Trends in test and measurement systems follow broader technological trends. A measurement device’s fundamental purpose is to translate a measurable quantity into something that can be discerned by a human. As such, the display technology of the day informed much of the design and performance limitations of early electronic measurement systems. Analog meters, cathode ray tubes, and paper strip recorder systems dominated. Measurement hardware could be incredibly innovative, but such equipment could only be as good as its ability to display the measurement result to the user. Early analog multimeters could only be as accurate as a person’s ability to read to which dash mark the needle pointed.
In the early days, the broader electronics market was still in its infancy and didn’t offer much from which to draw. Test equipment manufacturers developed almost everything in house, including display technology. In its heyday, Tektronix even manufactured its own cathode ray tubes. As the nascent electronics market matured, measurement equipment evolved to leverage the advances being made. Display technology stopped being such an integral piece. No longer shackled with the burden of developing everything in house, equipment makers were able to develop instruments faster and focus more on the measurement elements alone. Advances in digital electronics made digital oscilloscopes practical. Faster and cheaper processors and larger memories (and faster ADCs to fill them) then led to digital oscilloscopes dominating the market. Soon, test equipment was influenced by the rise of the PC and even began running consumer-grade operating systems.
Measurement systems of the future will continue to follow this trend and adopt advances made by the broader tech sector. Of course, measurement specs will continue to improve, driven by newly invented technologies and semiconductor process improvements. But, other trends will be just as important. As new generations raised on Apple and Android smartphones start their engineering careers, the industry will give them the latest advances in user interfaces that they have come to expect. We are already seeing test equipment start to adopt touchscreen technologies. This trend will continue as more focus is put on interface design. The latest technologies talked about today, such as haptic feedback, will appear in the instruments of tomorrow. These UI improvements will help engineers better extract the data they need.
As chip integration follows its ever steady course, bench-top equipment will get smaller. Portable measurement equipment will get lighter and last longer as they leverage low-power mobile chipsets and new battery technologies. And the lines between portable and bench-top equipment will be blurred just as laptops have replaced desktops over the last decade. As equipment makers chase higher margins, they will increasingly focus on software to help interpret measurement data. One can imagine a subscription service to a cloud-based platform that provides better insights from the instrument on the bench.
At Aeroscope Labs (www.aeroscope.io), a company I cofounded, we are taking advantage of many broader trends in the electronics market. Our Aeroscope oscilloscope probe is a battery-powered device in a pen-sized form factor that wirelessly syncs to a tablet or phone. It simply could not exist without the amazing advances in the tech sector of the past 10 years. Because of the rise of the Internet of Things (IoT), we have access to many great radio systems on a chip (SoCs) along with corresponding software stacks and drivers. We don’t have to develop a radio from scratch like one would have to do 20 years ago. The ubiquity of smart phones and tablets means that we don’t have to design and build our own display hardware or system software. Likewise, the popularity of portable electronics has pushed the cost of lithium polymer batteries way down. Without these new batteries, the battery life would be mere minutes instead of the multiple hours that we are able to achieve.
Just as with my company, other new companies along with the major players will continue to leverage these broader trends to create exciting new instruments. I’m excited to see what is in store.
— ADVERTISMENT—
—Advertise Here—
Jonathan Ward is cofounder of Aeroscope Labs (www.aeroscope.io), based in Boulder, CO. Aeroscope Labs is developing the world’s first wireless oscilloscope probe. Jonathan has always had a passion for measurement tools and equipment. He started his career at Agilent Technologies (now Keysight) designing high-performance spectrum analyzers. Most recently, Jonathan developed high-volume consumer electronics and portable chemical analysis equipment in the San Francisco Bay Area. In addition to his decade of industry experience, he holds an MS in Electrical Engineering from Columbia University and a BSEE from Case Western Reserve University.