November Circuit Cellar: Sneak Preview

The November issue of Circuit Cellar magazine is out soon! Energy harvesting technology, panel PCs, analog ICs in industrial systems, drone design, mesh networks, MQTT, current loop devices and more—this 84-page magazine mixes together a tasty spread of embedded electronics articles for your reading pleasure.

Not a Circuit Cellar subscriber?  Don’t be left out! Sign up today:

 

Here’s a sneak preview of November 2019 Circuit Cellar:

TECH FOR THE IoT AND CONNECTED SYSTEMS

Energy Harvesting Approaches
By Jeff Child
While many edge devices—particularly in IoT applications—-often need to run off of extremely low power, having an ability to harvest their own power is an even better scenario. Long-battery life is one thing, but not having to replace batteries at all is even better. In this article, Circuit Cellar’s Editor-in-Chief, Jeff Child, looks at the latest technology and product trends in energy harvesting for the IoT.

MQ Telemetry Transport (Part 2)
By Jeff Bachiochi
In Part 1 Jeff described the MQTT protocol and how it can be used by an MQTT server to keep all of your IoT projects tied together and managed from a centralized server running a program like Mosquitto on a local PC. He presented a simple project connecting two IoT nodes together via communications with the server. In Part, Jeff looks at modifying systems he uses to monitor his neighborhood well system and his weather station for integration into the MQTT server.

Self Organizing Wi-Fi Mesh Network
By Daniel Weber and Michaelangelo Rodriguez
Gone are the days when networking embedded devices was a big deal. Today, such devices can be linked in powerful mesh networks over wireless protocols. In this article, learn how these two Cornell students use Microchip PIC32 MCUs and Espressif’s ESP8266 Wi-Fi module to create a mesh network of wirelessly connected devices. The mesh network is able to configure itself and requires no manual intervention to connect the nodes.

Bluetooth-Enabled ECG Monitor
By Brian Millier
Brian has done project articles in the past using Cypress Semiconductor’s PSoC MCUs, including his most recent story about his variable frequency drive project he built using the SoC5LP MCU. This month he explores the latest offering from this MCU family, the PSoC6 5LP MCU. In this project article, Brian selects the Cypress’s CY8CPROTO-063-BLE to build a Bluetooth-enabled ECG monitor.

INDUSTRIAL SYSTEMS AND PROCESS CONTROL

Analog ICs for Industrial Systems
By Jeff Child
Analog and mixed-signal ICs play important roles in industrial automation and process control applications. These system applications depend heavily on innovations in amplifiers, data converters, sensor solutions and more. Circuit Cellar Chief Editor Jeff Child explores the latest technology trends and product developments in these areas.

Product Focus: Panel PCs
By Jeff Child
Panel PCs are a category of display systems that are meant to be mounted on a factory wall or on the side of an industrial machine. And rather than simply being a display, panel PCs embed complete single board computing functionality, providing a complete embedded solution. This Product Focus section updates readers on these technology trends and provides a product gallery of representative panel PCs.

4-20 mA Current Loop Devices and SBCs
By Derek Hildreth
In this article, Technologic Systems’ Derek Hildreth helps you gain deeper understanding of 4-20 mA current loop devices and process control systems. He looks at some history, explains why things are the way they are, looks at simple example components of a process control system (sensor, transmitter, receiver) and works through a practical example with working code.

RESOURCES FOR ENGINEERS

Designing Manufacturing Test Systems
By Nishant Mittal
Manufacturing tests are arguably the most important aspect in any kind of hardware design company, be it small or big. Quality is a factor which no company or individual wants to compromise because quality defines the product and ultimately is the main thing which retains a customer. In this article, Xilinx’s Nishant Mittal discusses various techniques to manage quality, cost and corner case catching scenarios in a manufacturing test environment of a board fabrication house.

Multi-Scale Electronic Flute
By Trisha Ray, Parth Bhatt and Qing Yu
Musical instruments such as the piano allow musicians to play in different scales on the same instrument. In contrast, flutes are designed for one scale only. This means a flute player must own an additional flute for every additional scale they want to play in. Learn how these three Cornell students built an PIC32 MCU-based electronic flute that reduces the need for owning multiple flutes by incorporating two buttons that allow a flute player to change the scale and octave.


… AND MORE FROM OUR EXPERT COLUMNISTS

Embedded System Security: Live from Las Vegas
By Colin O’Flynn
This month, Colin summarizes some interesting presentations from the Black Hat conference in Las Vegas, NV—along with an extra bonus event. This will help you keep up-to-date with some of the latest embedded attacks, including execute only memory attacks, fault injection on embedded devices, 4G cellular modems and FPGA bitstream hacking.

