About Circuit Cellar Staff

Circuit Cellar's editorial team comprises professional engineers, technical editors, and digital media specialists. You can reach the Editorial Department at editorial@circuitcellar.com, @circuitcellar, and facebook.com/circuitcellar

Low Power SMD Converters Target Critical Medical Designs

RECOM has introduced SMD versions for its recently released 3.5 W, 5 W and 6 W medical-grade DC/DC modules. All key features required for critical medical applications are now available for SMD designs. The REM3.5E, REM5E and REM6E series of medical-grade regulated DC/DC converters now come with either pins or SMD. They feature reinforced 250 VAC continuous working isolation with >8mm creepage/clearance providing 2xMOPP and qualify for medical B, BF and CF applications due to their very low 1 μA leakage current. The reinforced insulation of up to 10 kVDC is sufficient for virtually every medical application.

These compact SMD packages have tightly regulated single or dual outputs with UVLO, SCP, OCP and OVP. The modules operate at above 80% efficiency in a wide temperature range from -40°C up to +85°C without derating. They are UL marked and certified to CB, IEC, EN and ANSI/AAMI 60601 3rd ed. Safety and 4th ed. EMC medical standards.

Samples and OEM pricing are available from all authorized distributors or directly from RECOM.

RECOM | www.recom-power.com

 

PCB assembly – $1000 in FREE Labor

SlingShot Assembly is Offering Free Labor for First Time Customers.
SlingShot Assembly is changing the game in PCB assembly. Doing the impossible, everyday. For a limited time, SlingShot Assembly is offering FREE LABOR, up to $1,000, on new customer’s first turn-key order. Their 5-day turn includes parts, boards AND assembly. We challenge you to try something different.
Click Here for your discount code!
Only a limited number of offers are available each day.

Rugged Computers Run Linux on Jetson TX2 and Xavier

By Eric Brown

Aitech, which has been producing embedded Linux-driven systems for military/aerospace and rugged industrial applications since at least 2004, announced that Concurrent Real-Time’s hardened RedHawk Linux RTOS will be available on two Linux-ready embedded systems based on the Nvidia Jetson TX2 module. With Redhawk Linux standing in for the default Nvidia Linux4Tegra stack, the military-grade A176 Cyclone and recently released, industrial-focused A177 Twister systems can “enhance real-time computing for mission-critical applications,” says Aitech.


MIL/AERO focused A176 Cyclone (left) and new A177 Twister
(click image to enlarge)
Here, we’ll take a closer look at the A177 Twister, which was announced in October as a video capture focused variant of the similar, MIL/AERO targeted A176 Cyclone. Both of these “SWaP-optimized (size, weight and power) supercomputers” are members of Aitech’s family of GPGPU RediBuilt computers, which also include PowerPC and Intel Core based systems.

We’ll also briefly examine an “EV178 Development System” for an Nvidia Xavier based A178 Thunder system that was revealed at Embedded World. The A178 Thunder targets MIL/AERO, as well as autonomous vehicles and other applications (see farther below).

Both the A177 Twister and A176 Cyclone systems deploy the Arm-based Jetson TX2module in a rugged, small form factor (SFF) design. The TX2 module features 2x high-end “Denver 2” cores and 4x Cortex-A57 cores. There’s also a 256-core Pascal GPU with CUDA libraries for running AI and machine learning algorithms.


 
A177 Twister (left) and Jetson TX2
(click images to enlarge)
The TX2 module is further equipped with 8GB LPDDR4 and 32GB eMMC 5.1. Other rugged TX2-based systems include Axiomtek’s eBOX800-900-FL.

The RedHawk Linux RTOS distribution, which was announced in 2005, is based on Red Hat Linux and the security-focused SELinux. RedHawk offers a hardened real-time Linux kernel with ultra-low latency and high determinism. Other features include support for multi-core architectures and x86 and ARM64 target platforms.

The RedHawk BSP also includes “NightStar” GUI debugging and analysis tools, which were announced with the initial RedHawk distro. NightStar supports hot patching “and provides a complete graphical view of multithreaded applications and their interaction with the Linux kernel,” says Concurrent Real-Time.

A177 Twister

The A177 Twister leverages the Jetson TX2 and its “CUDA and deep learning acceleration capabilities to easily handle the complex computational requirements needed in embedded systems that are managing multiple data and video streams,” says Aitech. The system is optimized for video capture, processing, and overlays.


A177 Twister
(click image to enlarge)
The A177 Twister supports applications including robotics, automation and optical inspection systems in industrial facilities, as well as for autonomous aircraft and ground environments,” says Aitech. Other applications include security and surveillance, mining and excavating computers, complex marine and boating applications, and agricultural machinery.

The 148 x 148 x 63mm A177 Twister is protected against ingress per IP67. The fanless system weighs 2.2 lbs. (just under 1Kg) and supports -20 to 65°C temperatures.

