Eco-Friendly Home Automation Controller

The 2012 DesignSpark chipKIT Challenge invited engineers from around the world to submit eco-friendly projects using the Digilent chipKIT Max32 development board. Manuel Iglesias Abbatemarco of Venezuela won honorable mention with his autonomous home-automation controller. His design enables users to monitor and control household devices and to log and upload temperature, humidity, and energy-use sensor data to “the cloud” (see Photo 1).

The design comprised a Digilent chipKIT board (bottom), my MPPT charger board (chipSOLAR, middle), and my wireless board (chipWIRELESS, top).

Photo 1: The design comprised a Digilent chipKIT board (bottom), my MPPT charger board (chipSOLAR, middle), and my wireless board (chipWIRELESS, top).

The system, built around the chipKIT Arduino-compatible board, connects to Abbatemarco’s custom-made “chipSOLAR” board that uses a solar panel and two rechargeable lithium-ion (Li-on) cells to provide continuous power. The board implements a maximum power point tracking (MPPT) charger that deals with a solar panel’s nonlinear output efficiency. A “chipWIRELESS” board integrating a Quad Band GSM/GPRS modem, an XBee socket, an SD card connector, and a real-time clock and calendar (RTCC) enables home sensor and cloud connectivity. The software was written using chipKIT MPIDE, and the SD card logs the data from sensors.

“Since the contest, I have made some additions to the system,” Abbatemarco says. “The device’s aim is uninterrupted household monitoring and control. To accomplish this, I focused on two key features: the power controller and the communication with external devices (e.g., sensors). I used DesignSpark software to create two PCBs for these features.”

Abbatemarco describes his full project, including his post-contest addition of a web server, in his article appearing in Circuit Cellar’s May issue. In the meantime, you’ll find descriptions of his overall design, power management board, and wireless board in the following article excerpts.

DESIGN OVERVIEW
The system’s design is based on a Digilent chipKIT Max32 board, which is an Arduino-compatible board with a Microchip Technology 32-bit processor and 3.3-V level I/O with almost the same footprint as an Arduino Mega microcontroller. The platform has all the computational power needed for the application and enough peripherals to add all the required external hardware.

I wanted to have a secure and reliable communication channel to connect with the outside world, so I incorporated general packet radio service (GPRS). This enables the device to use a TCP/IP client to connect to web services. It can also use Short Message Service (SMS) to exchange text messages to cellular phones. The device uses a serial port to communicate with the chipKIT board.

I didn’t want to deal with cables for the internal-sensor home network, so I decided to make the system wireless. I used XBee modules, as they offer a good compromise between price and development time. Also, if properly configured, they don’t consume too much energy. The XBee device uses a serial port to communicate with the chipKIT board.
To make the controller”green,” I designed a power-management board that can work with a solar panel and several regulated DC voltages. I chose a hardware implementation of an MPPT controller because I wanted to make my application as reliable as possible and have more software resources for the home controller task.

One board provides power management and the other enables communication, which includes additional hardware such as an SD card, an XBee module, and an RTCC. Note: I included the RTCC since the chipKIT board does not come with a crystal oscillator. I also included a prototyping area, which later proved to be very useful.

I was concerned about how users inside a home would interact with the device. The idea of a built-in web server to help configure and interact with the device had not materialized before I submitted the contest entry. This solution is very practical, since you can access the device through its built-in server to configure or download log files while you are on your home network.

POWER MANAGEMENT BOARD
To make the system eco-friendly, I needed to enable continuous device operation using only a solar panel and a rechargeable Li-ion battery. The system consumes a considerable amount of power, so it needed a charge controller. Its main task was to control the battery-charging process. However, to work properly, it also had to account for the solar panel’s characteristics.

A solar panel can’t deliver constant power like a wall DC adapter does. Instead, power varies in a complex way according to atmospheric conditions (e.g., light and temperature).
For a given set of operational conditions, there is always a single operating point where the panel delivers its maximum power. The idea is to operate the panel in the maximum power point regardless of the external conditions.

I used Linear Technology’s LT3652 MPPT charger IC, which uses an input voltage regulation loop. The chip senses the panel output voltage and maintains it over a value by adjusting the current drawn. A voltage divider network is used to program the setpoint.
You must know the output voltage the panel produces when operated at the maximum power point. I couldn’t find the manufacturer’s specification sheet for the solar panel, but the distributor provides some experimental numbers. Because I was in a hurry to meet the contest deadline, I used that information. Based on those tests, the solar panel can produce approximately 8 V at 1.25 A, which is about 10 W of power.

