About Circuit Cellar Staff

Circuit Cellar's editorial team comprises professional engineers, technical editors, and digital media specialists. You can reach the Editorial Department at editorial@circuitcellar.com, @circuitcellar, and facebook.com/circuitcellar

Telit and Boatrax Partner to Create Smart IoT Boat Monitoring Solution

Telit has announced its partnership with the vessel tracking company Boatrax. With Telit’s deviceWISE IoT Platform and cellular IoT communication modules, the Miami, Florida-based company created the Boatrax Box, a monitoring and diagnostic solution that aggregates important data about boat performance and owner behavior in real-time.
Launched in October 2018, the Boatrax Box brings boat owners peace of mind with a smart-boat experience that gets smarter the more it is used. With proprietary algorithms that adapt to the boat operator’s behaviors, it delivers critical information such as location, predictive maintenance alerts and engine diagnostics to ensure top efficiency. Engineered with the MultiTech SocketModem Cell that leverages Telit’s XE910 family of modules, the Boatrax Box is easy to mount and simple to use, while delivering the most comprehensive set of connectivity features in a compact form factor.

Boatrax | www.boatrax.com

Telit | www.telit.com

 

Firms Team Up on Advanced IIoT and Edge Analytics Solutions

Eurotech and Horsa have announced a partnership to enable final users to reduce production costs by taking advantage of the integration of high computational capabilities and analytics at the edge. Eurotech’s expertise in embedded hardware and Operational Technology and Horsa’s advanced IT and analytics skills enable innovative business models by creating Manufacturing Execution Systems (MES) that combine high computational performance and machine learning at the edge with advanced IT solutions and software to build an open, integrated, managed and flexible IoT infrastructure
Eurotech’s Multi-service IoT Edge Gateways provide IoT connectivity to industrial machinery in the field, providing native support for the most common field communication protocols, as well as edge computing and machine learning capabilities for data collection and management. The valuable data collected by this intelligent edge infrastructure are integrated with Horsa’s leading enterprise IT solutions in order to perform advanced analytics for IoT applications, from simple anomaly detection and alert management to predictive maintenance and full quality control systems.

Eurotech | www.eurotech.com

Horsa | www.horsa.com

 

U-blox Low Power GNSS Receiver Taped for Smart Watch Design

Technologies from U‑blox and TransSiP have been selected for the recently announced PowerWatch 2 from MATRIX Industries. Power Watch 2 claims to be the world’s first GPS smartwatch that you never need to recharge. The smartwatch embeds the ultra‑small, ultra‑low power U‑blox ZOE‑M8B GNSS receiver. Meanwhile, TransSiP’s PI technology ensures energy harvested is used at maximum efficiency.

The PowerWatch 2 does away with cables and external batteries by continually topping up its battery using thermoelectric energy generated from body heat as well as solar energy. The watch can connect to your smartphone and display notifications on your wrist, while tracking activities and visualizing them using dedicated iOS and Android apps, as well as with popular third-party health and fitness platforms.

The PowerWatch 2 delivers location tracking using the low‑power U‑blox ZOE‑M8B GNSS receiver module that consumes as low as 12 mW. Packaged as a (System‑in‑Package), the 4.5 x 4.5 x 1.0 mm module helps achieve the watch’s comparatively low 16‑mm thickness. And concurrent reception of up to three GNSS constellations means that it delivers high accuracy positioning in challenging situations such as urban or dense forest environments and when swimming.

Satellite based positioning is typically the most power‑hungry process on a sports watch. Providing highly efficient conversion of harvested energy into a very quiet supply of DC power, TransSiP PI enhances the ability of the ZOE‑M8B GNSS receiver module incorporating U‑blox Super‑E technology, to strike an ideal balance between power and performance. Working on a tight power budget, the watch supports 30 minutes of continuous GNSS tracking per day, with unused time accumulating in the watch’s battery pack—powering two hours of location tracking every four days.