The Jetson TX2 module supplies 8GB LPDDR4 and 32GB eMMC 5.1. The A177 Twister adds a microSD slot with optional preconfigured card, as well as an optional “Mini-SATA SSD with Quick Erase and Secure Erase support.”

The system shares many features with the A176 Cyclone, with the major difference being that it adds optional WiFi-ac and Bluetooth 4.1, as well as support for simultaneous capture of up to 8x RS-170A (NTSC/PAL) composite video channels at full frame rates. It also has lower ruggedization levels and a smaller 6-24V input range compared to 11-36V, among other differences.


 
A177 Twister block diagram (left) and I/O specs
(click images to enlarge)
As shown in the spec-sheet above, you can purchase the Twister with and without 8x composite inputs and/or 1x SDI input with up to 1080/60 H.264 encoding. There’s also a choice of composite or SDI frame grabbers, both, or none at all. The one SKU that offers all of the above sacrifices the single USB 3.0 port.

Standard features include USB 2.0, HDMI, Composite input, GbE. 2x RS-232 (one for debug/console), 2x CAN, and 4x single-end discrete I/O. Most of these interfaces are bundled up into rugged military-style composite I/O ports.

Power consumption is typically 8-10W with a maximum of 17W. The system also provides reverse polarity and EMC protections, hardware accelerated AES encryption/decryption, temperature sensors, elapsed time recorder, and dynamic voltage and frequency scaling.

EV178 Development System for A178 Thunder

Aitech revealed an A178 Thunder< at computer at Embedded World. The company recently followed up with a formal announcement and product page for an EV178 Development System that helps unlock the computer for early customers.


 
EV178 Development System for A178 Thunder (left) and Jetson AGX Xavier
Built around Nvidia’s high-end Jetson AGX Xavier module, the compact, Linux-driven A178 Thunder “is the most advanced solution for video and signal processing, deep-learning accelerated, for the next generation of autonomous vehicles, surveillance and targeting systems, EW systems, and many other applications,” says Aitech. The EV178 Development System for A178 Thunder processes at up to 11 TFLOPS (Terra floating point operations per second) and 22 TOPS (Terra operations per second), says Aitech.

The Jetson AGX Xavier has greater than 10x the energy efficiency and more than 20x the performance of the Jetson TX2, claims Nvidia. The 105 x 87 x 16mm Xavier module features 8x ARMv8.2 cores and a high-end, 512-core Nvidia Volta GPU with 64 tensor cores with 2x Nvidia Deep Learning Accelerator (DLA) — also called NVDLA — engines. The module is also equipped with a 7-way VLIW vision chip, as well as 16GB 256-bit LPDDR4 RAM and 32GB eMMC 5.1.
EV178 Development System for A178 Thunder
(click image to enlarge)

Preliminary specs for the EV178 Development System for A178 Thunder include:

  • Nvidia Jetson AGX Xavier module
  • 4x simultaneous SDI (SD/HD) video capture channels
  • 8x simultaneous Composite (RS-170A [NTSC]/PAL) video capture channels
  • Gigabit Ethernet
  • HDMI output
  • USB 3.0
  • UART Serial
  • Discretes
  • Pre-installed Linux OS, drivers, and test applications
  • Cables and external power supply

Further information

Concurrent’s RedHawk Linux RTOS appears to be available now as an optional build for the A177 Twister and earlier A176 Cyclone, both of which appear to be available with undisclosed pricing. No ship date was announced for the EV178 Development System for A178 Thunder. More information may be found in Aitech’s RedHawk Linux announcement, as well as the A177 Twister product page. More on the A178 Thunder may be found in the EV178 Development System for A178 Thunder announcementand product page.

This article originally appeared on LinuxGizmos.com on March 18.

Aitech | www.rugged.com

May Circuit Cellar: Sneak Preview

The May issue of Circuit Cellar magazine is out next week!. We’ve been hard at work laying the foundation and nailing the beams together with a sturdy selection of  embedded electronics articles just for you. We’ll soon be inviting you inside this 84-page magazine.

Not a Circuit Cellar subscriber?  Don’t be left out! Sign up today:

 

Here’s a sneak preview of May 2019 Circuit Cellar:

EMBEDDED COMPUTING AT WORK

Technologies for Digital Signage
Digital signage ranks among the most dynamic areas of today’s embedded computing space. Makers of digital signage players, board-level products and other technologies continue to roll out new solutions for implementing powerful digital signage systems. Circuit Cellar Chief Editor Jeff Child looks at the latest technology trends and product developments in digital signage.

PC/104 and PC/104 Family Boards
PC/104 has come a long way since its inception over 25 ago. With its roots in ISA-bus PC technology, PC/104 evolved through the era of PCI and PCI Express by spinning off its wider family of follow on versions including PC/104-Plus, PCI-104, PCIe/104 and PCI/104-Express. This Product Focus section updates readers on these technology trends and provides a product gallery of representative PC/104 and PC/104-family boards.

