Issue 284: EQ Answers

PROBLEM 1
Can you name all of the signals in the original 25-pin RS-232 connector?

ANSWER 1
Pins 9, 10, 11, 18, and 25 are unassigned/reserved. The rest are:

Pin Abbreviation Source Description
1 PG Protective ground
2 TD DTE Transmitted data
3 RD DCE Received data
4 RTS DTE Request to send
5 CTS DCE Clear to send
6 DSR DCE Data Set Ready
7 SG Signal ground
8 CD DCE Carrier detect
12 SCD DCE Secondary carrier detect
13 SCTS DCE Secondary clear to send
14 STD DTE Secondary transmitted data
15 TC DCE Transmitter clock
16 SRD DCE Secondary received data
17 RC DCE Receiver clock
19 SRTS DTE Secondary request to send
20 DTR DTE Data terminal ready
21 SQ DCE Signal quality
22 RI DCE Ring indicator
23 DTE Data rate selector
24 ETC DTE External transmitter clock

 

PROBLEM 2
What is the key difference between a Moore state machine and a Mealy state machine?

ANSWER 2
The key difference between Moore and Mealy is that in a Moore state machine, the outputs depend only on the current state, while in a Mealy state machine, the outputs can also be affected directly by the inputs.

 

— ADVERTISMENT—

Advertise Here

PROBLEM 3
What are some practical reasons you might choose one state machine over the other?

ANSWER 3
In practice, the difference between Moore and Mealy in most situations is not very important. However, when you’re trying to optimize the design in certain ways, it sometimes is.

Generally speaking, a Mealy machine can have fewer state variables than the corresponding Moore machine, which will save physical resources on a chip. This can be important in low-power designs.

On the other hand, a Moore machine will typically have shorter logic paths between flip-flops (total combinatorial gate delays), which will enable it to run at a higher clock speed than the corresponding Mealy machine.

 

PROBLEM 4
What is the key feature that distinguishes a DSP from any other general-purpose CPU?

ANSWER 4
Usually, the key distinguishing feature of a DSP when compared with a general-purpose CPU is that the DSP can execute certain signal-processing operations with few, if any, CPU cycles wasted on instructions that do not compute results.

One of the most basic operations in many key DSP algorithms is the MAC (multiply-accumulate) operation, which is the fundamental step used in matrix dot and cross products, FIR and IIR filters, and fast Fourier transforms (FFTs). A DSP will typically have a register and/or memory organization and a data path that enables it to do at least 64 MAC operations (and often many more) on unique data pairs in a row without any clocks wasted on loop overhead or data movement. General-purpose CPUs do not generally have enough registers to accomplish this without using additional instructions to move data between registers and memory.

Keep up-to-date with our FREE Weekly Newsletter!

Don't miss out on upcoming issues of Circuit Cellar.

— ADVERTISMENT—

Advertise Here


Note: We’ve made the May 2020 issue of Circuit Cellar available as a free sample issue. In it, you’ll find a rich variety of the kinds of articles and information that exemplify a typical issue of the current magazine.

Would you like to write for Circuit Cellar? We are always accepting articles/posts from the technical community. Get in touch with us and let's discuss your ideas.

Sponsor this Article
Website | + posts

Circuit Cellar's editorial team comprises professional engineers, technical editors, and digital media specialists. You can reach the Editorial Department at editorial@circuitcellar.com, @circuitcellar, and facebook.com/circuitcellar

Leave a Comment

Supporting Companies

Upcoming Events


Copyright © KCK Media Corp.
All Rights Reserved

Copyright © 2023 KCK Media Corp.

Issue 284: EQ Answers

by Circuit Cellar Staff time to read: 2 min