I’m confident you know that you should keep wires and PCB tracks as short as possible. But I’m also sure that you will underestimate this problem fairly frequently.
Remember that 1 cm of a 0.25-mm-wide PCB track is roughly equivalent to an inductance of 10 nH. If this 10 nH is paired with, say, a 10-pF capacitor, that gives a resonant frequency as low as 500 MHz, which is easily below the third or fifth harmonics of the clock frequencies commonly seen on modern high-speed digital boards. Similarly, a 1-cm-long track will jeopardize the performances of any RF system such as a 2.4-GHz transceiver. There is only one solution: keep tracks and wires as short as possible. If you can’t, then use impedance-matched tracks.
Remember this rule especially for the ground connections: any grounded pad of any part working in high frequencies should be directly connected by avia to the underlying ground plane. And this via must be as close as possible to the pad, not some millimeters away.
Just yesterday I did a design review of a customer’s RF PCB. A small 0402 inductance was grounded through a via that was 3 mm away. It was a bad idea because the inductance was as low as 1 nH. Those 3 mm changed its value completely.—Robert Lacoste, “Mixed-Signal Designs,” CC25:25th Anniversary Issue, 2013.
Circuit Cellar's editorial team comprises professional engineers, technical editors, and digital media specialists. You can reach the Editorial Department at editorial@circuitcellar.com, @circuitcellar, and facebook.com/circuitcellar
Leave a Comment