TOOLS & TECHNIQUES FOR EMBEDDED ENGINEERING

Code Analysis Tools
Today it’s not uncommon for embedded devices to have millions of lines of software code. Code analysis tools have kept pace with these demands making it easier for embedded developers to analyze, debug and verify complex embedded software. Circuit Cellar Chief Editor Jeff Child explores the latest technology trends and product developments in code analysis tools.

Transistor Basics
In this day and age of highly integrated ICs, what is the relevance of the lone, discrete transistor? It’s true that most embedded systems can be solved by chip level solutions. But electronic component vendors do still make and sell individual transistors because there’s still a market for them. In this article, Stuart Ball reviews some important basics about transistors and how you can use them in your embedded system design.

Pressure Sensors
Over the years, George Novacek has done articles examining numerous types of sensors that measure various physical aspects of our world. But one measurement type he’s not yet discussed in the past is pressure. Here, George looks at pressure sensors in the context of using them in an electronic monitoring or control system. The story looks at the math, physics and technology associated with pressure sensors.

MICROCONTROLLERS DO IT ALL

Robotic Arm Plays Beer Pong
Simulating human body motion is a key concept in robotics development. With that in mind, learn how these Cornell graduates Daniel Fayad, Justin Choi and Harrison Hyundong Chang accurately simulate the movement of a human arm on a small-sized robotic arm. The Microchip PIC32 MCU-based system enables the motion-controlled, 3-DoF robotic arm to take a user’s throwing motion as a reference to its own throw. In this way, they created a robotic arm that can throw a ping pong ball and thus play beer pong.

Fancy Filtering with the Teensy 3.6
Signal filtering entails some tricky tradeoffs. A fast MCU that provides hardware-based floating-point capability eases some of those tradeoffs. In the past, Brian Millier has used the Arm-based Teensy MCU modules to serve meet those needs. In this article, Brian taps the Teensy 3.6 Arm MCU module to perform real-time audio FFT-convolution filtering.

Real-Time Stock Monitoring Using an MCU
With today’s technology, even very simple microcontroller-based devices can fetch and display data from the Internet. Learn how Cornell graduates David Valley and Saelig Khatta built a system using that can track stock prices in real-time and display them conveniently on an LCD screen. For the design, they used an Espressif Systems ESP8266 Wi-Fi module controlled by a Microchip PIC32 MCU. Our fun little device fetches chosen stock prices in real-time and displays them on a screen.

… AND MORE FROM OUR EXPERT COLUMNISTS

Attacking USB Gear with EMFI
Many products use USB, but have you ever considered there may be a critical security vulnerability lurking in your USB stack? In this article, Colin O’Flynn walks you through on example product that could be broken using electromagnetic fault injection (EMFI) to perform this attack without even removing the device enclosure.

An Itty Bitty Education
There’s no doubt that we’re living in a golden age when it comes to easily available and affordable development kits for fun and education. With that in mind, Jeff Bachiochi shares his experiences programming and playing with the Itty Bitty Buggy from Microduino. Using the product, you can build combine LEGO-compatible building blocks into mobile robots controlled via Bluetooth using your cellphone.

Enclustra FPGA Modules Power Electric Racing Car

Formula Student is the largest engineering competition in the world. The Zurich/Switzerland based AMZ student team managed to put itself top of the world rankings, also thanks to the innovative, FPGA module-based approach for the electric drivetrain. Four custom inverters are built around the Xilinx Zynq 7015 based Enclustra Mercury ZX5 SoC module to reach the fastest lap times.

The Enclustra Mercury ZX5 SoC (hidden under the heat sink) is the heart of the inverter (green PCB).

by Andreas Horat, CTO – AMZ electric
ETH Formula Student Project

Formula Student – the largest engineering competition in the world (see box) – has 18 events a year, with more than 600 student teams participating. In the twelve-year history, the AMZ (Akademischer Motorsportverein Zürich) racing team, consisting of students from the ETH Zürich and the university of applied science Lucerne, has managed to put itself at the top of the world rankings thanks to continuous improvement of concepts and the introduction of new innovations, like the use of an FPGA module for controlling the electric drive motors. The tenth anniversary two years ago was crowned with the successful world record for the fastest acceleration for an electric car from 0 to 100 km/h in 1.513 seconds. In order to remain competitive, the individual vehicle components must be coordinated and integrated into one reliable and performant system. With most of the components developed and built custom their selves, AMZ can do just that.

The way to the top
The aim of the 2018 vehicle “eiger” – all cars are named after Swiss mountains – was to reach the maximum possible number of points in the competition. This is achieved by driving the fastest lap. By lap time simulation, energy calculations and analysis of the log data of past seasons it was decided to follow a concept with a fully custom four wheel drivetrain, a Carbon fiber reinforced polymer (CFRP) monocoque, computational fluid dynamics (CFD) and windtunnel validated aeropackage and hydraulic suspension.

