IC Solutions Rev Up for Next Gen Auto Designs

MCUs, Analog ICs and More

Automotive electronics are evolving to facilitate the shift from driver assisted vehicle controls to full autonomous driving—but that’s only part of all that’s happening. To meet a variety of design challenges, MCU and analog IC vendors are developing innovative solutions for automotive systems.

By Jeff Child, Editor-in-Chief

There’s perhaps no more vivid example of the impact of embedded electronics than the continuing advances in automotive technologies. Today, those advances are set within an era of great innovation in the industry as car makers evolve their driver assistance technologies in parallel with their autonomous vehicle solutions, while at the same time improving the performance of full electric and hybrid electric vehicles. On top of all that, car infotainment systems are moving to an entirely new level.

To meet these system design changings automotive IC makers, continue to roll out chip, development system and software solutions aimed at next-gen automotive designs. Over the past 12 months, chip vendors, primarily microcontroller (MCU) and analog IC vendors, have announced a variety of powerful System-on-Chip (SoC), MCU and analog ICs solving all kinds of problems. Leveraging their long histories of serving the automotive market, the leading MCU vendors have taken the lead facilitating driverless car systems with not just chips, but also sophisticated development platform solutions for advanced driving assistance systems (ADAS), battery management and other automotive subsystems.

Flash for Virtualization

Some of the advances in automotive electronics over the past 12 months have revolved around embedded flash solutions aimed directly at automotive system designs. In an example along those lines, in February, Renesas Electronics announced what it claims as the world’s first MCU with embedded flash that integrates a hardware-based virtualization-assisted function while maintaining the fast, real-time performance of the RH850 products.

Figure 1
The RH850/U2A MCU is equipped with up to four 400 MHz CPU cores in a dual core lock-step structure. Each CPU core integrates a hardware-based virtualization-assisted function.

This hardware-based virtualization assist technology can support up to ASIL D level of functional safety, providing greater levels of system integration. The RH850/U2A MCU (Figure 1) is the first member of Renesas’ cross-domain MCUs, a new generation of automotive-control devices, designed to address the growing need to integrate multiple applications into a single chip to realize a unified electronic control units (ECUs) for the evolving electrical-electronic architecture (E/E architecture).

Based on 28 nm process technology, the 32-bit RH850/U2A MCU builds on key functions from Renesas’ RH850/Px Series for chassis control and RH850/Fx Series for body control to deliver improved performance and implement a virtualization-assisted function to support operation in chassis/safety, body, domain control and low-end/mid-range gateway applications. The RH850/U2A MCU is equipped with up to four 400 MHz CPU cores in a dual core lock-step structure. Each CPU core integrates a hardware-based virtualization-assisted function, while maintaining the same fast real-time performance provided by the RH850. To support ASIL D, the MCU includes self-diagnostic SR-BIST (Standby-Resume BIST) functions with minimized current fluctuation rate.

The hardware-based virtualization-assisted function allows multiple software systems with varying ISO 26262 functional safety levels to operate independently without interference during high performance. It also reduces the virtualization overhead to maintain real-time execution. This enables users to integrate multiple ECU functions into a single ECU while maintaining safety, security and real-time operation requirements.
The RH850/U2A MCU is equipped with up to 16 MB of built-in flash ROM and 3.6 MB of SRAM, offering users the flexibility for future function expansion. The MCU includes security functions that support Evita Light up through Evita Full for enhanced protection against cyber-attacks, enabling the device to support safe and rapid Full No-Wait Over-the-Air (OTA) software updates as security requirements evolve.

Fail-Safe Storage

In other automotive flash technology news, in April Cypress Semiconductor announced that automotive supplier DENSO selected Cypress’ Semper fail-safe storage for its next-generation digital automotive cockpit applications with advanced graphics. Based on an embedded Arm Cortex-M0 processing core, the Semper family is purpose-built for automotive environments.

The Cypress Semper family offers high density serial NOR flash memory up to 4 Gb and leverages the company’s proprietary MirrorBit process technology. The family also features EnduraFlex architecture, which achieves greater reliability and endurance. Semper fail-safe storage devices were the first in the industry to achieve the ISO 26262 automotive functional safety standard and are ASIL-B compliant, says Cypress. According to Cypress, the Semper fail-safe storage products exceed automotive quality and functional safety requirements with ASIL-B compliance and are ready for use in ASIL-D systems. Cypress’ 512 Mb, 1 Gb and 2 Gb Semper devices are currently sampling.

