Zigbee Certification Transfer Effort Looks to Boost IoT Growth

The Zigbee Alliance has announced a new Certification Program that creates new business opportunities for members, and makes it easy for new entrants to join the growing ecosystem of Certified Products that work with major consumer and commercial IoT platforms. The new program is now open, and permits members — and for the first time, non-members — to quickly adopt, sell, and market Certified Products under their own brand while maintaining those products’ Certified status.

For new entrants to the IoT, or companies looking to fill a gap in their portfolio, this program offers an easy, fast, and affordable avenue to implement Certified Products from Alliance Participant and Promoter member companies, and then market those products under their own brand. Approved products can then carry the Zigbee Certified logo, leveraging the brand recognition and interoperability mark of Zigbee and allowing companies to create products that work with the leading consumer and commercial IoT and smart home platforms, or even create their own from the diverse portfolio of Zigbee Certified Products.

For Zigbee Alliance Participant and Promoter members, this program opens new markets and sales channels by enabling them to offer Certified Products to customers for re-branding and non-functional modification while maintaining those products’ Certified status. Adopter-level members of the Zigbee Alliance are also eligible to receive unlimited Certification Transfers on products from Participant or Promoter companies, and market those products using their own brand.

Industry analysts project Zigbee technology will ship in 3.8 billion (85%) of the 4.5 billion 802.15.4 units predicted to hit the market in 2023. As consumers embrace the smart home, and leading ecosystem providers – such as Amazon, Comcast, Huawei, IKEA, Legrand, Schneider Electric, Signify (formerly Philips Lighting), Somfy, and Samsung SmartThings – continue to create products based on the Zigbee Alliance’s wireless standards, IoT product developers are eager to participate in and build on the network of thousands of Zigbee Alliance Certified products already making meaningful connections between humans and the objects in their environment.

How the Program Works

Participant or Promoter members are now populating the online Certification Transfer Tool with products available for a Certification Transfer. To receive a Certification Transfer, you must be either a Zigbee Alliance Member (in good standing), or be a new company who has never been an Alliance member.

To participate in the program, products for certification transfer must:

  • Be previously Certified by the Zigbee Alliance (Zigbee 3.0, Zigbee Smart Energy, and Green Power devices)
  • Be Certified as an “end product”
  • Be enrolled by a Participant or Promoter Company for certification transfer in the member certification web tool

The new Certification Transfer Program is open now. To share more about the program, the Zigbee Alliance will be holding a public webinar on August 22, 2018 at 7 am to go over the details of the process and the benefits to those who take part in the program. Register here.

The Zigbee Alliance | www.zigbee.org

Edge-as-a-Service Solution Targets Commercial IoT

Rigado has announced Cascade, its new integrated Edge-as-a-Service solution. Designed for commercial IoT applications like Asset Tracking, Smart Workplaces and Connected Retail, Cascade helps companies save six months of time—or more—in bringing their solutions to market, without the need for upfront hardware investments.

Offered as an integrated monthly subscription starting at $9/month, Cascade gives you the wireless infrastructure, edge computing platform and managed security updates that allow IoT product and project teams to focus on driving maximum value from their IoT apps—and not on the underlying edge infrastructure, security and maintenance.

Rigado’s  Cascade Edge-as-a-Service does so with four main components:

Cascade-500 IoT Gateway: Rigado’s newest IoT gateway offers a range of connectivity options including Bluetooth 5, Zigbee, Thread, Wi-Fi & LTE; security features like file system encryption; and 800 MHz of edge computing power.

Edge Protect Service: A managed, automated security service, Edge Protect provides automatic OS and security updates when common vulnerabilities, exposures and exploits are discovered. The service also provides signature authentication to ensure that what your developers publish is exactly what runs.

Edge Direct Tools: Secure edge device orchestration and systems performance monitoring allow your operations teams to set alerts and diagnose issues; provision gateways with secure IDs and encrypted keys; and flexibly schedule, manage and apply application updates. Edge Direct integrates with existing DevOps processes and CI tools and uses a familiar app store deployment model. With Edge Direct, technicians are able to stay out of the field, remotely deploying—and rolling back if necessary—updates for reliable maintenance.