FPGA module based inverter
For the first time in the AMZ history the team developed all components of the drivetrain completely in-house. The last missing part was the Inverter. In 2017 the team started the development of a completely custom inverter, based on a FPGA module from Enclustra. The inverter converts the DC voltage from the Lithium battery into three-phase current to run the permanent magnet synchronous motors.

Four self-developed inverters control one motor each. A self-developed direct torque control (DTC) modulator is running on a Xilinx Zynq 7015 FPGA-System-on-Chip based Enclustra Mercury ZX5 SoC module. VHDL implementation makes it possible to estimate the current state of the motor and calculate the new switching positions every 10 nanoseconds – not possible with a microcontroller or DSP based system.

The electric race car “eiger” has a four wheel drivetrain that is controlled by an FPGA on the Enclustra Mercury ZX5 SoC module.

Custom 1200 Volt SiC MOSFET modules with an on resistance of only 10 milliohm with self developed intelligent gate-drivers, water cooled through a 3D printed cooling plate, reduce conduction and switching losses with increased switching speed down to 39 ns rise time. Additional two 47 nanofarad DC-link capacitors on the module decrease power loop inductance. A hybrid dc link with 6 microfarad Ceralink ceramic capacitors and 240 microfarad film capacitors are used to reduce mass and lower dc link voltage ripple. Two PCBs are designed with 1 millimeter copper inlets for tractive system connections to minimize board area. To control the motor, the three phase currents, the dc link voltage and current as well as two phase to phase voltages are measured with up to 1 million samples per second. To determine the current position of the motor a resolver is used. Gigabit ethernet and CAN connectivity ensures fast and safe communication in the car and on the test bench. The entire inverter software is developed in-house to ensure highest customizability.

The Enclustra Mercury ZX5 SoC module
For the processing unit a system on chip (SoC) was chosen. Bare SoCs are in most cases packaged in a ball grid array (BGA), that is difficult to solder and require a PCB with many layers to route the signals to the chip. The SoC requires also a lot of periphery such as memory, clock, interfaces and a sophisticated power supply. The Mercury ZX5 SoC module from Enclustra provides exactly all that functionality on one single small PCB. The module contains 1 gigabyte of DDR3L SDRAM, 512 megabyte of NAND Flash, an ethernet PHY and a power supply for all required voltages. The module even can power circuits on the base board, minimizing the need for power converters.

The Enclustra Mercury ZX5 is a complete system on module based on the Xilinx Zynq 7000 SoC.

Abundant computing power
The modulator and all the communication to the peripherals are implemented on the FPGA as it requires a very low latency and a high update rate. All safety critical functions are implemented on the FPGA, reaching a delay time of at most 1 microsecond for the over current protection and 2 microseconds for the over-voltage protection. A multilayer redundant safety system is implemented on the FPGA and the processor so that the processors and the FPGA monitor each other and shut down the inverter in case of any inconsistencies.

The higher-level controls such as velocity control and traction control are implemented on one core of the ARM Cortex-A9 processor. The second core is responsible for the communication with the vehicle control unit (VCU) or the controlling computer and for the data logging.

High bandwidth interfaces
The compiled firmware together with the bitstream for the FPGA is copied onto an SD card, that gets plugged into the inverter base board. At startup the bootloader then copies the firmware into the memory and loads the bitstream into the FPGA fabric.

The FPGA processes all current measurements with 1 million sampels per second (MSps), while the voltage measurements are processed with 500 kSps. These components are accessed through a SPI-based protocol. The motor position is measured through a resolver with a 33 kSps parallel interface. Besides being used directly by the modulator, the data is transferred to the processor through the integrated AXI PL-PS interconnect. With this technology, the processor can simply change the configuration data and read the values of the FPGA with memory access instructions.

In addition it is possible to access the DDR3 RAM of the Enclustra Mercury ZX5 module directly from the FPGA fabric. Like this it is possible to transfer large amount of log data to the RAM without processor usage. This data is then stored to the SD card for offline analysis, before the inverter is turned off.

The temperatures of the semiconductors and the output filter are measured with the built-in XADC of the SoC and directly used on the processor. In the car, the inverter is connected to the VCU via the CAN interface directly to the processing system. To run the inverter on the test bench and to connect it to a computer, the ethernet interface is used.

Simplified power supply
The Enclustra Mercury ZX5 can be powered from a single power supply with a voltage between 5 and 15 volt. It contains the DC/DC converters for all the internally required voltages. The on the module generated voltages are also routed to module connector pins. O the inverter base board these 3.3 volt and 1.8 volt rails are used to power the analog and digital circuits. Due to this the effort for the external power supply is minimized.

The Enclustra Mercury ZX5 contains abundant I/Os and interfaces, memory and all needed power supplies.