Domain Controllers

For its part, STMicroelectronics (ST) also rolled out a new automotive-focused MCU offering back in February. Called the Stellar automotive MCU family, these devices support next-generation car architectures, which rely on broad “domain controllers” for areas such as the drivetrain, the chassis, and Advanced Driver Assistance Systems (ADAS). These domain controllers enable the transition toward software- and data-oriented architectures by providing data fusion from connected sensors while reducing harness complexity

Figure 2
The Stellar MCUs feature six Arm Cortex-R52 cores clocked at 400 MHz, 16 MB of Phase-Change Memory (PCM) and 8 MB of RAM, all in a BGA516 package.

Built on a 28 nm FD-SOI process, major applications for Stellar MCUs include smart control for hybrid powertrain, the broad electrification of car systems with on-board chargers, battery-management systems and DC-DC controllers, as well as smart gateways, ADAS and enhanced Vehicle Stability Controls. The MCUs feature six Arm Cortex-R52 cores clocked at 400 MHz, 16 MB of Phase-Change Memory (PCM) and 8 MB of RAM, all in a BGA516 package (Figure 2). Stellar-based control units are currently undergoing road tests with lead customers. …

Read the full article in the August 349 issue of Circuit Cellar
(Full article word count: 3207 words; Figure count: 8 Figures.)

Vendor list:

Cypress Semiconductor | www.cypress.com
Infineon Technologies | www.infineon.com
Maxim Integrated | www.maximintegrated.com
Microchip | www.microchip.com
Momenta | www.momenta.ai
NXP Semiconductor | www.nxp.com
Renesas Electronics America | www.renesas.com
STMicroelectronics | www.st.com
Texas Instruments | www.ti.com

Don’t miss out on upcoming issues of Circuit Cellar. Subscribe today!

Note: We’ve made the October 2017 issue of Circuit Cellar available as a free sample issue. In it, you’ll find a rich variety of the kinds of articles and information that exemplify a typical issue of the current magazine.

Bidirectional Buck-Boost Controller Targets Autonomous Vehicles

Analog Devices has announced the Power by Linear LT8708/-1, a 98% efficient bidirectional buck-boost switching regulator controller that operates between two batteries that have the same voltage. This makes them well-suited for redundancy in self-driving cars. The LT8708/-1 operates from an input voltage that can be above, below or equal to the output voltage, making it well suited for two each 12 V, 24 V or 48 V batteries commonly found in electric and hybrid vehicles. It operates between two batteries and prevents system shutdown should one of the batteries fail. The LT8708/-1 can also be used in 48V/12V and 48V/24V dual battery systems.

The LT8708/-1 operates with a single inductor over a 2.8 V to 80 V input voltage range and can produce an output voltage from 1.3 V to 80 V, delivering up to several kilowatts of power depending on the choice of external components and number of phases. It simplifies bidirectional power conversion in battery/capacitor backup systems that need regulation of VOUT, VIN, and/or IOUT, IIN, both in the forward or reverse direction. This device’s six independent forms of regulation allow it to be used in numerous applications.

The LT8708-1 is used in parallel with the LT8708 to add power and phases. The LT8708-1 always operates as a slave to the master LT8708, can be clocked out-of-phase and has the capability to deliver as much power as the master. One or more slaves can be connected to a single master, proportionally increasing power and current capability of the system.

Another application is for an input voltage to power a load, where this same input voltage is used to power a LT8708/-1 circuit that charges a battery or bank of supercapacitors. When the input voltage goes away, the load maintains power without disruption from the battery or supercaps by way of the LT8708’s bidirectional capability.

Forward and reverse current can be monitored and limited for the input and output sides of the converter. All four current limits (forward input, reverse input, forward output and reverse output) can be set independently using four resistors. In combination with the DIR (direction) pin, the chip can be configured to process power from VIN to VOUT or from VOUT to VIN ideal for automotive, solar, telecom and battery-powered systems.