Edge Connect Platform: Gives developers a secure connectivity and computing platform with a fully containerized edge OS. Featuring Ubuntu Core by Canonical with secure boot and an encrypted file system, Edge Connect also leverages Snaps, a simple application packaging system that makes it easier for developers to build and maintain application containers at the edge. With Edge Connect, your developers can work in the programming language of their choice and can easily and securely add multiple apps and functionalities onto a single gateway. Last, EdgeConnect also offers easier connections to IoT sensors and beacons using API calls that do not require device or protocol expertise.

Cascade benefits engineers by shaving months off of their IoT design and build efforts by helping them quickly develop and deploy edge applications. EdgeConnect APIs, with their ‘web-style’ access to devices, greatly simplifies architecture and saves thousands of lines of code and weeks of development and testing time.

Operational teams who are tasked with ongoing edge maintenance can use their same DevOps workflows, dashboards, and tools, such as CI, to monitor their IoT solutions. Edge performance monitoring helps Operations keep a close eye on device health and connectivity to manage successful scaling.

Cascade gives your IoT Support the solutions they need to effectively diagnose and fix client-specific issues. Able to easily integrate into existing support applications, IoT support needs little to no additional team or tools to effectively track device performance, diagnostics and update configurations.

 

Business teams benefit from the ability to easily scale IoT solutions across the commercial enterprise – all with a solution that mirrors their own SaaS Commercial IoT model. With increased security, a faster time to market and the ability to extend easily to the entire commercial enterprise, Cascade gives your business teams the ability to introduce innovation at the speed of the market.

You can get started with Rigado’s Cascade Evaluation Kit.

Rigado | www.rigado.com

Advantech Joins Amazon’s AWS Partner Network

Advantech has joined the Amazon Web Services (AWS) Partner Network (APN) as Standard Technology Partner. As an APN Standard Technology Partner, Advantech provides a comprehensive range of wireless sensors and edge intelligence computers with complete IoT software solutions on AWS. Embedded developers can connect devices to a range of services offered on AWS in order to build scalable, global, and secure IoT applications, bringing computing capabilities to edge devices to several domain-focused vertical markets such as smart city, smart manufacturing and smart energy markets.

Advantech’s WISE-1520 Wireless Sensor Node (shown) is on Amazon FreeRTOS so that customers can easily and securely connect small devices and sensors directly to AWS or to powerful edge devices running AWS Greengrass, thus allowing them to collect data for their IoT applications. As the first wireless sensor node for the M2.COM family, the WISE-1520 comes with an Arm Cortex-M4 processor and low-power Wi-Fi connectivity, providing full compatibility with existing Wi-Fi infrastructure.

Advantech also offers the EIS-D210 Edge Intelligence Server, which is equipped with an Intel Celeron Processor N3350 and is compatible with AWS Greengrass core, thus ensuring that IoT devices can respond quickly to local events, interact with local resources, operate with intermittent connections, and minimize the cost of transmitting IoT data to the cloud. In addition to supporting field protocols(MQTT/OPC/Modbus) for sensor/device data acquisition, the EIS-D210 can be used with the Advantech IoT SDK for wireless sensor (Wi-Fi, LoRa, Zigbee) data integration. Furthermore, the EIS-D210 comes pre-integrated with Advantech’s WISE-PaaS/EdgeSense software solution, allowing users to incorporate sensor data aggregation, edge analytics, and cloud applications for fast and easy real-time operational intelligence. This EIS provides a range of connectivity options with excellent data handling and networking connection capabilities for various IoT applications.

Advantech’s EPC-R4760 IoT gateway, powered by the Qualcomm Arm Cortex-A53 APQ8016 platform, provides a unique combination of power and performance. The system also integrates abundant wireless solutions including Wi-Fi, BT, GPS, and extended 3G/LTE connectivity. For OS support, the EPC-R4760 can run Debian Linux, Yocto Linux, Ubuntu Linux, Android, and Windows 10 IoT Core, and it also supports AWS Greengrass, which gives users tremendous flexibility by allowing them to create AWS Lambda functions that can be validated on AWS and then be easily deployed to devices.