I chose 8 V as the panel’s maximum power point voltage. The resistor divider output is connected to the LT3652’s VIN_REG pin. The chip has a 2.7-V reference, which means the charge current is reduced when this pin’s voltage goes below 2.7 V.

I used a two-cell Li-ion battery, but since the LTC3652 works with two, three, and four cells, the same board with different components can be used with a three- or four-cell battery. The LT3652 requires an I/O voltage difference of at least 3.3 V for reliable start-up, and it was clear that the panel’s 8-V nominal output would not be enough. I decided to include a voltage step-up stage in front of the LT3652.

I used Linear Technology’s LT3479 DC/DC converter to get the panel output to around 18 V to feed the MPPT controller. This only works if the LT3562’s voltage control loop still takes the VIN_REG reference directly from the panel output. Figures 1 and 2 show the circuit.

Power management board

Figure 1: Power management board

Figure 2: Power management board

Figure 2: Power management board

I could have fed the chipKIT on-board 5-V linear regulator with the battery, but I preferred to include another switching regulator to minimize losses. I used Linear Technology’s LTC3112 DC/DC converter. The only problem was that I needed to be able to combine its output with the chipKIT board’s 5 V, either through the USB port or the DC wall adapter option.

The chipKIT board includes a Microchip Technology MCP6001 op-amp in comparator configuration to compare USB voltage against a jack DC input voltage, enabling only one to be the 5-V source at a given time. Something similar was needed, so I included a Linear Technology LTC4411 IC, which is a low-loss replacement ORing diode, to solve the problem.

To my knowledge, when I designed the board a battery gauge for two-cell lithium batteries (e.g., a coulomb counter that can indicate accumulated battery charge and discharge) wasn’t available. The available options needed to handle most of the computational things in software, so I decided it was not an option. I included a voltage buffer op-amp to take advantage of the LTC3112’s dedicated analog voltage output, which gives you an estimate of the instantaneous current being drawn. Unfortunately, I wasn’t able to get it to work. So I ended up not using it.

Building this board was a challenge, since most components are 0.5-mm pitch with exposed pads underneath. IC manufacturers suggest using a solid inner ground layer for switching regulators, so I designed a four-layer board. If you have soldering experience, you can imagine how hard it is to solder the board using only a hot air gun and a soldering iron. That’s why I decided it was time to experiment with a stencil, solder paste, and a convection oven. I completed the board by using a commercially available kitchen convection oven and manually adjusting the temperature to match the reflow profile since I don’t have a controller (see Photo 2).

Photo 3: Custom chipSOLAR board

Photo 2: Custom chipSOLAR board

WIRELESS BOARD
The wireless board has all the components for GPRS communication and the 802.15.4 home network, as well as additional components for the SD file system and the RTCC. Figure 3 shows the circuit.

Figure 3: The communication board schematic is shown.

Figure 3: The communication board schematic is shown.

At the time of the contest, I used a SIMCom Wireless Solutions SIM340 GPRS modem. The company now offers a replacement, the SIM900B. The only physical differences are the board-to-board connectors, but the variations are so minimal that you can use the same footprint for both connectors.

During the contest, I only had the connector for the SIM340 on hand, so I based almost all the firmware on that model. Later, I got the SIM900B connector and modified the firmware. The Project Files include the #if defined clause for SIM900 or SIM340 snippets.

A couple of things made me want to test the SIM900B module, among them the Simple Mail Transfer Protocol (SMTP) server functionality and Multimedia Messaging Service (MMS). Ultimately, I discovered that my 32-MB flash memory version of the SIM900B was not suitable for those firmware versions. The 64-MB version of the hardware is required.
The subscriber identity module (SIM) card receptacle and associated ESD protection circuitry are located on the upper side of the board. The I/O lines connected to the modem are serial TX, RX, and a power-on signal using a transistor.

The chipKIT Max32 board does not have a 32,768-Hz crystal, so Microchip Technology’s PIC32 internal RTCC was not an option. I decided to include Microchip Technology’s MCP79402 RTCC with a super capacitor, mainly for service purposes as the system is already backed up with the lithium battery.