The LT8708 is available in a 5 mm × 8 mm QFN-40 package. Three temperature grades are available, with operation from –40 to 125°C for the extended and industrial grades and a high temp automotive range of –40°C to 150°C.

Pricing for the LT8708/-1 starts at $6.60 (1,000s).

Analog Devices | www.analog.com

MCU/MPUs Target Next-Gen Electric and Autonomous Vehicles

NXP Semiconductors  has announced a new family of high-performance safe microprocessors to control vehicle dynamics in next-generation electric and autonomous vehicles. The new NXP S32S microprocessors will manage the systems that accelerate, brake and steer vehicles safely, whether under the direct control of a driver or an autonomous vehicle’s control.

NXP is addressing the needs of carmakers developing future autonomous and hybrid electric vehicles with newly available 800 MHz MCU/MPUs. The first of the new S32 product lines, the S32S microprocessor offers the highest performance ASIL D capability available today, according to NXP.
The NXP S32S processors use an array of the new Arm Cortex-R52 cores, which integrate the highest level of safety features of any Arm processor. The array offers four fully independent ASIL D capable processing paths to support parallel safe computing. In addition, the S32S architecture supports a new “fail availability” capability allowing the device to continue to operate after detecting and isolating a failure—a critical capability for future autonomous applications.

NXP has partnered with OpenSynergy to develop a fully featured, real-time hypervisor supporting the NXP S32S products. OpenSynergy’s COQOS Micro SDK is one of the first hypervisor platforms that takes advantage of the Arm Cortex-R52’s special hardware features. It enables the integration of multiple real-time operating systems onto microcontrollers requiring high levels of safety (up to ISO26262 ASIL D). Multiple vendor independent OS/stacks can also run on a single microcontroller. COQOS Micro SDK provides secure, safe and fast context switching ahead of today’s software-only solutions in traditional microcontrollers.

NXP Seimconductors | www.nxp.com

Kit for R-Car V3M SoC Speeds Development

Renesas Electronics has announced the R-Car V3M Starter Kit to simplify and speed up the development of New Car Assessment Program (NCAP) front camera applications, surround view system, and LiDARs. The new starter kit is based on the R-Car V3M image recognition system-on-chip (SoC), delivering a combination of low power consumption and high performance for the growing NCAP front camera market. By combining the R-Car V3M starter kit with supporting software and tools, system developers can easily develop front camera applications, contributing to reduced development efforts and faster time-to-market.

Renesas also announced an enhancement to the R-Car V3M by integrating a new, highly power-efficient hardware accelerator for high-performance convolutional neural networks (CNNs), which enables features such as road detection or object classification that are increasingly used in automotive applications. The R-Car V3M’s innovative hardware accelerator enables CNNs to execute at ultra-low power consumption levels that cannot be reached when CNNs are running on CPUs or GPUs.

The new R-Car V3M Starter Kit, the R-Car V3M SoC, and supporting software and tools including Renesas’ open-source e² studio IDE integrated development environment (IDE), are part of Renesas’ open, innovative, and trusted Renesas autonomy Platform for ADAS and automated driving that delivers total end-to-end solutions scaling from cloud to sensing and vehicle control.

The new starter kit is a ready-to-use kit. In addition to the required interface and tools, the kit provides essential components for ADAS and automated driving development, including 2GB RAM, 4GB eMMC (embedded multi-media controller) onboard memory, Ethernet, display outputs, and interfaces for debugging. The integrated 440-pin expansion port gives full freedom for system manufacturers to develop application-specific expansion boards for a wide range of computing applications, from a simple advanced computer vision development environment to prototyping of multi-camera systems for applications such as surround view. This board flexibility reduces the time needed for hardware development in addition to maintaining a high degree of software portability and reusability.

The R-Car V3M Starter Kit is supported by a Linux Board Support Package (BSP), which is available through elinux.org. Further commercial operating systems will be made available from next year onwards. Codeplay will enable OpenCL and SYCL on the starter kit in Q1 2018. Further tools, sample code and application notes for computer vision and image processing will be provided throughout 2018. Renesas enables several tools on the R-Car V3M Starter Kit including Renesas e² studio toolchain and tools for debugging, which ease the development burden and enable faster time-to-market.