Advantech’s UTX-3117 IoT gateway is compatible with AWS Greengrass and Wind River Pulsar and, in addition to having a small footprint, it offers real-time security and supports various protocols that are needed to run IoT applications seamlessly across both AWS and on local devices or sensor nodes. In addition, by equipping it with a LoRa solution, the UTX-3117 offers a wide range of wireless connection options for controlling and collecting data from devices and sensor nodes. With these solutions, the UTX-3117 IoT gateway is ideal for smart energy applications. For example, it can collect solar panel and solar radiation data in real time via LoRa, and with AWS Greengrass built in, it can analyze the data and adjust the angle of solar panels to follow the sun and thereby maximize the effectiveness of the solar panels. AWS Greengrass can also be employed to analyze weather data so that the panels can be adjusted to prevent damage from elements such as strong wind or hail.

Advantech | www.advantech.com

 

IoT: From Device to Gateway

Modules for the Edge

Connecting to the IoT edge requires highly integrated technology, blending wireless connectivity and intelligence. Feeding those needs, a variety of IoT modules have emerged that offer pre-certified solutions that are ready to use.

By Jeff Child, Editor-in-Chief

he Internet of Things (IoT) is one of the most dynamic areas of embedded systems design today. Opportunities are huge as organizations large and small work to develop IoT implementations. IoT implementations are generally comprised of three main parts: the devices in the field, the cloud and the network (gateways) linking them together. This article focuses on the “things” side—in other words, the smart, connected edge devices of the IoT. For more on IoT gateways, see “IoT Gateway Advances Take Diverse Paths“ (Circuit Cellar 328, November 2017).

Because this sub-segment of technology is growing and changing so fast, it’s impossible to get a handle on everything that’s happening. The scope that comprises IoT edge devices includes a combination of embedded processors and microcontrollers that provide intelligence. It also includes various wireless, cellular and other connectivity solutions to connect to the network. And it includes sensors to collect data and battery technologies to keep the devices running.

Connecting the various nodes of an IoT implementation can involve a number of wired and wireless network technologies. But it’s rare that an IoT system can be completely hardwired end to end. Most IoT systems of any large scale depend on a variety of wireless technologies including Wi-Fi, Bluetooth, Zigbee and even cellular networking.

What’s most interesting among all that, are not those individual pieces themselves, but rather an emerging crop of modular IoT products that combine intelligence and connectivity, while also taking on the vital certifications needed to get IoT implementations up and running. With all that in mind, the last 12 months have seen an interesting mix of module-based products aimed directly at IoT.

Certified IoT Modules

Exemplifying those trends, in September 2017, STMicroelectronics (ST)introduced the SPBTLE-1S, a ready-to-use Bluetooth Low Energy (BLE) module that integrates all the components needed to complete the radio subsystem (Photo 1). The BLE module integrates ST’s proven BlueNRG-1 application-processor SoC and balun, high-frequency oscillators and a chip antenna.

Photo 1
The SPBTLE-1S is a BLE module that integrates all the components needed to complete the radio subsystem. It’s BQE-approved, and FCC, IC and CE-RED certified to simplify end-product approval for North America and EU markets.

Developers can use this module to bypass hardware design and RF-circuit layout challenges. The SPBTLE-1S is BQE-approved, and FCC, IC and CE-RED (Radio Equipment Directive) certified to simplify end-product approval for North America and EU markets. ST’s Bluetooth 4.2 certified BLE protocol stack is included, and the supporting Software-Development Kit (SDK) contains a wide range of Bluetooth profiles and sample application code.

The device is packaged in a space-efficient 11.5 mm x 13.5 mm outline and has a wide supply-voltage range of 1.7 V to 3.6 V. The SPBTLE-1S module is well suited for small, battery-operated objects powered by various types of sources such as a primary button cell or rechargeable Li-ion battery. High RF output power of +5 dBm and good receiver sensitivity help to maximize communication range and reliability.

The BlueNRG-1 SoC at the heart of the SPBTLE-1S implements the complete BLE physical layer (PHY), link layer and network/application-processing engine comprising a low-power ARM Cortex-M0 core with 160 KB flash, 24 KB RAM with data retention and a security co-processor. The SoC also implements smart power management, with a DC/DC converter capable of powering the SPBTLE-1S module to ensure optimum energy efficiency. Users can leverage an extensive set of interfaces, including a UART, two I²C ports, SPI port, single-wire debug and 14 GPIOs, as well as peripherals including two multifunction timers, a 10-bit ADC, watchdog timer and real-time clock and a DMA controller. There is also a PDM stream processor interface, which is ideal for developing voice-controlled applications.

