidth.

Looking to the next phase of system performance, Xilinx in March announced its strategy toward a new FPGA product category it calls its adaptive compute acceleration platform (ACAP). Touted as going beyond the capabilities of an FPGA, an ACAP is a highly integrated multi-core heterogeneous compute platform that can be changed at the hardware level to adapt to the needs of a wide range of applications and workloads. An ACAP’s adaptability, which can be done dynamically during operation, delivers levels of performance and performance per-watt that is unmatched by CPUs or GPUs, says Xilinx… …

Read the full article in the August 337 issue of Circuit Cellar

Don’t miss out on upcoming issues of Circuit Cellar. Subscribe today!

Note: We’ve made the October 2017 issue of Circuit Cellar available as a free sample issue. In it, you’ll find a rich variety of the kinds of articles and information that exemplify a typical issue of the current magazine.

August Circuit Cellar: Sneak Preview

The August issue of Circuit Cellar magazine is coming soon. Be on the lookout for a whole shipload of top-notch embedded electronics articles for you to enjoy.

Not a Circuit Cellar subscriber?  Don’t be left out! Sign up today:

 

Here’s a sneak preview of August 2018 Circuit Cellar:

FPGAs REDEFINE THE DEFINITION OF “SYSTEM”

FPGA System Design
Long gone now are the days when FPGAs were thought of as simple programmable circuitry for interfacing and glue logic. Today, FPGAs are powerful system chips with on-chip processors, signal processing functionality and rich offerings or high-speed connectivity. Here, Circuit Cellar’s Editor-in-Chief, Jeff Child, looks at the latest technology and trends in FPGA system design.

Managing FPGA Design Complexity
Modern FPGAs can contain millions of logic gates and thousands of embedded DSP processors allowing FPGA hardware designers to create extremely sophisticated and complex application-specific hardware functions. In this article, Pentek’s Bob Sgandurra explores how today’s FPGA technology has revamped the roles of both hardware and software engineers as well as how dealing with on-chip IP adds new layers of complexity.

HIGH-INTEGRATION AT THE CHIP-
AND BOARD-LEVEL

Product Focus: Small and Tiny Embedded Boards
An amazing amount of computing functionality can be squeezed on to a small form factor board these days. These company—and even tiny—board-level products meet the needs of applications where extremely low SWaP (size, weight and power) beats all other demands. This Product Focus section updates readers on this technology trend and provides a product album of representative small and tiny embedded boards.

Microcontrollers and Processors
Today’s crop of microcontrollers and embedded processors provide a rich continuum of features, functions and capabilities. It’s hard to tell anymore where the dividing line is, especially when a lot of them use the same CPU cores. Circuit Cellar’s Editor-in-Chief, Jeff Child, delves into the technology and product trends of MCUs and embedded processors.

CAN’T STOP THE SIGNAL

Murphy’s Laws in the DSP World (Part 2)
Many unexpected issues come into play when you move from the real world of analog signals and enter the world of digital signal processing (DSP). Part 2 of this article series by Michael Smith, Mai Tanaka and Ehsan Shahrabi Farahani charges forward introducing “Murphy’s Laws of DSP” #7, #8 and #9 and looks at the spectral analysis of DSP signals.

Signature Analyzer Uses NXP MCU
Doing a signature analysis of a signal used to require an oscilloscope to display your results. In this article, Brian Millier shows how you can build a free-standing tester that uses mostly just the internal peripherals of an NXP ARM microcontroller. He described how the tester operates and how he implemented it using a Teensy 3.5 development module and an intelligent 4.3-inch TFT touch-screen display.

Pitfalls of Filtering Pulsed Signals
Filtering pulsed signals can be a tricky prospect. Using a recent customer implementation as an example, Robert Lacoste highlights various alternative approaches and describes the key concepts involved. Simulation results are provided to help readers understand what’s going on.

PROJECT-BASED STORIES WITH ALL THE DETAILS

Electronic Speed Control (Part 2)
In Part 1, Jeff Bachiochi discussed the mechanical differences between DC brushed and brushless DC (BLDC) motors. This time he dives into basics of an Electronic Speed Controller’s operations and its circuitry. And all this is illustrated via his ESC-based project that uses a Microchip PIC MCU.

Build an Audio Response Light Display
Light shows have been a part of entertainment situations seemingly forever, but the technology has evolved over time. These light shows have their origin in the primitive “light organs” of the 1960s in which each spectral band had its own color that pulsed in intensity with audio amplitudes within its range of frequencies. In this article, Devlin Gualtieri discusses his circuit design that implements a light organ using today’s IC and LED technologies.

