Arduino MOSFET-Based Power Switch

Circuit Cellar columnist Ed Nisley has used Arduino SBCs in many projects over the years. He has found them perfect for one-off designs and prototypes, since the board’s all-in-one layout includes a micrcontroller with USB connectivity, simple connectors, and a power regulator.

But the standard Arduino presents some design limitations.

“The on-board regulator can be either a blessing or a curse, depending on the application. Although the board will run from an unregulated supply and you can power additional circuitry from the regulator, the minute PCB heatsink drastically limits the available current,” Nisley says. “Worse, putting the microcontroller into one of its sleep modes doesn’t shut off the rest of the Arduino PCB or your added circuits, so a standard Arduino board isn’t suitable for battery-powered applications.”

In Circuit Cellar’s January issue, Nisley presents a MOSFET-based power switch that addresses such concerns. He also refers to one of his own projects where it would be helpful.

“The low-resistance Hall effect current sensor that I described in my November 2013 column should be useful in a bright bicycle taillight, but only if there’s a way to turn everything off after the ride without flipping a mechanical switch…,” Nisley says. “Of course, I could build a custom microcontroller circuit, but it’s much easier to drop an Arduino Pro Mini board atop the more interesting analog circuitry.”

Nisley’s January article describes “a simple MOSFET-based power switch that turns on with a push button and turns off under program control: the Arduino can shut itself off and reduce the battery drain to nearly zero.”

— ADVERTISMENT—

Advertise Here

Readers should find the article’s information and circuitry design helpful in other applications requiring automatic shutoff, “even if they’re not running from battery power,” Nisley says.

Figure 1: This SPICE simulation models a power p-MOSFET with a logic-level gate controlling the current from the battery to C1 and R2, which simulate a 500-mA load that is far below Q2’s rating. S1, a voltage-controlled switch, mimics an ordinary push button. Q1 isolates the Arduino digital output pin from the raw battery voltage.

Figure 1: This SPICE simulation models a power p-MOSFET with a logic-level gate controlling the current from the battery to C1 and R2, which simulate a 500-mA load that is far below Q2’s rating. S1, a voltage-controlled switch, mimics an ordinary push button. Q1 isolates the Arduino digital output pin from the raw battery voltage.

The article takes readers from SPICE modeling of the circuitry (see Figure 1) through developing a schematic and building a hardware prototype.

“The PCB in Photo 1 combines the p-MOSFET power switch from Figure 2 with a Hall effect current sensor, a pair of PWM-controlled n-MOFSETs, and an Arduino Pro Mini into

The power switch components occupy the upper left corner of the PCB, with the Hall effect current sensor near the middle and the Arduino Pro Mini board to the upper right. The 3-D printed red frame stiffens the circuit board during construction.

Photo 1: The power switch components occupy the upper left corner of the PCB, with the Hall effect current sensor near the middle and the Arduino Pro Mini board to the upper right. The 3-D printed red frame stiffens the circuit board during construction.

a brassboard layout,” Nisley says. “It’s one step beyond the breadboard hairball I showed in my article “Low-Loss Hall Effect Current Sensing” (Circuit Cellar 280, 2013), and will help verify that all the components operate properly on a real circuit board with a good layout.”

For much more detail about the verification process, PCB design, Arduino interface, and more, download the January issue.

The actual circuit schematic includes the same parts as the SPICE schematic, plus the assortment of connectors and jumpers required to actually build the PCB shown in Photo 1.

Figure 2: The actual circuit schematic includes the same parts as the SPICE schematic, as well as the assortment of connectors and jumpers required to actually build the PCB shown in Photo 1.

Keep up-to-date with our FREE Weekly Newsletter!

Don't miss out on upcoming issues of Circuit Cellar.


Note: We’ve made the May 2020 issue of Circuit Cellar available as a free sample issue. In it, you’ll find a rich variety of the kinds of articles and information that exemplify a typical issue of the current magazine.

Would you like to write for Circuit Cellar? We are always accepting articles/posts from the technical community. Get in touch with us and let's discuss your ideas.

— ADVERTISMENT—

Advertise Here

Sponsor this Article
Website | + posts

Circuit Cellar's editorial team comprises professional engineers, technical editors, and digital media specialists. You can reach the Editorial Department at editorial@circuitcellar.com, @circuitcellar, and facebook.com/circuitcellar

Leave a Comment

Supporting Companies

Upcoming Events


Copyright © KCK Media Corp.
All Rights Reserved

Copyright © 2023 KCK Media Corp.

Arduino MOSFET-Based Power Switch

by Circuit Cellar Staff time to read: 2 min