I should have placed the SD card slot on the top of the board. That could have saved me some time during the debugging stage, when I have had some problems with SD firmware that corrupts the SD file system. When I designed the board, I was trying to make it compatible with other platforms, so I included level translators for the SD card interface. I made the mistake of placing a level translator at the master input slave output (MISO), which caused a conflict in the bus with other SPI devices. I removed it and wire-wrapped the I/O lines.

Another issue with this board was the XBee module’s serial port net routing, but it was nothing that cutting some traces and wire wrap could not fix. Photo 3 shows all the aforementioned details and board component location.

Photo 3: This communication board includes several key components to enable wireless communication with sensors,  the Internet, and cellular networks.

Photo 3: This communication board includes several key components to enable wireless communication with sensors,the Internet, and cellular networks.

Editor’s Note: Visit here to read about other projects from the 2012 DesignSpark chipKIT Challenge.

Client Profile: Digi International, Inc

Contact: Elizabeth Presson
elizabeth.presson@digi.com

Featured Product: The XBee product family (www.digi.com/xbee) is a series of modular products that make adding wireless technology easy and cost-effective. Whether you need a ZigBee module or a fast multipoint solution, 2.4 GHz or long-range 900 MHz—there’s an XBee to meet your specific requirements.

XBee Cloud Kit

Digi International XBee Cloud Kit

Product information: Digi now offers the XBee Wi-Fi Cloud Kit (www.digi.com/xbeewificloudkit) for those who want to try the XBee Wi-Fi (XB2B-WFUT-001) with seamless cloud connectivity. The Cloud Kit brings the Internet of Things (IoT) to the popular XBee platform. Built around Digi’s new XBee Wi-Fi
module, which fully integrates into the Device Cloud by Etherios, the kit is a simple way for anyone with an interest in M2M and the IoT to build a hardware prototype and integrate it into an Internet-based application. This kit is suitable for electronics engineers, software designers, educators, and innovators.

Exclusive Offer: The XBee Wi-Fi Cloud Kit includes an XBee Wi-Fi module; a development board with a variety of sensors and actuators; loose electronic prototyping parts to make circuits of your own; a free subscription to Device Cloud; fully customizable widgets to monitor and control connected devices; an open-source application that enables two-way communication and control with the development board over the Internet; and cables, accessories, and everything needed to connect to the web. The Cloud Kit costs $149.

Designing Wireless Data Gloves

Kevin Marinelli, IT manager for the Mathematics Department at the University of Connecticut, recently answered CC.Post’s newsletter invitation to readers to tell us about their wearable electronics projects. Kevin exhibited his project,  “Wireless Data Gloves,” at the World Maker Faire New York in September. He spoke with Circuit Cellar Managing Editor Mary Wilson about the gloves, which are based on an Adafruit ATmega32U4 breakout board, use XBee modules for wireless communication, and enable wearers to visually manipulate data and 3-D graphics.

MARY: Tell us a little bit about yourself and your educational and professional background.

KEVIN: I am originally from Sydney, Nova Scotia, in Canada. From an early age I have

Kevin Marinelli

Kevin Marinelli

always been interested in taking things apart and creating new things. My degrees are a Bachelor’s in Computer Science from Dalhousie University in Halifax, Nova Scotia, and a Master’s in Computer Science from the University of New Brunswick in Fredericton, New Brunswick. I am currently working on my PhD in Computer Science at the University of Connecticut (UConn).

My first full-time employment was with ITS (the computer center) at Dalhousie University. After eight years, I moved on to an IT management position the Ocean Mapping Group at the University of New Brunswick. I am currently the IT manager for the Mathematics Department at  UConn.

I am also an active member of MakeHartford, which is a local group of makers in Hartford, Connecticut.

MARY: Describe the wireless data gloves you recently exhibited at the World Maker Faire in New York. What inspired the idea?

KEVIN: The idea was initially inspired 20 years ago when using a Polhemus 6 Degree-of-Freedom sensor for manipulating computer graphics when I was at the University of New Brunswick. The device used magnetic fields to locate a sensor in three-dimensional space and detect its orientation. The combined location and orientation data provides data with six degrees of freedom. I have been interested in creating six degrees of freedom input devices ever since. With the Arduino and current sensor technologies, that is now possible.

Wireless data gloves on display at World Maker Faire New York. (Photo: Rohit Mehta)

Wireless data gloves on display at World Maker Faire New York. (Photo: Rohit Mehta)

MARY: What do the gloves do? What applications are there? Can you provide an example of who might use them and for what purpose?