AND MORE FROM OUR EXPERT COLUMNISTS

Internet of Things Security (Part 4)
In this next part of his article series on IoT security, Bob Japenga looks at how checklists and the common criteria framework can help us create more secure IoT devices. He covers how to create a list of security assets and to establish threat checklists that identify all the threats to your security assets.

Thermoelectric Cooling (Part 2)
In Part 1 George Novacek described how he built a test chamber using some electronics combined with components salvaged from his thermoelectric water cooler. To confirm his test results, he purchased another thermoelectric cooler and repeated the tests. In Part 2 he covers the results of these tests along with some theoretical performance calculations.

Zynq SoC SOM Module Enabled With HSR/PRP IP

iWave Systems has partnered with SoC-e for enabling HSR/PRP IP on iWave’s Zynq 7000 SoC SOM Module. iWave has rigorously validated SoC-e’s High-availability Seamless Redundancy (HSR) and Parallel Redundancy Protocol (PRP) IP Protocol on our Zynq 7000 SoC based SOM module. iWave’s Zynq 7000 SoC SOM and SoC-e’s HSR/PRP Switch IP Core reduce the time-to-market and simplifying design complexity. SOC-e develops IP portfolios for leading-edge networking and synchronization technologies for time critical systems.The Zynq-7000 programmable SoC family integrates the software programmability of an Arm-based processor with the hardware programmability of an FPGA, enabling key analytics and hardware acceleration while integrating CPU, DSP, ASSP and mixed signal functionality on a single device. The iW-RainboW-G28M (Zynq 7000 Board) is a featured-full and ready to-operate embedded software and advanced circuit development kit built around the smallest member from the Xilinx Zynq-7000 family, the Z-7010.

The Zynq-7000 SOM / Development Kit is based on the Xilinx All Programmable System-on-Chip architecture, which firmly incorporates a single / Dual Cortex A9 with Xilinx 7-series FPGA logic. At the point when combined with the rich set of media and connectivity peripherals accessible on the Zynq 7000 SOM, the Zynq Z-7007S, Z-7014S, Z-7010, Z-7020, can host an entire design system.

Memories, 512 MB DDR3 (Expandable to 1 GB) or 512 MB NAND Flash (Expandable), that are on-board, video and sound I/O, USB 2.0 OTG, Gigabit Ethernet and SD (4-bit) will have your board up-and-running with no extra hardware required. Moreover, PMIC with RTC bolster connectors is accessible to put any design on a simple development way.

The iW-RainboW-G28M gives an ultra-cost to embedded designers that don’t require the high-thickness I/O of the FMC connector yet at the same time wish to use the enormous preparing force and extensibility of the Zynq AP SoC architecture.

iWave Systems | www.iwavesystems.com

Multiphase PMICs Boast High Efficiency and Small Footprint

Renesas Electronics has announced three programmable power management ICs (PMICs) that offer high power efficiency and small footprint for application processors in smartphones and tablets: the ISL91302B, ISL91301A, and ISL91301B PMICs. The PMICs also deliver power to artificial intelligence (AI) processors, FPGAs and industrial microprocessors (MPUs). They are also well-suited for powering the supply rails in solid-state drives (SSDs), optical transceivers, and a wide range of consumer, industrial and networking devices. The ISL91302B dual/single output, multiphase PMIC provides up to 20 A of output current and 94 percent peak efficiency in a 70 mm2 solution size that is more than 40% smaller than competitive PMICs.
In addition to the ISL91302B, Renesas’ ISL91301A triple output PMIC and ISL91301B quad output PMIC both deliver up to 16 A of output power with 94% peak efficiency. The new programmable PMICs leverage Renesas’ R5 Modulation Technology to provide fast single-cycle transient response, digitally tuned compensation, and ultra-high 6 MHz (max) switching frequency during load transients. These features make it easier for power supply designers to design boards with 2 mm x 2 mm, 1mm low profile inductors, small capacitors and only a few passive components.

Renesas PMICs also do not require external compensation components or external dividers to set operating conditions. Each PMIC dynamically changes the number of active phases for optimum efficiency at all output currents. Their low quiescent current, superior light load efficiency, regulation accuracy, and fast dynamic response significantly extend battery life for today’s feature-rich, power hungry devices.