TransSiP | www.transsip.com

U‑blox | www.u‑blox.com

504-W Rated AC-DC Power Modules are Conduction Cooled

TDK has announced its conduction cooled TDK-Lambda PFH500F-28 AC-DC power modules. The power supplies are rated at 28 V,504 W, feature a compact 4” x 2.4” footprint and have optional Read/Write programming and communication through a PMBus interface. These third generation power supplies are ideal for a variety of applications including COTS (Commercial-Off-The-Shelf), power amplifiers, LED displays and test equipment.

The PFH500F-28 series utilizes GaN semiconductors, bridgeless power factor correction, synchronous rectification and digital control, enabling efficiencies of up to 92%. Opto-couplers have been replaced by digital isolators for long term reliability and stability. Accepting an 85 to 265 VAC input, the modules deliver 28V at 18A and can be adjusted from 22.4 to 33.6 V using the trim pin or PMBus interface. Baseplate cooling allows operation at temperatures ranging from -40°C to +100°C. The metal enclosure measures 4” x 2.4” x 0.53” (101.6 mm x 61.0 mm x 13.3mm) and is encapsulated for MIL-STD-810G shock and vibration.

Features and options include a 12 V standby voltage with 200 mA (or 2.4 W) capability, remote on/off, pre-biasing start-up, droop mode current share, a DC Good signal, various protections (OVP, UVP, OCP, OTP) and a PMBus interface. The interface can be used to program (read-write) the output voltage and fault management functions and monitor the unit’s operating status.

The series has been certified to the IEC/UL/CSA/EN 60950-1 safety standards (62368-1 pending) and carries the CE mark for the Low Voltage and RoHS Directives. Input to ground isolation is 2,500 Vac, input to output 3,000 Vac and output to case 1,500 Vdc.

Main Features and Benefits:

  • 4” x 2.4” foot-print
  • High Efficiency – up to 92%
  • PMBus interface
  • Parallel capability (droop mode)

TDK Lambda | www.us.tdk-lambda.com

 

Wi-Fi 6 / Bluetooth Combo Chips Enhance Automotive Infotainment

Cypress Semiconductor has announced a trio of new products, including Wi-Fi / Bluetooth combo chipsets and supporting software serve as application development platforms that enable multiple users to connect and seamlessly stream unique content to as many as 10 mobile devices simultaneously. The new infotainment platforms include a Wi-Fi 6 (802.11ax) and Bluetooth combo solution that features Cypress’ Real Simultaneous Dual Band (RSDB) architecture. RSDB has become the de facto standard for premium connected infotainment experiences, enabling two unique data streams to run at full throughput simultaneously by integrating two complete Wi-Fi subsystems into a single chip. Wi-Fi 6 enables gigabit-level throughput and improves reliability for content streaming to multiple devices at once.
Cypress also added two Wi-Fi 5 (802.11ac) and Bluetooth combo solutions to its portfolio, empowering car makers and automotive system suppliers with a scalable platform solution to address a wide range of vehicles with a uniform software architecture that minimizes development and system integration costs.

According to Cypress, premium infotainment systems require high-throughput, multi-role, concurrent operation to implement wireless mirroring for applications such as Apple CarPlay, Android Auto and Mirrorlink. Cypress’ Wi-Fi and Bluetooth combo solutions meet these needs and also offer simultaneous Wi-Fi Hotspot and content access, and multi-band/multi-radio coexistence for video and Bluetooth audio. The Cypress CYW89650 2×2 plus 2×2 Wi-Fi 6 and Bluetooth 5.0 combo solution delivers more than 1G bps throughput, and the RSDB architecture enables concurrent operation for these use cases in high-performance infotainment systems without audio or video degradation.

The new CYW89459 2×2 Wi-Fi 5 and Bluetooth 5.0 combo with RSDB builds on the success of Cypress’ existing automotive Wi-Fi 5 solutions, enabling more connected devices to the head unit and including emerging features such as WPA3 security, Wi-Fi Location and Wi-Fi Aware. Together with the new cost-effective CYW89373 1×1 Wi-Fi 5 and Bluetooth 5.0 combo, the portfolio provides mass market to luxury class vehicles with advanced wireless performance and medium coexistence management for an uninterrupted entertainment experience.