KEVIN: The data gloves allow me to use my hands to wirelessly transmit telemetry data to a base station computer, which collects the data and provides it to any application programs that need it.

There are a number of potential applications, such as manipulating 3-D computer graphics, measurement of data for medical applications, remote control of vehicles, remote control of animatronics and puppetry.

MARY: Can you tell me about the data gloves’s design and the components used?

KEVIN: The basic design guidelines were to make the gloves self-contained, lightweight, easy to program, wireless, and rechargeable. The main electronic components are an Adafruit ATmega32U4 breakout board  (Arduino Leonardo software compatible), a SparkFun 9d0f sensor board, an XBee Pro packet radio, a LiPo battery charger circuit, and a LiPo battery. These are all open hardware projects or, in the case of the battery, are ordinary consumer products.

The choice of the ATMega32U4 for the processor was made to provide a USB port without any external components such as an FTDI chip to convert between serial and USB communications. This frees up the serial port on the processor for communicating with the XBee radio.

For the sensors, the SparkFun 9dof board was perfect because of its miniscule size and

Top of glove

Top of glove

because it only requires four connections: two connections for power and two connections for I2C. The board has components with readily available data sheets, and there is access to working example code for the sensor board. This reduced the design work greatly by using an off-the-shelf product instead of designing one myself.

The choice of an 800-mAh LiPo battery provides an excellent lightweight rechargeable power supply in a small form factor. The relatively small battery powers the project for more than 24 h of continuous use.

Palm of glove

Palm of glove

A simple white cotton glove acts as the structure to mount the electronics. For user-controlled input, the glove has conductive fabric fingertips and palm. Touching a finger to the thumb, or the pad on the palm, closes an electrical pathway, which allows the microcontroller to detect the input.

For user-selectable input, each fingertip and the palm of the hand has a conductive fabric pad connected to the Adafruit microcontroller. The thumb and palm act as a voltage source, while the fingertips act as inputs to the microcontroller. This way, the microcontroller can detect which fingers are touching the thumb and the palm pads. Insulated wires of 30 gauge phosphor bronze are sewn into the glove to connect the pads to the microcontroller.

MARY: Are the gloves finished? What were some of the design challenges? Do you plan any changes to the design?

KEVIN: The initial glove design and second version of the prototype have been completed. The major design challenges were finding a microcontroller board with sufficient capabilities to fit on the back of a hand, and configuring the XBee radios. The data glove design will continue to evolve over the next year as newer and more compact components become available.

Initially I was designing and building my own microcontroller circuit based on the ATmega32U4, but Adafruit came out with a nice, usable, designed board for my needs. So I changed the design to use their board.

SparkFun has a well-designed micro USB-based LiPo battery charger circuit. This would have been ideal for my project except that it does not have an On/Off switch and only has some through-hole solder points for powering an external project. I used their CadSoft EAGLE files to redesign the circuit to make it slightly more compact, added in a power switch and a JST connector for the power output for projects.

The XBee radios were an interesting challenge on their own. My initial design used the standard XBee, but that caused communication complications when using multiple data gloves simultaneously. In reading Robert Faludi’s book Building Wireless Sensor Networks: With ZigBee, XBee, Arduino, and Processing, I learned that the XBee Pro was more suited to my needs because it could be configured on a private area network (PAN) with end-nodes for the data gloves and a coordinator for the base station.

One planned future change is to switch to the surface-mount version of the XBee Pro. This will reduce both the size and weight of the electronics for the project.

The current significant design challenge I am working on is how to prevent metal fatigue in the phosphor bronze wires as they bend when the hand and fingers flex. The fatigue problem occurs because I use a small diamond file to remove the Kapton insulation on the wires. This process introduces small nicks or makes the wires too thin, which then promotes the metal fatigue.

A third version is in the design stage. The new design will replace the SparkFun 9dof board with a smaller single-chip sensor, which I hope can be mounted directly on the Adafruit ATmega32U4 board.

MARY: What new skills or technologies did you learn from the project, if any?

KEVIN: Along the way to creating the gloves, I learned a great deal about modern electronics. My previous skills in electronics were learned in the ’70s with single-sided circuits with through-hole components and pre-made circuit boards. I can now design and create double-sided circuit boards with primarily surface-mounted components. For initial prototype designs, I use double-sided photosensitized circuit boards and etch them at home.