Semiconductor Fundamentals (Part 3)
By George Novacek
In Part 2, George discussed devices built with one P-N junction, appropriately named diodes. In this article, he considers devices with more junctions. He starts with two and looks at the ubiquitous, three-terminal bipolar junction transistor, or BJT for short. George looks at the math, science and circuitry of these devices.

 

 

Step-Down Converters Save Energy and Space in IoT Devices

STMicroelectronics has announced its ST1PS01 step-down converters. The devices are engineered for small size, low quiescent current and high efficiency at all values of load current, to save energy and real-estate in keep-alive point-of-load supplies and IoT devices such as asset trackers, wearables, smart sensors and smart meters.

Leveraging synchronous rectification, efficiency is 92% at 400 mA full load and 95% when delivering just 1 mA. Power-saving design features keep the quiescent current to a miserly 500 nA and include a low-power voltage reference. There is also a pulse-frequency counter for controlling converter current at light load, with two high-speed comparators to help minimize output ripple.
Integrated feedback-loop compensation, soft-start circuitry and power switches ensure a space-saving solution that requires just a few small-outline passives to complete the circuit. The typical inductor value is 2.2 µH. In addition, output-voltage selection logic not only saves external voltage-setting components but also gives flexibility to configure modules digitally at manufacture or let the host system change the output voltage on the fly. Eight variants, each with four optional output-voltage settings, allow a choice of regulated outputs from 3.3 V to 0.62 5V. All models feature a Power-good indicator.

A wide input-voltage range, from 1.8 V to 5.5 V, further enhances flexibility for designers by allowing various battery chemistries or configurations as simple as a single lithium cell and extending runtime as the battery discharges. ST1PS01 regulators are also ideal for devices powered from energy-harvesting systems and feature a low noise-architecture that allows use in noise-sensitive applications.

An evaluation board, STEVAL-1PS01EJR, helps developers quickly understand how to take advantage of the ST1PS01’s high energy efficiency and feature integration.

ST1PS01 regulators are now in full production, packaged as 400 µm-pitch flip-chip devices measuring just 1.11 mm x 1.41 mm, and priced from $0.686 for orders of 1, 000 pieces.

STMicroelectronics | www.st.com

 

U-blox Low Power GNSS Receiver Tapped for Smart Watch Design

Technologies from U‑blox and TransSiP have been selected for the recently announced PowerWatch 2 from MATRIX Industries. Power Watch 2 claims to be the world’s first GPS smartwatch that you never need to recharge. The smartwatch embeds the ultra‑small, ultra‑low power U‑blox ZOE‑M8B GNSS receiver. Meanwhile, TransSiP’s PI technology ensures energy harvested is used at maximum efficiency.

The PowerWatch 2 does away with cables and external batteries by continually topping up its battery using thermoelectric energy generated from body heat as well as solar energy. The watch can connect to your smartphone and display notifications on your wrist, while tracking activities and visualizing them using dedicated iOS and Android apps, as well as with popular third-party health and fitness platforms.

The PowerWatch 2 delivers location tracking using the low‑power U‑blox ZOE‑M8B GNSS receiver module that consumes as low as 12 mW. Packaged as a (System‑in‑Package), the 4.5 x 4.5 x 1.0 mm module helps achieve the watch’s comparatively low 16‑mm thickness. And concurrent reception of up to three GNSS constellations means that it delivers high accuracy positioning in challenging situations such as urban or dense forest environments and when swimming.

Satellite based positioning is typically the most power‑hungry process on a sports watch. Providing highly efficient conversion of harvested energy into a very quiet supply of DC power, TransSiP PI enhances the ability of the ZOE‑M8B GNSS receiver module incorporating U‑blox Super‑E technology, to strike an ideal balance between power and performance. Working on a tight power budget, the watch supports 30 minutes of continuous GNSS tracking per day, with unused time accumulating in the watch’s battery pack—powering two hours of location tracking every four days.

TransSiP | www.transsip.com

U‑blox | www.u‑blox.com

The Quest for Extreme Low Power

Input Voltage

–Jeff Child, Editor-in-Chief

JeffHeadShot

Over the next couple years, power will clearly rank as a major design challenge for the myriad of edge devices deployed in Internet of Things (IoT) implementations. Such IoT devices are wireless units that need to be always on and connected. At the same time, they need low power consumption, while still being capable of doing the processing power needed to enable machine intelligence. The need for extreme low power in these devices goes beyond the need for long battery life. Instead the hope is for perpetually powered solutions providing uninterrupted operation—and, if possible, without any need for battery power. For their part, microcontroller vendors have been doing a lot in recent years within their own labs to craft extreme low power versions of their MCUs. But the appetite for low power at the IoT edge is practically endless.