Cypress’ automotive wireless solutions are fully automotive qualified with AEC-Q100 grade-3 validation. Cypress’ existing solutions have been designed in by numerous top-tier car OEMs and automotive suppliers and are in production vehicles today supporting infotainment and telematics applications such as smartphone screen-mirroring, content streaming and Bluetooth voice connectivity in car kits.

Cypress Semiconductor | www.cypress.com

 

 

Tiny PMICs Offer Efficient High Voltage Automotive Solutions

Maxim Integrated Products has announced power-management ICs (PMICs) that the company claims offers the industry’s smallest solution size and highest efficiency. MAX20004/6/8, MAX20034 and MAX20098 offer low quiescent current, improved noise performance and electromagnetic interference (EMI) mitigation for digital instrument clusters and radio head units.
Maxim’s array of automotive-grade ICs provides many options to manage the DC power as automotive OEMs transition from processors that consume 20 W of power to artificial intelligence platforms that consume as much as 500 W. With a package size of 3.5 mm x 3.75 mm, Maxim’s buck converters offer the industry’s smallest solution size, says the company. Their flip-chip quad-flat no-leads (FCQFN) packaging reduces high-frequency switch node ringing and eliminates bond wires to lower MOSFET switch on-resistance and increase efficiency. Maxim provides pin-compatible parts for four, six and eight amps for flexible power regulation. All of the ICs feature spread-spectrum modulation, high switching frequency, forced pulse-width modulation and skip-mode operation for best-in-class performance.

Maxim’s newest automotive PMICs for high-voltage power applications include:

  • MAX20004, MAX20006 and MAX20008 4 A, 6 A and 8 A high-voltage (40 V tolerant) synchronous buck converters with integrated high-side and low-side MOSFETs, offering the industry’s lowest switch resistance of 38 and 18 mΩ, respectively, for high efficiency. Key advantages of these pin-compatible devices include 25 µA quiescent current, operating input voltages from 3.5 V to 36 V and 93 percent peak efficiency. All are available in a compact 3.5 mm x 3.75 mm, 17-pin side-wettable QFN package that reduces high-frequency switch node and improves efficiency.
  • MAX20098 220 kHz to 2.2 MHz synchronous buck controller for applications with mid- to high-power requirements operating with input voltages from 3.5 V to 36 V (42 V tolerant). For efficiency, this device features a quiescent current of 3.5 µA in skip mode at 3.3 V output along with a 1µA typical shutdown current specification. Its 3 mm x 3 mm side-wettable QFN package reduces solution size, and the IC requires few external components, enabling a two-layer PCB design.
  • MAX20034 220 kHz to 2.2 MHz dual synchronous buck controller for high-voltage applications operating with input voltages from 3.5 V to 36 V (42 V tolerant), where one regulator will operate as a fixed 5 V or 3.3 V output and the other output is adjustable between 1V to 10V. Key efficiency advantages include 17 µA quiescent current in skip mode and 6.5µA typical shutdown current. The device is available in a 5 mm x 5 mm side-wettable QFN package, and it provides up to 2.2 MHz switching frequency to enable smaller external components and total solution size.

Maxim Integrated | www.maximintegrated.com

 

Intel Atom-Based AV Compute Platform Targets Autonomous Cars

By Eric Brown

At CES, Intel unveiled an Intel AV compute platform aimed at autonomous cars. It features a pair of Linux-driven Mobileye EyeQ5 sensor processing chips and a new Intel Atom 3xx4 CPU.

