Insights Tech The Future

The Future of Monolithically Integrated LED Arrays

Written by Vincent Lee

LEDs are ubiquitous in our electronic lives. They are widely used in notification lighting, flash photography, and light bulbs, to name a few. For displays, LEDs have been commercialized as backlights in televisions and projectors. However, their use in image formation has been limited.

A prototype emissive LED display chip is shown. The chip includes an emissive compass pattern ready to embed into new applications.

A prototype emissive LED display chip is shown. The chip includes an emissive compass pattern ready to embed into new applications.

The developing arena of monolithically integrated LED arrays, which involves fabricating millions of LEDs with corresponding transistors on a single chip, provides many new applications not possible with current technologies, as the LEDs can simultaneously act as the backlight and the image source.

The common method of creating images is to first generate light (using LEDs) and then filter that light using a spatial light modulator. The filter could be an LCD, liquid crystal on silicon (LCoS), or a digital micromirror device (DMD) such as a Digital Light Processing (DLP) projector. The filtering processes cause significant loss of light in these systems, despite the brightness available from LEDs. For example, a typical LCD uses only 1% to 5% of the light generated.

Two pieces are essential to a display: a light source and a light controller. In most display technologies, the light source and light control functionalities are served by two separate components (e.g., an LED backlight and an LCD). However, in emissive displays, both functionalities are combined into a single component, enabling light to be directly controlled without the inherent inefficiencies and losses associated with filtering. Because each light-emitting pixel is individually controlled, light can be generated and emitted exactly where and when needed.

Emissive displays have been developed in all sizes. Very-large-format “Times Square” and stadium displays are powered by large arrays of individual conventional LEDs, while new organic LED (OLED) materials are found in televisions, mobile phones, and other micro-size applications. However, there is still a void. Emissive “Times Square” displays cannot be scaled to small sizes and emissive OLEDs do not have the brightness available for outdoor environments and newer envisioned applications. An emissive display with high brightness but in a micro format is required for applications such as embedded cell phone projectors or displays on see-through glasses.

We know that optimization by the entire LED industry has made LEDs the brightest controllable light source available. We also know that a display requires a light source and a method of controlling the light. So, why not make an array of LEDs and control individual LEDs with a matching array of transistors?

— ADVERTISMENT—

Advertise Here

The marrying of LED materials (light source) to transistors (light control) has long been researched. There are three approaches to this problem: fabricate the LEDs and transistors separately, then bond them together; fabricate transistors first, then integrate LEDs on top; and fabricate LEDs first, then integrate transistors on top. The first method is not monolithic. Two fabricated chips are electrically and mechanically bonded, limiting integration density and thus final display resolutions. The second method, starting with transistors and then growing LEDs, offers some advantages in monolithic (single-wafer) processing, but growth of high-quality, high-efficiency LEDs on transistors has proven difficult.

My start-up company, Lumiode (www.lumiode.com), is developing the third method, starting with optimized LEDs and then fabricating silicon transistors on top. This leverages existing LED materials for efficient light output. It also requires careful fabrication of the integrated transistor layer as to not damage the underlying LED structures. The core technology uses a laser method to provide extremely local high temperatures to the silicon while preventing thermal damage to the LED. This overcomes typical process incompatibilities, which have previously held back development of monolithically integrated LED arrays. In the end, there is an array of LEDs (light source) and corresponding transistors to control each individual LED (light control), which can reach the brightness and density requirements of future microdisplays.

Regardless of the specific integration method employed, a monolithically integrated LED and transistor structure creates a new range of applications requiring higher efficiency and brightness. The brightness available from integrated LED arrays can enable projection on truly see-through glass, even in outdoor daylight environments. The efficiency of an emissive display enables extended battery lifetimes and device portability. Perhaps we can soon achieve the types of displays dreamed up in movies.

Keep up-to-date with our FREE Weekly Newsletter!

Don't miss out on upcoming issues of Circuit Cellar.


Note: We’ve made the May 2020 issue of Circuit Cellar available as a free sample issue. In it, you’ll find a rich variety of the kinds of articles and information that exemplify a typical issue of the current magazine.

Would you like to write for Circuit Cellar? We are always accepting articles/posts from the technical community. Get in touch with us and let's discuss your ideas.

Website | + posts

Vincent Lee (vincentlee@lumiode.com) is the CEO of Lumiode (www.lumiode.com), a New York City-based start-up company. Lumiode is developing LED microdisplays for head-mounted, head-up, and pico projectors enabling high brightness, low-power, and compact form factor devices based on LED and silicon integration. Prior to starting his company, Vincent graduated with his PhD in Electrical Engineering from Columbia University, where he worked with professor Ioannis Kymissis in the Columbia Lab for Unconventional Electronics. Vincent is secretary for the local chapter of the Society for Information Display, where he helps organize local speakers and events for the display community. He is also a 2013 Fellow in the New York chapter of the Startup Leadership Program.

Leave a Comment

Supporting Companies

Upcoming Events


Copyright © KCK Media Corp.
All Rights Reserved

Copyright © 2023 KCK Media Corp.

The Future of Monolithically Integrated LED Arrays

by Vincent Lee time to read: 3 min