IoT Module for Development

Riding the IoT wave, all the major microcontroller vendors have beefed up their module-based IoT solutions in order to make it easier for developers to design in their MCUs. One example along those lines is the LPC54018 IoT module, developed by NXP in partnership with Embedded Artists. …

Read the full article in the March 332 issue of Circuit Cellar

Don’t miss out on upcoming issues of Circuit Cellar. Subscribe today!
Note: We’ve made the October 2017 issue of Circuit Cellar available as a free sample issue. In it, you’ll find a rich variety of the kinds of articles and information that exemplify a typical issue of the current magazine.

BitCloud 4.0 Complete ZigBee Software Development Kit

Microchip Technology recently announced the industry’s first ZigBee alliance-certified ZigBee platform with ZigBee PRO and Green Power features (formerly ZigBee 3.0). The software stack and corresponding BitCloud 4.0 software development kit is well-suited for the design of home automation and Internet of Things (IoT) applications. Enableing cross-functional device support, the solution is backward-compatible with existing ZigBee-certified products for seamless interoperability.Zigbee Microchip

Features, specs, and benefits:

  • Low latency suitable for RF remote applications
  • Mesh networking for large networks such as lighting applications
  • The ZigBee PRO Green Power feature enables battery-less devices to securely join a network
  • ZigBee Light Link and ZigBee Home Automation devices are fully supported.

The BitCloud 4.0 Software Development Kit (SDK) enables application development on the SAM R21 Xplained Pro Evaluation Kit, a Cortex M0+-based 32-bit microcontroller with an integrated 2.4-GHz 802.15.4-compliant radio. When used with the newly certified software stack, the SDK provides a complete ZigBee-certified development platform.

Microchip currently offers two platforms to begin ZigBee development. The SAM R21 Xplained Pro Evaluation Kit (ATSAMR21-XPRO) is available for $58. The SAM R21 ZigBee Light Link Evaluation Kit (ATSAMR21ZLL-EK) costs $92.

Source: Microchip Technology

Smart Home Reference Designs for IoT Device Development

Silicon Labs recently launched two new wireless occupancy sensor and smart outlet reference designs for the home automation. FCC and UL-precertified, the reference designs comprise hardware, firmware, and software tools that enable you to develop Internet of Things (IoT) systems based on Silicon Labs’s ZigBee “Golden Unit” Home Automation (HA 1.2) software stack and multiprotocol Wireless Gecko SoC portfolio. Both reference designs include Silicon Labs’s EFR32MG Mighty Gecko SoC.SiliconLabs Ref Design

 

The occupancy sensor reference design is a precertified ZigBee HA 1.2 solution featuring a wirelessly connected passive IR sensor along with ambient light and temperature/relative humidity sensors from Silicon Labs. The compact occupancy sensor’s battery-powered design provides up to five years of operation. The sensor’s detection range extends up to approximately 40′ with a 90° viewing window.

The smart outlet reference design is a precertified solution for a wirelessly controlled outlet plug. You can use it to power and control a wide variety of home and building automation products. Powered by an AC main-voltage line, the smart outlet communicates wirelessly to ZigBee mesh networks. It features the following: built-in diagnostics and metering with a user-friendly web interface; an AC voltage range of 110 to 240 V for global use along with a robust 15-A load current; and integrated high-accuracy sensors (ambient light and temperature/humidity).

 

Silicon Labs’s occupancy sensor and smart outlet reference designs are currently available. The RD-0078-0201 occupancy sensor reference design costs $49. The RD-0051-0201 smart outlet reference design costs $119. (All prices USD MSRP.)

Source: Silicon Labs

Connected Home Solutions with ZigBee and Thread-Ready Connectivity

Silicon Labs recently introduced a series of comprehensive reference designs that reduce time to market and simplify the development of ZigBee-based home automation, connected lighting and smart gateway products. The first in a series of Internet of Things (IoT) solutions, the new reference designs include hardware, firmware, and software tools for developing high-quality connected home solutions based on Silicon Labs’s ZigBee “Golden Unit” Home Automation (HA 1.2) software stack and ZigBee SoC mesh networking technology.SiliconLabs IoT-SolutionsSilicon Labs’ ZigBee connected lighting reference designs feature wireless lighting boards and a plug-in demo board. The Golden Unit ZigBee stack allows LED lights to reliably join, interoperate, and leave a mesh network. The connected lights can support white, color temperature tuning, and RGB color settings as well as dimming.