Broad design-in support
To ease the integration of their modules, Enclustra provides all required hardware, software and support materials. Detailed documentation and reference designs make it easy to get started, in addition to the user manual, user schematics, a 3D-model, schematic symbol, PCB footprints and differential I/O length tables are available. Thanks to this the risk of wrong pin alignment is minimized.

The Enclustra Build Environment can be used to compile the Enclustra SoC modules with an integrated ARM processor very smoothly. The module and base board are selected by a graphical interface. After that, the Enclustra Build Environment downloads the appropriate Bitstream, First Stage Boot Loader (FSBL) and the required source code. Finally, U-Boot, Linux and the root file system based on BusyBox are compiled.
With the free Module Configuration Tool (MCT) the modules and base boards can be configured via USB – without any additional hardware. Using the on-board USB connectors on the Enclustra base boards, users can program the module’s FPGA and SPI flash, read the module EEPROM, and configure peripheral devices.a
All arising questions during the development of the AMZ inverter could be solved quickly with the help of Enclustras support.

The next evolution
The new inverter for the 2019 race car “mythen” is again built around the Enclustra Mercury ZX5 module. The even smaller Mars ZX2 from Enclustra has also been evaluated, but this module was not able to fulfil the required number of I/O-Pins. With the new inverter a fiber-optic link between two Enclustra Mercury ZX5 modules is implement in the car. For this the Multi-Gigabit-Transceivers are used.

For “mythen” the drivetrain concept was changed from four inverters – one for each motor/wheel – to a two inverters concept. One inverter with one Enclustra Mercury ZX5 module is controlling two motors now. Thanks this new concept a lot of auxiliary circuits could be merged, the complexity reduced and also some valuable space saved. In addition it opens the possibility to implement more advanced control algorithms, which act on multiple motors.

The Formula Student competition
Formula Student is the world’s biggest competition for engineers, founded in 1981. The idea of the competition is to introduce future engineers during one year to the development, production, assembly, testing and competition of an electric or combustion race car. More than 600 teams from universities all over the world competing with their self-constructed race cars. The winner is not necessarily the team with the fastest car, but the one with the best package regarding construction, performance, financial planning and sales arguments.A separate class for electric vehicles was introduced in 2010 in order to prepare prospective young engineers for future technologies such as electric drivetrains and in order to advance the innovation process.www.formulastudent.com
www.formulastudent.de
ETH Formula Student Project: electric.amzracing.ch

 

Enclustra – Everything FPGA
Enclustra is an innovative and successful FPGA design house. The FPGA Design Center supports customer with development services over the complete spectrum of the FPGA based system development. From high-speed hardware and HDL firmware to embedded software, from specification and implementation to prototype production. The other part of Enclustra, the FPGA Solution Center, develops and sells highly integrated FPGA & SoC modules, based on Intel and Xilinx FPGAs & SoCs, as well as FPGA optimized IP-Cores. The specialization to the FPGA technology enables Enclustra to provide optimal solutions with minimal effort in many application areas.Enclustra GmbH
8045 Zurich
Tel. +41 (0) 43 343 39 43
mailto:info@enclustra.com
www.enclustra.com

 

 

 

Highly Integrated USB-C Buck Charger Reduces Size by 30%

Maxim Integrated Products has announced the MAX77860 3A switch-mode charger. This USB-C buck charger provides the industry’s first integrated USB-C port controller and charger to eliminate the need for a separate host controller, according to Maxim. This simplifies software development and reduce overall bill-of-materials (BOM) costs for applications such as financial point-of-sale terminals, power banks, industrial computers, scanners, radios, medical devices and charging cradles.
To reduce design size as well as simplify the system hardware and software design, the MAX77860 integrates USB-C configuration channel (CC) port detection and a battery charger for 15 W applications. These integrated functions allow battery charging at the fastest rate possible under the USB-C specification and contribute to 30% smaller design size while also simplifying software development. The CC pin detection feature also shortens the design effort by eliminating the need to support end-to-end USB port connection and allowing charging to start automatically.

Key Advantages:

  • Highly Integrated: Eliminates a separate port controller and many discrete components. Reduces the size of an inductor and a capacitor due to a high switching frequency of 2 MHz/ 4 MHz, resulting in a solution size that is 30 percent smaller than the closest competitive device. This high level of integration also reduces overall BOM costs.
  • High Efficiency: High-efficiency buck reduces heat dissipation with more than 93 percent efficiency and up to 3A charging capability.
  • Design Flexibility: Backward compatibility allows designs to work with both USB-C and legacy BC1.2 or proprietary adapters. Integrated analog-to-digital converter (ADC) frees up resources in the microcontroller, while providing accurate voltage and current measurements.

The MAX77860 is available at Maxim’s website for $3.03 (1,000-up). The MAX77860EVKIT# evaluation kit is available for $70.