 
Intel AV’s Responsibility-Sensitive Safety (RSS) model in action (left) and Mobileye EyeQ5 block diagram
(click images to enlarge)
The Intel AV system provides 60 percent greater performance at the same 30 W consumption as Nvidia’s automotive focused Jetson Xavier processor, claims Intel. The Mobileye EyeQ5 processors are each claimed to generate 24 trillion deep learning operations per second (TOPS) at 10 W each. The Atom 3xx4 chip borrows high-end multi-threading and virtualization technologies from Intel’s Xeon processors for running different tasks simultaneously on different systems around the car.

Volkswagen and Nissan have announced plans to use the earlier EyeQ4 processor when it launches later this year. EyeQ5 production won’t begin until 2020, but later this year Intel will release an EyeQ5 Linux SDK with support for OpenCL, deep learning deployment tools, and adaptive AUTOSAR.

This is part of an article that originally appeared on LinuxGizmos.com on January 11.

Intel | www.intel.com

Tuesday’s Newsletter: IoT Tech Focus

Coming to your inbox tomorrow: Circuit Cellar’s IoT Technology Focus newsletter. Tomorrow’s newsletter covers what’s happening with Internet-of-Things (IoT) technology–-from devices to gateway networks to cloud architectures. This newsletter tackles news and trends about the products and technologies needed to build IoT implementations and devices.

Bonus: We’ve added Drawings for Free Stuff to our weekly newsletters. Make sure you’ve subscribed to the newsletter so you can participate.

Already a Circuit Cellar Newsletter subscriber? Great!
You’ll get your IoT Technology Focus newsletter issue tomorrow.

Not a Circuit Cellar Newsletter subscriber?
Don’t be left out! Sign up now:

Our weekly Circuit Cellar Newsletter will switch its theme each week, so look for these in upcoming weeks:

Embedded Boards.(2/26) The focus here is on both standard and non-standard embedded computer boards that ease prototyping efforts and let you smoothly scale up to production volumes.

Analog & Power. (3/5) This newsletter content zeros in on the latest developments in analog and power technologies including DC-DC converters, AD-DC converters, power supplies, op amps, batteries and more.

Microcontroller Watch (3/12) This newsletter keeps you up-to-date on latest microcontroller news. In this section, we examine the microcontrollers along with their associated tools and support products.

Antenna Performance Measurement Made Easy

Covering the Basics
by Robert Lacoste

Article appeared in Circuit Cellar October 2017 (Issue 327)

If you’re doing any kind of wireless communications application, that probably means including an antenna in your design. The science of antennas is complex. But here Robert shows how the task of measuring an antenna’s performance is less costly and exotic than you’d think.

Now that wireless communications is ubiquitous, chances are you’ll be using Bluetooth,
Wi-Fi, cellular, LoRa, MiWi or other flavor of wireless interface in your next design. And that means including an antenna. Unfortunately, antenna design is not an easy topic. Even very experienced designers sometimes have had to wrestle with unexpected bad performances by their antennas. Case in point: Google “iPhone 4 antenna problem” and you will get more than 3 million web pages! In a nutshell, Apple tried to integrate a clever antenna in that model that was threaded around the phone. They didn’t anticipate that some users would put their fingers exactly where the antenna was the most sensitive to detuning. Was it a design flaw? Or a mistake by the users? It was hotly debated, but this so-called “Antennagate” probably had significant impact on Apple’s sales for a while.

I already devoted an article to antenna design and impedance matching (“The Darker Side: Antenna Basics”, Circuit Cellar 211, February 2008). Whether you include a standard antenna or design your own, you will never be sure it is working properly until you measure its actual performance. Of course, you could simply evaluate how far the system is working. But how do you go farther if the range is not enough? How do you figure out if the problem is coming from the receiver, the transmitter, propagation conditions or the antenna itself? My personal experience has been that the antenna is very often the culprit. With that in mind, it really is mandatory to measure whether or not an antenna is behaving correctly. Take a seat. This month, I will explain how to easily measure the actual performance of an antenna. You will see that the process is quite easy and that it won’t even need costly or exotic equipment.