Silicon Labs’ ZigBee-based home automation reference designs include a capacitive-sense dimmable light switch and a small door/window contact sensor. The light switch provides color, color tuning, and dimming control capabilities. As opposed to conventional switches, the wireless, battery-powered switches have no moving parts and are easy to place anywhere in a home. The switch design includes Silicon Labs’s EFM8 capacitive sensing microcontroller to detect different user gestures (touch, hold, and swipe). The contact sensor reference design provides all the tools needed to create wireless, battery-powered sensors used to monitor door and window positions (open or closed).

Silicon Labs offers two ZigBee gateway options to complement the reference designs:

  • A plug-and-play USB virtual gateway that works with any PC development platform and supports the Windows, OS X, and Linux environments as a virtual machine
  • An out-of-the-box Wi-Fi/Ethernet gateway reference design based on an embedded Linux computer system

Both gateway options enable you to control and monitor ZigBee HA 1.2-compliant end nodes through Wi-Fi with any device with a web browser, such as a smartphone or tablet. With an intuitive, web-based user interface, you can easily create rules between ZigBee end devices including lights, dimmable light switches, and contact sensors.

Silicon Labs’ connected lighting, home automation, and smart gateway reference designs are currently available. The RD-0020-0601 and RD-0035-0601 connected lighting reference designs cost $49. The RD-0030-0201 contact sensor reference design is $39. The RD-0039-0201 capacitive-sense dimmable light switch reference design is $29. The USB virtual gateway is $49. The out-of-the-box Wi-Fi/Ethernet gateway reference design is $149.

Source: Silicon Labs 

Reference Design Addresses Demand for Voice Control

Silicon Labs recently released a new, cost-effective solution for voice-enabled ZigBee remote controls. The ZigBee Remote Control (ZRC) reference design reduces the need for expensive external hardware by implementing a software-based audio codec into a single-chip wireless SoC. It includes all of the hardware and software necessary for developing full-featured, voice-enabled remote controls.SiLabs Zigbee

The ZRC reference design is based on Silicon Labs EM34x wireless SoCs and ZRC 2.0 Golden Unit-certified software stack, which provides an industry-standard way to implement interoperable, low-power RF remote controls. The reference design includes complete RF layout and design files, an acceleration sensor for backlight control, a buzzer for “find me” capabilities, support for IR control, a digital microphone, and the ability to transmit voice commands over RF.

Silicon Labs offers two development kits the voice-enabled reference design. The  $249 EM34X-VREVK Voice Remote Evaluation Kit features preprogrammed devices and a simple GUI to demonstrate remote control capabilities, including RF, voice commands, and legacy IR support. The $399 EM34X-VRDK Voice Remote Development Kit provides you with an “out-of-the-box” design experience. It simplifies development of the remote control and target devices, and it comes with an EM34x voice-enabled remote control, USB stick, EM34x development board, EM34x wireless modules, and ISA3 debug adapter.

Samples and volume quantities of Silicon Labs’s EM34x SoCs are available with prices starting at $1.68 in 10,000-unit quantities.

Source: Silicon Labs

GP691 ZigBee Radio Chip and GPM6000 Modules for IoT

At CES 2015, GreenPeak Technologies announced a new GP691 ZigBee communication controller chip and GPM6000 integrated ZigBee modules for Internet of Things applications and smart home devices.IoTGreenPeak

The GP691 ZigBee communications controller provides IEEE Standard 802.15.4-compliant robust spread spectrum data communication in the worldwide 2.4-GHz band. It can run the full stack and application for ZigBee applications, including ZHA and ZLL profiles. In addition to a radio transceiver, the GP691 comprises a real-time Medium Access Control (MAC) processor, microcontroller, security engine, 16-KB RAM, and 248-KB flash memory. The GP691 is over the air upgradable and includes support for new 802.15.4-based standards upon availability, such as Thread.

ZigBee 3.0 supports a wide range of applications (e.g., home, industrial automation, and smart energy). IEEE 802.15.4-compliant, it can cover a complete home with multiple floors. Plus, it can manage dead spots and Wi-Fi interference via mesh networking. ZigBee 3.0 also supports large networks comprising thousands of devices, which also makes it suitable for industrial applications and building automation. ZigBee 3.0 also includes Green Power, part of the ZHA and ZLL profiles, which supports energy harvesting and battery-free applications. Without requiring batteries, these self-supporting devices typically generate (harvest) just enough power to transmit a brief command to the network via ZigBee.