Learning to program Arduino boards and Arduino clones has been incredible. The fact that the boards can be programmed using C in a nice IDE with lots of support libraries for common programming tasks makes the platform an incredibly efficient tool. Having an enormous following makes it very easy to find technical support for solving problems with Arduino products and making Arduino clones.

Wireless networking is a key component for the success of the project. I was lucky to have a course in wireless sensor network design at UConn, which taught me how to leverage wireless technology and avoid many of the pitfalls. That, combined with some excellent reference books I found, insured that the networking is stable. The network design provides for more network bandwidth than a single pair of data gloves require, so it is feasible to have multiple people collaborating manipulating the same on the same project.

Designing microcontroller circuits using EAGLE has been an interesting experience. While most of the new components I use regularly in designs are available in libraries from Adafruit and SparkFun, I occasionally have to design my own parts in EAGLE. Using EAGLE to its fullest potential will still take some time, but I have become reasonably proficient with it.

For soldering, I mostly still use a standard temperature controlled soldering iron with a standard tip. Amazingly, this allows me to solder 0402 resistors and capacitors and up to 100 pitch chips. When I have components that need to be soldered under the surface, I use solder paste and a modified electric skillet. This allows me to directly control the temperature of the soldering and gives me direct access to monitoring the process.

The battery charger circuit on my data glove is hand soldered and has a number of 0402-sized components, as  well as a micro USB connector, which also is a challenge to hand solder properly.

MARY: Are there similar “data gloves” out there? How are yours different?

There are a number of data glove projects, which can be found on the Internet. Some are commercial products, while others are academic projects.

My gloves are unique in that they are lightweight and self-contained on the cotton glove. All other projects that you can find on the Internet are either hard-wired to a computer or have components such as the microcontroller, batteries, or radio strapped to the arm or body.

Also, because the main structure is a self-contained cotton glove; the gloves do not interfere with other activities such as typing on a keyboard, using a mouse, writing with a pen, or even drinking from a glass. This was quite handy when developing the software for the glove because I could test the software and make programming corrections without having the inconvenience of putting the gloves on and taking them off repeatedly.

MARY: Are you working on any other projects you’d like to briefly tell us about?

KEVIN: At UConn, we are lucky to have one of the few academic programs in puppetry in the US. In the spring, I plan on taking a fine arts course at UConn in designing and making marionette puppets. This will allow me to expand the use of my data gloves into controlling and manipulating puppets for performance art.

I am collaborating on designing circuit boards with a number of people in Hartford. The more interesting collaborations are with artists, where they think differently about technology than I do. Balam Soto of Open Wire Labs is a new media artist and one of the creative artists I collaborate with regularly. He is also a member of MakeHartford and presents at Maker Faires.

MARY: What was the response to the wireless data gloves at World Maker Faire New York?

KEVIN: The response to the data gloves was overwhelmingly positive. People were making comparisons to the Nintendo Power Glove and to the movie “Minority Report.” Several musicians commented that the gloves should be excellent for performing and recording virtual musical instruments such as a guitar, trumpet and drums.

For the demonstration, I showed a custom application; which allowed both hands (or two people) to interactively manipulate points and lines on a drawing. Many people were encouraged to use the gloves for themselves, which enhanced the quality of the feedback I received.

The gloves are large-sized to fit my hands, which was quite a challenge for younger children to use because their hands were “lost” in the gloves. Even with the size challenge, it was fun watching younger children manipulating the objects on the computer screen.

I look forward to the Maker Faire next year, when I will have implemented the newer design for the data gloves and will have additional software to demonstrate. I plan on trying to put together a presentation on some form of performance art using the data gloves.

Small Plug-In Embedded Cellular Modem

Skywire plug-in modem

Skywire plug-in modem

The Skywire is a small plug-in embedded cellular modem. It uses a standard XBee form factor and 1xRTT CDMA operating mode to help developers minimize hardware and network costs. Its U.FL port ensures antenna flexibility.

The Skywire modem features a Telit CE910-DUAL wireless module and is available with bundled CDMA 1xRTT data plans from leading carriers, enabling developers to add fully compliant cellular connectivity without applying for certification. Future versions of the Skywire will support GSM and LTE. Skywire is smaller than many other embedded solutions and simple to deploy due to its bundled carrier service plans.