Maxim Integrated | www.maximintegrated.com

 

SOMs based on RK3399 and PX30 SoCs target IoT

Arbor Technology has introduced a pair of System-on-Module (SOM) products both based on Rockchip SoCs, the RK3399-based SOM-RK391 and the Rockchip PX30-based SOM-RP301. Both modules run Ubuntu, Buildroot, or Android 9.0. Along with the pair of modules, the company has also released the PBA-9000-A, its SOM-Series, single pin-out design carrier board.

The Rockchip RK3399 SoC has been a favorite among high-end community backed Arm-based boards over the last couple years, and we’ve covered at least one every month over that period. Recent examples include Arbor’s own EmQ-RK390 Qsevenmodule, Geniatech’s DB9 SBC and Vamr’s 96Boards CE-compatible Rock960 Model C. In contrast, the SOM-RP301 appears to be the first module we’ve seen based on Rockchip’s low-power PX30 SoC.

SOM-RK391

Built around the Rockchip RK3399 hexa-core (2x Cortex-A72 + 4x Cortex-A53) SoC, the SOM-RK391 is designed for high-performance applications such as AI computing, edge computing and machine vision, according to Arbor.


SOM-RK391
For memory, the RK391 provides 2GB to 4GB of LPDDR4 DRAM and mass storage via 16GB eMMC flash plus support SD Card boot up. The Mali-T860MP4 GPU supports OpenGL ES1.1/2.0/3.0/3.1, OpenVG1.1, OpenCL and DX11. Display support includes eDP, MIPI DSI and HDMI. The compact 69.6 x 70 mm SOM supports extended operating temperatures from 10 to 70ºC.

The RK391 also provides WiFi /Bluetooth support including 2T2R 802.11 a/b/g/n/ac for WiFi and Bluetooth 5.0 with real simultaneous dual-band (RSDB). You also get 2x MIPI CSI RX camera interfaces with 13MP ISP. For I/O you get 4x USB 2.0, 2x USB 3.0 2 (Type C), 2x 2-wire UART ports and 2x 4-wire UART ports. There’s also support for RTC, 10-bit 1MS/s ADC, SDIO, DIO, GPIO, SPI and I2C.

SOM-RP301

The SOM-RP301 meanwhile is based on the Rockchip PX30 Quad-Core Cortex-A35 processor and measures a compact 70 x 50 mm. Arbor touts the board for its low power consumption, flexible thermal management, cost-efficiency and its suitability for IIoT applications. The combination of its hardware media decoder and processing power makes it a fit to implement in retail kiosks such as electronic restaurant menus, automated currency exchange machines, ticketing kiosks and so on, according to Arbor.



SOM-RP301
The SOM-RP301 offers provides 1GB to 4GB of LPDDR4DRAM and mass storage via 16GB eMMC flash plus support SD Card boot up. The Mali-T860MP4 GPU supports OpenGL ES1.1/2.0/3.0/3.1, OpenVG1.1, OpenCL and DX11. Display support includes LVDS and MIPI DSI, and those interfaces share the same pinout. Like the RK391, this modules also supports extended operating temperatures from 10 to 70ºC.

The RK391 also provides WiFi /Bluetooth support including 1x 802.11 a/b/g/n/ac for WiFi and Bluetooth 4.0. You also get 1x MIPI CSI RX camera interface with 8MP ISP. For I/O the RP301 provides the all the same ports as the RK391 as described above. Despite the fact that Arbor touts the RP301 as a low power solution, its datasheet currently says “TBD” for the board’s power consumption.

PBA-9000-A SOM Carrier Board

Arbor’s PBA-9000-A Carrier Board for its SOM-series features a single pin-out design that enables it to easily support future boards in the Arbor SOM-series CPU Board family. The PBA-9000-A’s I/O configuration supports all of the interfaces on the SOM-series boards.



PBA-9000-A SOM carrier board detail
(click image to enlarge)

Further information

More information on the three boards can be found on the announcement page. No pricing was provided. Links to datasheets for the SOM-RK391, SOM-RP301 and PBA-9000-A boards can be found on Arbor’s ARM-computing product page.

This article originally appeared on LinuxGizmos.com on April 8.

Arbor Technology | www.arbor-technology.com

Solar Powered BLE Sensor Platform Offers Battery-Less IoT Solution

ON Semiconductor has introduced its RSL10 Multi-Sensor Platform powered only with a solar cell. This complete solution supports the development of IoT sensors using continuous solar energy harvesting to gather and communicate data through Bluetooth Low Energy (BLE), without the need for batteries or other forms of non-renewable energy.

The combination of ultra-low-power wireless communications, small form-factor solar cell and low duty cycle sensing applications makes it possible to develop and deploy totally maintenance-free IoT sensor nodes. The RSL10 Solar Cell Multi-Sensor Platform is enabled by the RSL10 SIP, a complete System-in-Package (SiP) solution featuring the RSL10 radio, integrated antenna and all passive components.