Key Features of ISL91302B PMIC:

  • Available in three factory configurable options for one or two output rails:
    • Dual-phase (2 + 2) configuration supporting 10 A from each output
    • Triple-phase (3 + 1) configuration supporting 15 A from one output and  5A from the second output
    • Quad-phase (4 + 0) configuration supporting 20A from one output
  • Small solution size: 7 mm x 10 mm for 4-phase design
  • Input supply voltage range of 2.5 V to 5.5 V
  • I2C or SPI programmable Vout from 0.3 V to 2 V
  • R5 modulator architecture balances current loads with smooth phase adding and dropping for power efficiency optimization
  • Provides 75 μA quiescent current in discontinuous current mode (DCM)
  • Independent dynamic voltage scaling for each output
  • ±0.7percent system accuracy for -10°C to 85°C with remote voltage sensing
  • Integrated telemetry ADC senses phase currents, output current, input/output voltages, and die temperature, enabling PMIC diagnostics during operation
  • Soft-start and fault protection against under voltage (UV), over voltage (OV), over current (OC), over temperature (OT), and short circuit

Key Features of ISL91301A and ISL91301B PMICs

  • Available in two factory configurable options:
    • ISL91301A: dual-phase, three output rails configured as 2+1+1 phase
    • ISL91301B: single-phase, four output rails configured as 1+1+1+1 phase
  • 4A per phase for 2.8 V to 5.5 V supply voltage
  • 3A per phase for 2.5 V to 5.5 V supply voltage
  • Small solution size: 7 mm x 10 mm for 4-phase design
  • I2C or SPI programmable Vout from 0.3 V to 2 V
  • Provides 62μA quiescent current in DCM mode
  • Independent dynamic voltage scaling for each output
  • ±0.7percent system accuracy for -10°C to 85°C with remote voltage sensing
  • Soft-start and fault protection against UV, OV, OC, OT, and short circuit

Pricing and Availability

The ISL91302B dual/single output PMIC is available now in a 2.551 mm x 3.670 ball WLCSP package and is priced at $3.90 in 1k quantities. For more information on the ISL91302B, please visit: www.intersil.com/products/isl91302B.

The ISL91301A triple-output PMIC and ISL91301B quad-output PMIC are available now in 2.551 mm x 2.87 mm, 42-ball WLCSP packages, both priced at $3.12 in 1k quantities. For more information on the ISL91301A, please visit: www.intersil.com/products/isl91301A. For more information on the ISL91301B, please visit: www.intersil.com/products/isl91301B.

Renesas Electronics | www.renesas.com

June Circuit Cellar: Sneak Preview

The June issue of Circuit Cellar magazine is coming soon. And we’ve planted a lovely crop of embedded electronics articles for you to enjoy.

Not a Circuit Cellar subscriber?  Don’t be left out! Sign up today:

 

Here’s a sneak preview of June 2018 Circuit Cellar:

PCB DESIGN AND POWER: MAKING SMART CHOICES

PCB Design and Verification
PCB design tools and methods continue to evolve as they race to keep pace with faster, highly integrated electronics. Automated, rules-based chip placement is getting more sophisticated and leveraging AI in interesting ways. And supply chains are linking tighter with PCB design processes. Circuit Cellar Chief Editor Jeff Child looks at the latest PCB design and verification tools and technologies.

PCB Ground Planes
Tricky design decisions crop up when you’re faced with crafting a printed circuit board (PCB) for any complex system—and many of them involve the ground plane. There is dealing with noisy components and deciding between a common ground plane or separate ones—and that’s just the tip of the iceberg. Robert Lacoste shares his insights on the topic, examining the physics, simulation tools and design examples of ground plane implementations.

Product Focus: AC-DC Converters
To their peril, embedded system developers often treat their choice of power supply as an afterthought. But choosing the right AC-DC converter is critical to the ensuring your system delivers power efficiently to all parts of your system. This Product Focus section updates readers on these trends and provides a product album of representative AC-DC converter products.

SENSORS TAKE MANY FORMS AND FUNCTIONS

Sensors and Measurement
While sensors have always played a key role in embedded systems, the exploding Internet of Things (IoT) phenomenon has pushed sensor technology to the forefront. Any IoT implementation depends on an array of sensors that relay input back to the cloud. Circuit Cellar Chief Editor Jeff Child dives into the latest technology trends and product developments in sensors and measurement.

Passive Infrared Sensors
One way to make sure that lights get turned off when you leave a room is to use Passive Infrared (PIR) sensors. Jeff Bachiochi examines the science and technology behind PIR sensors. He then details how to craft effective program code and control electronics to use PIR sensors is a useful way.

Gesture-Recognition in Boxing Glove
Learn how two Boston University graduate students built a gesture-detection wearable that acts as a building block for a larger fitness telemetry system. Using a Linux-based Gumstix Verdex, the wearable couples an inertial measurement unit with a pressure sensor embedded in a boxing glove to recognize the user’s hits and classify them according to predefined, user-recorded gestures.

SECURITY, RELIABILITY AND MORE

Internet of Things Security (Part 3)
In this next part of his article series on IoT security, Bob Japenga looks at the security features of a specific series of microprocessors: Microchip’s SAMA5D2. He examines these security features and discusses what protection they provide.