With its partner Universal Scientific Industrial (Shanghai) Co, Ltd (USI), GreenPeak developed “an integrated module for the GP691 that reduces product design company’s time to market without having to solve RF product integration challenges or to worry about international wireless certification.”

The 25 x 17 x 2.5 mm pre-integrated, pre-certified module adds a power stage/LNA providing up to 20-dBm output power, special transmit and receive circuitry, and an integrated antenna plus a connector for a second external antenna enabling antenna diversity configurations, which all together, allow for greater range and robustness, providing coverage throughout an entire home. This module will be offered as the first in the GPM6000 module series optimized for smart home solutions.

Source: GreenPeak

ZigBee PRO Communication Controller Chip

GreenPeak

The GP490 controller chip

The GP490 is an ultra-low-power ZigBee PRO communication controller. It supports the ZigBee PRO chip features, including bidirectional commissioning, bidirectional communication, and full security mode.

The controller is specifically designed for low-power smart home applications including door, window, and temperature sensors and light switches. Equipped with the energy-optimized GP490, these low-power, low-data rate smart home applications can operate on a coin cell battery for more than 10 years.

The GP490 development kit with reference design and software can help device manufacturers build low-cost, low-power sensor nodes, optimized for standard battery and coin-cell battery operation. Guidelines and tools are provided to ensure an efficient ZigBee certification for a cost-optimized feature set of the ZigBee Home Automation (HA 1.2) Application Profile.

The low-cost GP490 enables developers and manufacturers to supply ZigBee Smart Home sensor solutions starting at $5 each. Contact GreenPeak Technologies for specific pricing.

GreenPeak Technologies
www.greenpeak.com

New Products: July 2013

CWAV, Inc. USBee QX

MIXED SIGNAL OSCILLOSCOPE WITH PROTOCOL ANALYZER

The USBee QX is a PC-based mixed-signal oscilloscope (MSO) integrated with a protocol analyzer utilizing USB 3.0 and Wi-Fi technology. The highly integrated, 600-MHz MSO features 24 digital channels and four analog channels.

With its large 896-Msample buffer memory and data compression capability, the USBeeQX can capture up to 32 days of traces. It displays serial or parallel protocols in a human-readable format, enabling developers to find and resolve obscure and difficult defects. The MOS includes popular serial protocols (e.g., RS-232/UARTs, SPI, I2C, CAN, SDIO, Async, 1-Wire, and I2S), which are typically costly add-ons for benchtop oscilloscopes. The MOS utilizes APIs and Tool Builders that are integrated into the USBee QX software to support any custom protocol.

The USBee QX’s Wi-Fi capability enables you set up testing in the lab while you are at your desk. The Wi-Fi capability also creates electrical isolation of the device under test to the host computer.

The USBee QX costs $2,495.

CWAV, Inc.
www.usbee.com

 


DownStream Technologies FabStream

FREE PCB DESIGN SOFTWARE SUITE

FabStream is an integrated PCB design and manufacturing solution designed for the DIY electronics market, including small businesses, start-ups, engineers, inventors, hobbyists, and other electronic enthusiasts. FabStream consists of free SoloPCB Design software customized to each manufacturing partner in the FabStream network.

The FabStream service works in three easy steps. First, you log onto the FabStream website (www.fabstream.com), select a FabStream manufacturing partner, and download the free design software. Next, you create PCB libraries, schematics, and board layouts. Finally, the software leads you through the process of ordering PCBs online with the manufacturer. You only pay for the PCBs you purchase. Because the service is mostly Internet-based, FabStream can be accessed globally and is available 24/7/365.

FabStream’s free SoloPCB Design software includes a commercial-quality schematic capture, PCB layout, and autorouting in one, easy-to-use environment. The software is customized to each manufacturing partner. All of the manufacturer’s production capabilities are built into SoloPCB, enabling you to work within the manufacturers’ constraints. Design changes can be made and then verified through an integrated analyzer that uses a quick pass/fail check to compare the modification to the manufacturer’s rules.

SoloPCB does not contain any CAM outputs. Instead, a secure, industry-standard IPC-2581 manufacturing file is automatically extracted, encrypted, and electronically routed to the manufacturer during the ordering process. The IPC-2581 file contains all the design information needed for manufacturing, which eliminates the need to create Gerber and NC drill files.