In addition to the R-Car V3M Starter Kit, Renesas has enabled ultra-low power consumption for CNNs, which achieve image recognition and image classification, on the R-Car V3M SoC. The R-Car V3M allows the implementation of high-performance, low power consumption CNN networks in NCAP cameras that cannot be realized with traditional high power consuming CPU or GPU architectures. Renesas complements the IMP-X5, a subsystem for computer vision processing that is composed of an image processor and the programmable CV engine, with a new, innovative CNN hardware accelerator developed in house, that allows the implementation of high-performance CNNs at ultra-low low power. With this new IP, Renesas enables system developers to choose between the IMP-X5 or the new hardware accelerator to deploy CNNs. This heterogeneous approach allows system developers to choose the most efficient architecture, depending on required programming flexibility, performance and power consumption.

The Renesas R-Car V3M is available now. The R-Car V3M Starter Kit with a Linux BSP will be available in Q1 2018 initially in limited quantities. A complete offering with an extended software solution is scheduled for Q3 2018.

Renesas Electronics | www.renesas.com

Platform Enables Automated Vehicle Application Development

NXP Semiconductors has announced the availability of the NXP Automated Drive Kit, a software enabled platform for the development and testing of automated vehicle applications. The kit enables carmakers and suppliers to develop, test and deploy autonomous algorithms and applications quickly on an open and flexible platform with an expanding ecosystem of partners.

Taking on automated drive applications requires easy access to multiple hardware and software options. NXP has opened the door to hardware and software partners to foster a flexible development platform that meets the needs of a diverse set of developers. The NXP Automated Drive Kit provides a baseline for level 3 development and will expand to additional autonomy levels as the ecosystem’s performance scales.

The first release of the Automated Drive Kit will include a front vision system based on NXP’s S32V234 processor, allowing customers to deploy their algorithms of choice. The Kit also includes front camera application software APIs and object detection algorithms provided by Neusoft; a leading IT solutions and services provider in China and a strategic advanced driver assistance system (ADAS) and AD partner to NXP. Additionally, the Kit includes sophisticated radar options and GPS positioning technology. Customers choose from various LiDAR options and can add LiDAR Object Processing (LOP) modular software from AutonomouStuff, which provides ground segmentation and object tracking.

The NXP Automated Drive Kit is now available for ordering from AutonomouStuff as a standalone package that can be deployed by the customer in their own vehicle or as an integrated package with an AutonomouStuff Automated Research Development Vehicle.

NXP Semiconductors | www.nxp.com

Infineon MCUs Serve Audi’s Autonomous Car Functionality

Infineon Technologies has announced that it supplies key components for the Audi A8, the first series production car featuring level 3 automated driving. The ability of cars to self-drive is split into a number of different levels: With level 3, drivers can temporarily take their hands off the steering wheel under certain conditions.  The Audi A8 allows this when parking and exiting, in slow-moving traffic or in traffic congestion. Using microelectronics from Infineon Technologies, a car can take over in this kind of driving situation.

Various types of chips from Infineon serve the safe automated driving in the Audi A8: sensors, microcontrollers and power semiconductors. Radar sensor chips from the RASIC family are installed in the front and corner radar. They send and receive high-frequency 77-GHz signals and forward these on to the central driver assistance controller (zFAS).

A microcontroller from the AURIX family is a key component of the zFAS for reliable automated driving. AURIX enables to secure the connection to the vehicle data bus. It assesses and prioritizes data packets and initiates their processing in the fastest possible time. For example, it initiates emergency braking based on data from radar and other sensor systems. The AURIX family of microcontrollers is especially ideal for this purpose thanks to high processing power and extensive safety features.

AURIX microcontrollers are used in several controllers in the Audi A8: On the one hand, they control the functions for the engine. On the other, they operate in the Audi AI active chassis and in the electronic chassis platform, which controls the shock absorption. The microcontrollers also support activation of the airbag.

In addition to the electronics for drive, driver assistance and chassis, other semiconductor solutions from Infineon are installed in the comfort and body electronics, such as for example LED drivers from the LITIX Basic family in the tail lights as well as bridge drivers from the Embedded Power family in the windscreen wipers.

Infineon Technologies | www.infineon.com