Some Antenna Basics
Let’s start with some basics on antennas. First, all passive antennas have the same performance whether transmitting or receiving. For this article, I’ll consider the antenna as transmitting because that’s easier to measure. Let’s consider an antenna that we inject with a given radio frequency power Pconducted into its connector. Where will this power go? First off, impedance matching should be checked. If the impedance of the antenna is not well matched to the impedance of the power generator, then a part of the power will be reflected back to the generator. This will happen in particular when the transmit frequency is not equal to the resonant frequency of the antenna. In such a case, a part of Pconducted will be lost. That is known as mismatch losses: Pavailable= Pconducted – MismatchLosses. While that itself is a very interesting subject, I have already discussed impedance matching in detail in my February 2008 article. I also devoted another article to a closely linked topic: standing waves. Standing waves appear when there is a mismatch. The article is “The Darker Side: Let’s play with standing waves” (Circuit Cellar 271, February 2013).

For the purpose of discussion here, I will for now assume that there isn’t any mismatching—and therefore no mismatch loss. The full Pconducted power is available for the antenna. A significant part of this power will hopefully of course be radiated into space. Let’s call that part Pradiated. Because the antenna is not perfect, Pradiated will for sure be lower than Pavailable. Remember that power is never actually lost or created from nothing. That means the difference Pavailable – Pradiated is dissipated somewhere—meaning either the antenna or its surroundings will warm up a little. This allows to define the first—and an important— performance characteristic of an antenna: power efficiency. By definition, the power efficiency of an antenna is the ratio between Pradiated and Pavailable. If all the available power is radiated by the antenna then its efficiency would be 100%. But in reality, small antennas made with small conductors have low efficiency. Meanwhile, large antennas built using thick and gold-plated conductors will usually have high efficiency.

Now let’s talk about the gain of the antenna. The concept is illustrated in Figure 1. Any antenna has a given radiation pattern, which means it transmits more power in certain directions of space. An antenna which would radiate the same power in any direction is called an isotropic antenna—but those don’t exist except as a concept. Such an isotropic antenna is taken as a reference, and a real antenna is compared to it. Imagine that you take a test receiver and move it around the antenna under test at a constant distance from it. You can find out the direction where the transmitted power is the highest. Then you compare that to the transmitted power of a theoretical isotropic antenna with the same input power. The difference between the two is called the gain of the antenna and is expressed in dBi. dBi is the decibel compared to an isotropic antenna—“i” for isotropic. Remember that a decibel is just the ratio of two powers—expressed using a logarithmic scale: decibel = 10 log (Pout/Pin)

Figure 1
By definition, the gain of an antenna is the difference between its radiated power and the power radiated by an isotropic antenna, measured in the direction where its radiation is maximal.

You may be wondering: How is this gain linked to the efficiency I talked about earlier? The relationship is far from obvious. In fact, the gain of an antenna concerns its directivity. When an antenna radiates a strong signal in a given direction, its gain is high—even if this radiation occurs in a very narrow angle. In contrast, the efficiency is linked to the total radiated power of an antenna. To measure it you would need to evaluate the transmitted power in all directions and sum them all—an operation that mathematicians call an integration. More exactly the total radiated power is the integral of the radiated power over a sphere. Of course, a lower efficiency also implies a lower gain as the total available power is reduced. But a low efficiency antenna can still have high gain. Aren’t you convinced? Consider a huge parabolic antenna—it could have gain of +30 dBi. This means that the radiated power is focused in a very narrow direction. And in that direction a receiver will see a signal 30 dB higher than if using an isotropic antenna. Of course, the antenna is not creating any power. It’s just focusing it, like a lens focuses light. Now add a 20 dB attenuator between the transmitter and the parabolic antenna—dividing the power by 1020/10 = 100). The overall gain will still be a reasonable 30-20=10dBi—even if 99% of the power will be dissipated in the attenuator.