Offering a fresh take on the topic, I recently spoke with Paul Washkewicz, vice president and co-founder of Eta Compute about the startup’s extreme low power technology for microcontrollers. The company claims to offer the lowest power MCU intellectual property (IP) available today, with voltages as low as 0.3 V. Eta Compute has developed and implemented a unique low power design methodology that delivers up to a 10x improvement in power efficiency. Its IP and custom designs operate over severe variations in conditions such as temperature, process, voltage and power supply variation. Eta Compute’s approach is a self-timed technology supporting dynamic voltage scaling (DVS) that is insensitive to process variations, inaccurate device models and path delay variations.

The technology has been implemented in a variety of chip functions. Among these are M0+ and M3 ARM cores scaling 0.3 V to 1.2 V operation with additional low voltage logic support functions such as real-time clocking (RTC), Advanced Encryption Standard (AES) and digital signal processing. The technology has also been implemented in an A-D converter sensor interface that consumes less than 5 µW. The company has also crafted an efficient power management device that supports dynamic voltage scaling down to 0.25 V with greater than 80% efficiency.

According to the company, Eta Compute’s technology can be implemented in any standard foundry process with no modifications to the process. This allows ease of adoption of any IP and is immune to delays and changes in process operations. Manufacturing is straightforward with the company’s IP able to port to technology nodes at any foundry. Last fall at ARM TechCon, David Baker, Ph.D. and Fellow at Eta Compute, did a presentation that included a demonstration of a small wireless sensor board that can operate perpetually on a small 1 square inch solar cell.

Attacking the problem from a different direction, another startup, Nikola Labs, is applying its special expertise in antenna design and advanced circuitry to build power harvesting into products ranging from wearables to sensors to battery-extending phone cases. Wi-Fi routers, mobile phones and other connected devices are continually emitting RF waves for communication. According to the company, radio wave power is strongest near the source—but devices transmit in all directions, saturating the surrounding area with stray waves. Nikola Labs’ high-performance, compact antennae capture this stray RF energy. Efficient electronics are then used to convert it into DC electricity that can be used to charge batteries or energize ultra-low power devices.

Nikola’s technology can derive usable energy from a wide band of frequencies, ranging from LTE (910 MHz) to Wi-Fi (2.4 GHz) and beyond (up to 6 GHz). Microwatts of power can be harvested in an active ambient RF area and this can rise to milliwatts for harvesters placed directly on transmitting sources. Nikola Labs has demonstrated energy harvesting from a common source of RF communication waves: an iPhone. Nikola engineers designed a case for iPhone 6 that captures waste RF transmissions, producing up to 30 mW of power to extend battery life by as much as 16% without impacting the phone’s ability to send and receive data.

Whether you address the challenge of extreme low power from the inside out or the outside in—or by advancing battery capabilities—there’s no doubt that the demand for such technologies will only grow within the coming years. With all that in mind, I look forward to covering developments on this topic in Circuit Cellar throughout 2018.

This appears in the January (330) issue of Circuit Cellar magazine

Not a Circuit Cellar subscriber?  Don’t be left out! Sign up today:

Battery-Free IoT Start Up Raises $19 Million

Wiliot, a fabless semiconductor start-up company, has closed an investment round with Qualcomm Ventures and M Ventures. The announcement was made in conjunction with the opening of the Active & Intelligent Packaging Industry Association (AIPIA) Conference in Amsterdam where the company will make its first public presentation to leaders in the packaging industry.

The latest investment round comes on the heels of a Series A Round financing effort that yielded $14m with forward-thinking strategic technology investors Grove Ventures, Norwest Venture Partners, and 83North Venture Capital. This first round closed in January, the month Wiliot was founded. In all, Wiliot has raised a total of $19 million in its first 10 months as a semiconductor company.

Wiliot-Scaling-IoT-with-Battery-Free-Bluetooth-1Wiliot, whose research and development arm is based in Israel, is on course to develop a wireless technology that will eliminate a reliance on batteries or wired power to vastly accelerate the Internet of Things with the vision of creating a world of “Smart Everything.” The new technology, which powers itself by harvesting energy from radio waves, enables a sensor as small as a fingernail, as thin as a sheet of paper, and an order of magnitude reduction in price and cost of maintenance.

With proof of concepts scheduled to start in 2H 2018, and a delivery to market date in early 2019, Wiliot’s technology will revolutionize the current Bluetooth beacon marketplace which after more than five years has reached a floor on reductions in cost, size and ease of maintenance that have hindered their widespread adoption.

Wiliot | www.wiliot.com