Skywire is available with a complete development kit that includes the cellular modem, a baseboard, an antenna, a power supply, debug cables, and a cellular service plan. The Skywire baseboard is an Arduino shield, which enables direct connection to an Arduino microcontroller.

Skywire modems cost $129 individually and $99 for 1,000-unit quantities. A complete development kit including the modem costs $262.

NimbeLink, LLC
www.nimbelink.com

Q&A: Andrew Spitz (Co-Designer of the Arduino-Based Skube)

Andrew Spitz is a Copenhagen, Denmark-based sound designer, interaction designer, programmer, and blogger studying toward a Master’s interaction design at the Copenhagen Institute of Interaction Design (CIID). Among his various innovative projects is the Arduino-based Skube music player, which is an innovative design that enables users to find and share music.

The Arduino-based Skube

Spitz worked on the design with Andrew Nip, Ruben van der Vleuten, and Malthe Borch. Check out the video to see the Skube in action.

On his blog SoundPlusDesign.com, Spitz writes:

It is a fully working prototype through the combination of using ArduinoMax/MSP and an XBee wireless network. We access the Last.fm API to populate the Skube with tracks and scrobble, and using their algorithms to find similar music when in Discover mode.

The following is an abridged  version of an interview that appears in the December 2012 issue of audioXpress magazine, a sister publication of Circuit Cellar magazine..

SHANNON BECKER: Tell us a little about your background and where you live.

Andrew Spitz: I’m half French, half South African. I grew up in France, but my parents are South African so when I was 17, I moved to South Africa. Last year, I decided to go back to school, and I’m now based in Copenhagen, Denmark where I’m earning a master’s degree at the Copenhagen Institute of Interaction Design (CID).

SHANNON: How did you become interested in sound design? Tell us about some of your initial projects.

Andrew: From the age of 16, I was a skydiving cameraman and I was obsessed with filming. So when it was time to do my undergraduate work, I decided to study film. I went to film school thinking that I would be doing cinematography, but I’m color blind and it turned out to be a bigger problem than I had hoped. At the same time, we had a lecturer in sound design named Jahn Beukes who was incredibly inspiring, and I discovered a passion for sound that has stayed with me.

Shannon: What do your interaction design studies at CIID entail? What do you plan to do with the additional education?

Andrew: CIID is focused on a user-centered approach to design, which involves finding intuitive solutions for products, software, and services using mostly technology as our medium. What this means in reality is that we spend a lot of time playing, hacking, prototyping, and basically building interactive things and experiences of some sort.

I’ve really committed to the shift from sound design to interaction design and it’s now my main focus. That said, I feel like I look at design from the lens of a sound designer as this is my background and what has formed me. Many designers around me are very visual, and I feel like my background gives me not only a different approach to the work but also enables me to see opportunities using sound as the catalyst for interactive experiences. Lots of my recent projects have been set in the intersection among technology, sound, and people.

SHANNON: You have worked as a sound effects recordist and editor, location recordist and sound designer for commercials, feature films, and documentaries. Tell us about some of these experiences?

ANDREW: I love all aspects of sound for different reasons. Because I do a lot of things and don’t focus on one, I end up having more of a general set of skills than going deep with one—this fits my personality very well. By doing different jobs within sound, I was able to have lots of different experiences, which I loved! nLocation recording enabled me to see really interesting things—from blowing up armored vehicles with rocket-propelled grenades (RPGs) to interviewing famous artists and presidents. And, documentaries enabled me to travel to amazing places such as Rwanda, Liberia, Mexico, and Nigeria. As a sound effects recordist on Jock of the Bushvelt, a 3-D animation, I recorded animals such as lions, baboons, and leopards in the South African bush. With Bakgat 2, I spent my time recording and editing rugby sounds to create a sound effects library. This time in my life has been a huge highlight, but I couldn’t see myself doing this forever. I love technology and design, which is why I made the move...

SHANNON: Where did the idea for Skube originate?

Andrew: Skube came out of the Tangible User Interface (TUI) class at CIID where we were tasked to rethink audio in the home context. So understanding how and where people share music was the jumping-off point for creating Skube.

We realized that as we move more toward a digital and online music listening experience, current portable music players are not adapted for this environment. Sharing mSkube Videousic in communal spaces is neither convenient nor easy, especially when we all have such different taste in music.

The result of our exploration was Skube. It is a music player that enables you to discover and share music and facilitates the decision process of picking tracks when in a communal setting.

audioXpress is an Elektor International Media publication.