View the full article PDF

i.MX 8M SoC-Based Solution Enables Immersive 3D Audio

NXP Semiconductors has announced its Immersiv3D audio solution for the smart home market. The solution combines NXP software on its i.MX 8M Mini applications processor and will support both Dolby Atmos and DTS:X immersive audio technologies in future devices that integrate the i.MX 8M Mini SoC. The i.MX 8M Mini also brings smart capabilities like voice control to a broader range of consumer devices including soundbars, smart speakers, and AV receivers with the option for adding additional speakers to distribute smart voice control and immersive audio throughout the home.

TVs and audio systems are becoming more advanced thanks in large part to the development of Dolby Atmos and DTS:X. Both technologies are a leap forward from surround sound and transport listeners with moving audio that fills the room and flows all around them. Listeners will feel like they’re inside the action as the sounds of people, places, thing, and music come alive with breathtaking realism. NXP’s Immersiv3D audio solution was designed to enable OEMs to bring to market affordable consumer audio devices capable of supporting Dolby Atmos and DTS:X in their next-generation devices.

Conventional design approaches to audio systems use Digital Signal Processors (DSPs) to deliver complex, controlled and low-latency audio processing to enable audio and video synchronization. But Traditional embedded systems have evolved over time, and today they are capable of processing the latest 3D audio formats, but audio systems need to be designed to take advantage of today’s advanced processor cores. In conjunction with the NXP i.MX 8M family of processors, the Immersiv3D audio solution introduces an advanced approach that features scalable audio processing integration into the SoC Arm cores. This approach eliminates the need for expensive discrete DSPs, and also once-proprietary DSP design foundations, to embrace licensable cores.

The solution delivers high-end audio features such as immersive multi-channel audio playback, natural language processing and voice capabilities to fit today’s digitally savvy connected consumer. The NXP Immersiv3D audio solution gives audio developers, designers and integrators a leap forward to add intelligence and Artificial Intelligence (AI) functionality while reducing cost. This includes development of enhancements like selective noise canceling where only certain sound elements are removed like car traffic or speech processing like changing speaker dialect or languages.

The solution introduces an easy-to-use, low-cost enablement for voice capability expansion. Audio systems built using NXP’s Immersiv3D with the i.MX 8M Mini applications processor will give consumers the flexibility to add different audio speakers, regardless of brand, to stream simultaneous and synchronized audio with voice control from their systems.

NXP showcased its i.MX applications processor family including Immersiv3D at the CES 2019 show.

NXP Semiconductors | www.nxp.com

PCB assembly – $1000 in FREE Labor

SlingShot Assembly is Offering Free Labor for First Time Customers.
SlingShot Assembly is changing the game in PCB assembly. Doing the impossible, everyday. For a limited time, SlingShot Assembly is offering FREE LABOR, up to $1,000, on new customer’s first turn-key order. Their 5-day turn includes parts, boards AND assembly. We challenge you to try something different.
Click Here for your discount code!
Only a limited number of offers are available each day.

Modular DIN Rail Box PC Targets Transportation Systems

MEN Micro has announced the MC50M, a modular DIN rail box PC for embedded applications in transportation. The computer platform is based on Intel’s Atom E3900 CPU series. This makes the MC50M the ideal basis for functions such as security gateway, predictive maintenance, CCTV, ticketing systems or as a diagnostic server.

The MC50M can be used as a stand-alone product or in combination with a range of pre-fabricated extension modules, providing additional features and short delivery times. Extension modules can provide application-specific functions such as wireless communication (LTE advanced, WLAN, GNSS), MVB, CAN bus or other I/Os. A removable storage shuttle supports the integration of one to two 2.5″ SATA hard disks/SSDs. The wide range PSU allows isolated power supply from 24 V DC to 110 V DC nominal and extends the entire system to EN 50155 compliance.

The board management controller provides increased reliability and reduces downtime. The Trusted Platform Module supports security and encryption features. With the ignition switch for remote startup and shutdown control, the platform provides additional energy saving features. The aluminum housing with cooling fins ensures conductive cooling and fanless operation. The MC50M has no moving parts, so it can be operated maintenance-free.