The platform combines the RSL10 SIP with a solar cell and a host of low power sensors from Bosch Sensortec, including the BME280 all-in-one environmental sensor (pressure, temperature, humidity) and the BMA400 ultra-low-power 3-axis accelerometer. Together, they will allow developers and manufacturers to create complete IoT nodes that are entirely powered through renewable energy or energy harvested from the sensor’s surroundings.

There are a growing number of IoT sensor applications where the duty cycle is low enough to support intermittent communications, allowing the energy needed to support operation to be harvested using renewable sources. The energy efficiency of the RSL10 is augmented by the highly efficient power management system and the ultra-low-power sensors implemented in the platform. Applications are expected to include smart home and building automation such as HVAC control, window/door sensors and air quality monitoring. Asset tracking including package open/close detection, shock monitoring, and temperature and humidity data logging are also possible applications.

For easy development, the platform is supplied with all design files (Gerber, schematic and BoM) and customizable source code as part of a CMSIS software package. The RSL10 Solar Cell Multi-Sensor Platform is available now from ON Semiconductor.

ON Semiconductor | www.onsemi.com

 

IoT Edge Server Achieves VMware vSphere Certification

Eurotech has announced that its BoltCOR 30-17 Intel Xeon D-based Edge Server has passed VMware vSphere certification tests and is part of the VMware Hardware Compatibility List (HCL). The HCL lists all of the hardware components that are supported by each version of ESXi/vSphere. This allows the company to offer configurations to the market that can be combined with VMware vSphere certified and validated.

The BoltCOR 30-17 family of powerful, ruggedized edge servers is designed for demanding and rough environments for markets like transportation, Industry 4.0/manufacturing, smart energy or retail. The BoltCOR 30-17 is a fanless EN50155 certified server with many configuration options, that is designed to exceed the requirements of rolling stock applications in the TX temperature class.

The edge server’s compact 19” 1U rack-mount short-depth form factor allows it to be deployed even in most space-constrained on-board and track-side installations. Combined with VMware vSphere these systems enable system developers to gain also outside the traditional data center (in the field) similar positive effects that enterprise IT has experienced in hyper-converged solutions.

Eurotech | www.eurotech.com

 

Firms Collaborate on Edge Gateway and Other IoT Solutions

U-blox and SolidRun have announced a collaboration on a range of connectivity products for the IoT, including turnkey IoT Edge Gateways for indoor and outdoor use, SBCs and System‑on‑Modules (SOMs). Each of the new solutions incorporate a u-blox NINA stand‑alone single-, dual- or multi‑radio module, providing the connectivity required by IoT applications in a small, low power and fully certified format.

During Embedded World 2019, SolidRun formally introduced its latest product: the SolidSense N6 Edge Gateway (shown), an enterprise‑grade IoT M2M gateway designed to manage a local network of IoT endpoints. The N6 Edge Gateway is a fully enclosed fan‑less design in configurations suitable for either indoor or outdoor installation, making it simpler than ever to introduce Internet connectivity in a distributed network of smart sensors and actuators.

The gateways and SBCs from SolidRun feature Wi‑Fi and Bluetooth Personal Area Networking, Wirepas Mesh, cellular connectivity, as well as USB and a 10/100/1000 wired Ethernet interface. They are powered by the NXP’s i.MX6 ARM Cortex-A9 processor in either a single-, dual- or quad‑core configuration (depending on the application’s needs) and also integrate up to 2 GB of DDR3 memory.

U‑blox | www.u‑blox.com
SolidRun | www.solid‑run.com

 

IIoT Software Update Boosts Interoperability and Scalability

Moxa has announced the release of the latest software update for its industrial network management software, MXview. The software update enables system developers to easily integrate MXview into both IT and OT systems, as well as manage large-scale networks at multiple sites. MXview has a user-friendly interface to help developers view network status quickly and conveniently.
MXview supports a web widget that provides a URL for users to integrate MXview into SCADA systems and other web-based applications. In addition to integrating MXview into OT applications, MXview now supports RESTful API, which provides IT engineers with more options to manage and control their industrial networks with their own dashboard to reduce maintenance effort. The updated MXview offers a centralized monitoring approach for up to 10 different sites that have a maximum of 2,000 network devices per site.

In order to simplify network management, MXview allows users to get the information they require from the main control dashboard. MXview provides a one-page dashboard that allows users to quickly check the status of the network and uses a web-based software design that allows devices on industrial networks to be monitored via a web browser. Furthermore, the interface of MXview supports six languages, including English, Simplified and Traditional Chinese, French, German and Japanese.

MXview Industrial Network Management Software features:

  • Easily integrated into third-party applications with a web widget and RESTful API interface.
  • Central management of device monitoring, configurations, and firmware for 10 different sites with 20,000 devices.
  • The network dashboard provides a convenient way to check the network status.
  • Discovers and visualizes network devices and physical connections automatically.
  • Multiple options for events and notifications with self-defined thresholds and durations.