FabStream is available as a free download. More information can be found at www.fabstream.com

DownStream Technologies, LLC
www.downstreamtech.com

 


Rohde Schwarz SMW200A

HIGH-PERFORMANCE VECTOR SIGNAL GENERATOR

The R&S SMW200A high-performance vector signal generator combines flexibility, performance, and intuitive operation to quickly and easily generate complex, high-quality signals for LTE Advanced and next-generation mobile standards. The generator is designed to simpify complex 4G device testing.

With its versatile configuration options, the R&S SMW200A’s range of applications extends from single-path vector signal generation to multichannel multiple-input and multiple-output (MIMO) receiver testing. The vector signal generator provides a baseband generator, a RF generator, and a real-time MIMO fading simulator in a single instrument.

The R&S SMW200A covers the100 kHz-to-3-GHz, or 6 GHz, frequency range, and features a 160-MHz I/Q modulation bandwidth with internal baseband. The generator is well suited for verification of 3G and 4G base stations and aerospace and defense applications.

The R&S SMW200A can be equipped with an optional second RF path for frequencies up to 6 GHz. It can have a a maximum of two baseband and four fading simulator modules, providing users with two full-featured vector signal generators in a single unit. Fading scenarios, such as 2 × 2 MIMO, 8 × 2 MIMO for TD-LTE, and 2 × 2 MIMO for LTE Advanced carrier aggregation, can be easily simulated.

Higher-order MIMO applications (e.g., 3 × 3 MIMO for WLAN or 4 × 4 MIMO for LTE-FDD) are easily supported by connecting a third and fourth source to the R&S SMW200A. The R&S SGS100A are highly compact RF sources that are controlled directly from the front panel of the R&S SMW200A.

The R&S SMW200A ensures high accuracy in spectral and modulation measurements. The SSB phase noise is –139 dBc (typical) at 1 GHz (20 kHz offset). Help functions are provided for additional ease-of-use, and presets are provided for all important digital standards and fading scenarios. LTE and UMTS test case wizards simplify complex base station conformance testing in line with the 3GPP specification.

Contact Rohde & Schwarz for pricing.

Rohde & Schwarz
www.corporate.rohde-schwarz.com

 


Texas Instruments CC2538

INTEGRATED ZIGBEE SINGLE-CHIP SOLUTION WITH AN ARM CORTEX-M3 MCU

The Texas Instruments (TI) CC2538 system-on-chip (SoC) is designed to simplify the development of ZigBee wireless connectivity-enabled smart energy infrastructure, home and building automation, and intelligent lighting gateways. The cost-efficient SoC features an ARM Cortex-M3 microcontroller, memory, and hardware accelerators on one piece of silicon. The CC2538 supports ZigBee PRO, ZigBee Smart Energy and ZigBee Home Automation and lighting standards to deliver interoperability with existing and future ZigBee products. The SoC also uses IEEE 802.15.4 and 6LoWPAN IPv6 networks to support IP standards-based development.

The CC2538 is capable of supporting fast digital management and features scalable memory options from 128 to 512 KB flash to support smart energy infrastructure applications. The SoC sustains a mesh network with hundreds of end nodes using integrated 8-to-32-KB RAM options that are pin-for-pin compatible for maximum flexibility.

The CC2538’s additional benefits include temperature operation up to 125°C, optimization for battery-powered applications using only 1.3 uA in Sleep mode, and efficient processing for centralized networks and reduced bill of materials cost through integrated ARM Cortex-M3 core.

The CC2538 development kit (CC2538DK) provides a complete development platform for the CC2538, enabling users to see all functionality without additional layout. It comes with high-performance CC2538 evaluation modules (CC2538EMK) and motherboards with an integrated ARM Cortex-M3 debug probe for software development and peripherals including an LCD, buttons, LEDs, light sensor and accelerometer for creating demo software. The boards are also compatible with TI’s SmartRF Studio for running RF performance tests. The CC2538 supports current and future Z-Stack releases from TI and over-the-air software downloads for easier upgrades in the field.

The CC2538 is available in an 8-mm x 8-mm QFN56 package and costs $3 in high volumes. The CC2538 is also available through TI’s free sample program. The CC2538DK costs $299.

Texas Instruments, Inc.
www.ti.com