The long-term availability of 15 years from product launch minimizes life cycle management by making the MC50M available for at least this period. MEN’s DIN rail concept is designed for flexible configuration of module combinations and is suitable for embedded IoT applications in various markets. The CPU modules can be flexibly combined with various expansion modules and power supplies.

In the modular system, the data transfer between the individual modules as well as the power supply of the components is implemented via the expansion connectors standardized by MEN.The concept specifications include housing dimensions, mounting, cooling and IP protection. In addition, the expansion connectors and their pin assignment are defined. DIN rail mounting (35 mm) is standard. Wall and 19” rack mounting is possible using adaption brackets.

MEN Micro | www.menmicro.com

March Circuit Cellar: Sneak Preview

The March issue of Circuit Cellar magazine is out next week!. We’ve rounded up an outstanding selection of in-depth embedded electronics articles just for you, and rustled them all into our 84-page magazine.

Not a Circuit Cellar subscriber?  Don’t be left out! Sign up today:

 

Here’s a sneak preview of March 2019 Circuit Cellar:

POWER MAKES IT POSSIBLE

Power Issues for Wearables
Wearable devices put extreme demands on the embedded electronics that make them work—and power is front and center among those demands. Devices spanning across the consumer, fitness and medical markets all need an advanced power source and power management technologies to perform as expected. Circuit Cellar Chief Editor Jeff Child examines how today’s microcontroller and power electronics are enabling today’s wearable products.

Power Supplies for Medical Systems
Over the past year, there’s been an increasing trend toward new products that have some sort of application or industry focus. That means supplies that include either certifications, special performance specs or tailored packaging intended for a specific application area such as medical. This Product Focus section updates readers on these technology trends and provides a product gallery of representative medical-focused power supplies.

DESIGN RESOURCES, ISSUES AND CHALLENGES

Flex PCB Design Services
While not exactly a brand-new technology, flexible printed circuit boards are a critical part of many of today’s challenging embedded system applications from wearable devices to mobile healthcare electronics. Circuit Cellar’s Editor-in-Chief, Jeff Child, explores the Flex PCB design capabilities available today and whose providing them.

Design Flow Ensures Automotive Safety
Fault analysis has been around for years, and many methods have been created to optimize evaluation of hundreds of concurrent faults in specialized simulators. However, there are many challenges in running a fault campaign. Mentor’s Doug Smith presents an improved formal verification flow that reduces the number of faults while simultaneously providing much higher quality of results.

Cooling Electronic Systems
Any good embedded system engineer knows that heat is the enemy of reliability. As new systems cram more functionality at higher speeds into ever smaller packages, it’s no wonder an increasing amount of engineering mindshare is focusing on cooling electronic systems. In this article, George Novacek reviews some of the essential math and science around cooling and looks are several cooling technologies—from cold pates to heat pipes.

MICROCONTROLLER PROJECTS WITH ALL THE DETAILS

MCU-Based Solution Links USB to Legacy PC I/O
In PCs, serial interfaces have now been just about completely replaced by USB. But many of those interfaces are still used in control and monitoring embedded systems. In this project article, Hossam Abdelbaki describes his ATSTAMP design. ATSTAMP is an MCS-51 (8051) compatible microcontroller chip that can be connected to the USB port of any PC via any USB-to-serial bridge currently available in the market.

Pet Collar Uses GPS and Wi-Fi
The PIC32 has proven effective for a myriad of applications, so why not a dog collar? Learn how Cornell graduates Vidya Ramesh and Vaidehi Garg built a GPS-enabled pet collar prototype. The article discusses the hardware peripherals used in the project, the setup, and the software. It also describes the motivation behind the project, and possibilities to expand the project in the future.

Guitar Video Game Uses PIC32
While music-playing video games are fun, their user interfaces tend leave a lot to be desired. Learn how Cornell students Jake Podell and Jonah Wexler designed and built a musical video game that’s interfaced with using a custom-built wireless guitar controller. The game is run on a Microchip PIC32 MCU and uses a TFT LCD display to show notes that move across the screen towards a strum region.