Moxa | www.moxa.com

 

Whiskey-Lake U Processor Rides COM Express Type 6 Module

TQ Systems has released a COM Express Compact Type 6 module TQMx80UC based on the 8th generation Intel Core Mobile Processors code named “Whiskey-Lake U”. This module is well suited for industrial controllers, robotics applications, medical devices and point-of-sales. Depending on the required functionality and computing power, several CPU variants (i7, i5, i3, Pentium, Celeron) with two or four cores can be selected. With a thermal power loss of 15 W TDP, four cores are now available for the first time in this performance class (previously two for the 7th generation U series).

The memory interface is equipped with the fast DDR4-2400 technology. The memory capacity can be selected between 4 GB and 64 GB depending on the SO-DIMM modules used. Up to nine PCI Express lanes (Gen3; 8 GHz) are available for connecting up to five peripheral devices and can be flexibly configured in the BIOS. For the first time, the new USB 3.1 Gen2 standard is supported, which allows transfer rates of up to 10 Gbit/s.

Four high-speed interfaces are available for this purpose. In addition, eMMC flash in sizes between 8 GB and 128 GB is available for the first time on the module. The COM Express Compact Module TQMx80UC with its dimensions of 95 mm x 95 mm and Type 6 pinout conforms to PICMG COM.0 R3.0. It is supported by the new TQ mainboard MB-COME6-3. Together with a 11 mm high heatspreader and a heatsink, the combination of boards results in an effective evaluation platform.

TQ Systems | www.tq-group.com

 

 

Tuesday’s Newsletter: IoT Tech Focus

Coming to your inbox tomorrow: Circuit Cellar’s IoT Technology Focus newsletter. Tomorrow’s newsletter covers what’s happening with Internet-of-Things (IoT) technology–-from devices to gateway networks to cloud architectures. This newsletter tackles news and trends about the products and technologies needed to build IoT implementations and devices.

Bonus: We’ve added Drawings for Free Stuff to our weekly newsletters. Make sure you’ve subscribed to the newsletter so you can participate.

Already a Circuit Cellar Newsletter subscriber? Great!
You’ll get your IoT Technology Focus newsletter issue tomorrow.

Not a Circuit Cellar Newsletter subscriber?
Don’t be left out! Sign up now:

Our weekly Circuit Cellar Newsletter will switch its theme each week, so look for these in upcoming weeks:

Embedded Boards.(4/23) The focus here is on both standard and non-standard embedded computer boards that ease prototyping efforts and let you smoothly scale up to production volumes.

April has a 5th Tuesday, so we’re bringing you a bonus newsletter:
Automotive Electronics (4/30)  Automotive dashboard are evolving into so-called infotainment systems at the same time more of the car is being controlled by embedded  computing. That’s driving a need for powerful MCU-based solutions that support these trends. This newsletter looks at the latest technology trends and product developments in automotive electronics.

Analog & Power. (5/7) This newsletter content zeros in on the latest developments in analog and power technologies including DC-DC converters, AD-DC converters, power supplies, op amps, batteries and more.

Microcontroller Watch (5/14) This newsletter keeps you up-to-date on latest microcontroller news. In this section, we examine the microcontrollers along with their associated tools and support products.

Preparing for an IoT Edge Project

FREE White Paper –
Before starting your IoT edge device development process, it is wise to spend time preparing for your new project. Planning before you start will limit frustration and save you time and money in the long run. Before diving into the task, study the 15 preparation considerations in this white paper.

Get your copy – here

Cloud-Based Geolocation Service is LoRaWAN-Compatible

Semtech has announced the availability of LoRa Cloud Geolocation, a new cloud-based geolocation service that is compatible with the LoRaWAN protocol and almost any network server. The geolocation service can be easily integrated to provide a low-cost, performance-optimized solution, and is the first of a variety of cloud services products that Semtech will be offering to support IoT application development.

Over the past year, Semtech has trialed a free Cloud-based geolocation service with hundreds of users providing positive feedback on the ease-of-use and the performance of the service. LoRa Cloud Geolocation was in beta test this year with limited partners and over the coming quarter, many more users are expected to integrate the new service into their platforms. The new Cloud-based geolocation service was designed to support flexibility in deployment options providing geolocation service availability to any IoT devices.

Semtech is currently onboarding early customers and general availability with sign-up via a new LoRa Cloud services portal is expected in the summer of 2019. Different pricing tiers will be available for selection.

LoRa Cloud Geolocation Features:

  • Simple API accepting signal-strength, signal-to-noise ratio and time of arrival data from LoRaWAN-based gateways and returning an estimated location.
  • Supporting all LoRaWAN-based gateways, with or without accurate time of arrival data
  • Compatible with all LoRaWAN-based devices on all LoRaWAN-based networks
  • Options for including multiple packets (uplinks) in a single query for improved accuracy
  • 100% stateless with all required data included in the query
  • No device identity required – total device anonymity ensured
  • Support for multiple antennae per gateway
  • Deploy in public Cloud or on-premise

Semtech | www.semtech.com