Aeronautical Communication Protocols
Unlike ground networks, where data throughout is the priority, avionics networks are all about reliability. As a result, the communications protocols used in for aircraft networking seem pretty obscure to the average engineer. In this article, George Novacek reviews some of the most common aircraft comms protocols including ARINC 429, ARINC 629 and MIL-STD-1553B

DEEP DIVES ON PROCESSOR DESIGN AND DIGITAL SIGNAL PROCESSING

Murphy’s Laws in the DSP World (Part 1)
A Pandora’s box of unexpected issues gets opened the moment you move from the real world of analog signals and enter the world of digital signal processing (DSP). In Part 1 of this new article series, Mike Smith defines six “Murphy’s Laws of DSP” and provides you with methods and techniques to navigate around them.

Processor Design Techniques and Optimizations
As electronics get smaller and more complex day by day, knowing the basic building blocks of processors is more important than ever. In this article, Nishant Mittal explores processor design from various perspectives—including architecture types, pipelining and ALU varieties.

April Circuit Cellar: Sneak Preview

The April issue of Circuit Cellar magazine is coming soon. And we’ve got a healthy serving of embedded electronics articles for you. Here’s a sneak peak.

Not a Circuit Cellar subscriber?  Don’t be left out! Sign up today:

 

Here’s a sneak preview of April 2018 Circuit Cellar:

NAVIGATING THE INTERNET-OF-THINGS

IoT: From Gateway to Cloud
In this follow on to our March “IoT: Device to Gateway” feature, this time we look at technologies and solutions for the gateway to cloud side of IoT.  Circuit Cellar Chief Editor Jeff Child examines the tools and services available to get a cloud-connected IoT implementation up and running.

Texting and IoT Embedded Devices (Part 2)
In Part 1, Jeff Bachiochi laid the groundwork for describing a project involving texting. He puts that into action this, showing how to create messages on his Espressif System’s ESP8266EX-based device to be sent to an email account and end up with those messages going as texts to a cell phone.

Internet of Things Security (Part 2)
In this next part of his article series on IoT security, Bob Japenga takes a look at side-channel attacks. What are they? How much of a threat are they? And how can we prevent them?

Product Focus: 32-Bit Microcontrollers
As the workhorse of today’s embedded systems, 32-bit microcontrollers serve a wide variety of embedded applications—including the IoT. This Product Focus section updates readers on these trends and provides a product album of representative 32-bit MCU products.

GRAPHICS, VISION AND DISPLAYS

Graphics, Video and Displays
Thanks to advances in displays and innovations in graphics ICs, embedded systems can now routinely feature sophisticated graphical user interfaces. Circuit Cellar Chief Editor Jeff Child dives into the latest technology trends and product developments in graphics, video and displays.

Color Recognition and Segmentation in Real-time
Vision systems used to require big, multi-board systems—but not anymore. Learn how two Cornell undergraduates designed a hardware/software system that accelerates vision-based object recognition and tracking using an FPGA SoC. They made a min manufacturing line to demonstrate how their system can accurately track and categorize manufactured candies carried along a conveyor belt.

SPECIFICATIONS, QUALIFICATIONS AND MORE

Component tolerance
We perhaps take for granted sometimes that the tolerances of our electronic components fit the needs of our designs. In this article, Robert Lacoste takes a deep look into the subject of tolerances, using the simple resistor as an example. He goes through the math to help you better understand accuracy and drift along with other factors.

Understanding the Temperature Coefficient of Resistance
Temperature coefficient of resistance (TCR) is the calculation of a relative change of resistance per degree of temperature change. Even though it’s an important spec, different resistor manufacturers use different methods for defining TCR. In this article, Molly Bakewell Chamberlin examines TCR and its “best practice” interpretations using Vishay Precision Group’s vast experience in high-precision resistors.

Designing of Complex Systems
While some commercial software gets away without much qualification during development, the situation is very different when safety in involved. For aircraft, vehicles or any complex system where failure unacceptable, this means adhering to established standards throughout the development life cycle. In this article, George Novacek tackles these issues and examines some of these standards namely ARP4754.

AND MORE IN-DEPTH PROJECT ARTICLES

Build a Marginal Oscillator Proximity Switch
A damped or marginal oscillator will switch off when energy is siphoned from its resonant LC tank circuit. In his article, Dev Gualtieri presents a simple marginal oscillator that detects proximity to a small steel screw or steel plate. It lights an LED, and the LED can be part of an optically-isolated solid-state relay.

Obsolescence-Proof Your UI (Part 1)
After years of frustration dealing with graphical interface technologies that go obsolete, Steve Hendrix decided there must be a better way. Knowing that web browser technology is likely to be with us for a long while, he chose to build a web server that could perform common operations that he needed on the IEEE-488 bus. He then built it as a product available for sale to others—and it is basically obsolescence-proof.