… AND MORE FROM OUR EXPERT COLUMNISTS

Non-Evasive Current Sensor
Gone are the days when you could do most of your own maintenance on your car’s engine. Today they’re sophisticated electronic systems. But there are some things you can do with the right tools. In his article, By Jeff Bachiochi talks about how using the timing light on his car engine introduced him to non-contact sensor technology. He talks about the types of probes available and how to use them to read the magnitude of alternating current (AC

Impedance Spectroscopy using the AD5933
Impedance spectroscopy is the measurement of a device’s impedance (or resistance) over a range of frequencies. Brian Millier has designed many voltammographs and conductivity meters over the years. But he recently came across the Analog Devices AD5933 chip made by which performs most all the functions needed to do impedance spectroscopy. In this article, explores the technology, circuit design and software that serve these efforts.

Side-Channel Power Analysis
Side-channel power analysis is a method of breaking security on embedded systems, and something Colin O’Flynn has covered extensively in his column. This time Colin shows how you can prove some of the fundamental assumptions that underpin side-channel power analysis. He uses the open-source ChipWhisperer project with Jupyter notebooks for easy interactive evaluation.

Cutting-edge Embedded Vision Solutions Are Here

Clarius Mobile Health revolutionized ultrasounds. Xilinx’s technology helped get them there. IoT-connected, portable ultrasound machine leveraged Xilinx’s Zynq programmable SOC solution. Avnet connected Clarius to Xilinx’s technology—some of which wasn’t even on the shelves yet.

Smart Edge SoCs Blend Neural Net Acceleration and Far-Field Voice

Synaptics has announced its new AS3xx series, part of its Smart Edge AudioSmart family. The series includes fully integrated SoCs comprising neural network acceleration, a proprietary wake word engine with support for custom wake words and advanced far-field voice processing. Designed using a 22 nm process node, and targeting a broad variety of voice-enabled Smart Home devices including hubs, Wi-Fi repeaters, speakers and appliances, the AudioSmart AS371 is sampling now and incorporates a new machine learning engine using innovative SyNAP (Synaptics Neural Network Acceleration and Processing) technology.
According to Synaptics, Intelligence at the edge results in an enhanced user experience through better response times and robustness. For example, performing Automated Speech Recognition (ASR) and Natural Language Understanding (NLU) locally on-device ensures core Smart Home voice control works when there is poor or intermittent internet connectivity. SyNAP enables advanced features such as user identification and behavioral prediction which allows voice assistants to perform ambient computing and a more intuitive interaction with users.

The AS371 solution with SyNAP on-device intelligence enhances consumer privacy by greatly reducing the need to continuously send personal data to the cloud. SyNAP also takes the right steps to support GDPR compliance as well as other current and emerging regulations. The AudioSmart AS3xx family introduces the integrated and purpose-built far-field voice processing and wake word technology developed by Synaptics. Having been used in a variety of global retail products for over seven years, Synaptics continues to improve its voice processing solution to further improve voice pick-up in noisy, real-world conditions and barge-in capabilities during very loud playback.

Through in-house design of the SoC, wake word engine, voice pre-processing and playback enhancement, Synaptics has optimized the complete system to achieve the highest possible far-field voice performance at affordable consumer electronics price points. Furthermore, by providing the complete solution including acoustics system expertise, Synaptics greatly reduces the time-to-market for Smart Home product manufacturers and allows them to add an excellent voice-first experience while maintaining focus on their core expertise. In addition, Synaptics’ AS3xx solutions are fully compatible with all voice assistant platforms worldwide.

New AS3xx Products:

  • AS371 (for voice-enabled devices with SyNAP) Sampling Now
  • AS390 (for voice-enabled devices with displays) Target sampling CY19Q1
  • AS350 (for voice-enabled low-power devices) Target sampling CY19Q1
  • AS320 (for voice-enabled microcontroller-based devices) Target sampling CY19Q1

Synaptics | www.synaptics.com