A CTO’s Bright & Clean Workspace

Our enthusiasm for bright and clean workspaces won’t wane. A tidy, well-lit space is a must-have for a designer working with microcontrollers, PCBs, and small components such as transistors and capacitors. Fergus Dixon’s Sydney, Australia-based workspace is an excellent example.

Keeping a space clean and bright is key. (Source: F. Dixon)

Dixon submitted the following information about his workspace:

The tools I use include an oscilloscope, function generator, variable DC power supply and desoldering tool. The Oscilloscope is a new Agilent DSP-X 3014A which replaces the old Tektronix TDS210 which lasted for 12 years. I looked into the Chinese Rigol scopes, but while they are value for money, opted to go for a high-end scope. The function generator is a cheap one with an annoying mains hum, and the DC supply is a GPS-3030D which has been going well for over ten years, and another would be useful. The desoldering tool is a Hakko 701 which needs to be replaced with a hot-air gun soon for small SMD work. The workspace has a workbench for assembly of prototypes and a desk. The major issue is being able to store all the parts in a logical way – the new yellow boxes work well with pullout trays for small SMD parts. There are a few new projects this month including an energy meter which is better than the rest and electric fence energizers for farms. Reverse engineering projects are the hardest and most rewarding since you pick up experience from other engineers and see different methods of building circuits.

A narrow workspace can be useful when moving to and from equipment and tools (Source: F. Dixon)

Nice cabinet space and storage for electronics components (Source: F. Dixon)

Dixon is the Chief Technical Officer at Electronic System Design (ESD), which he started to provide hardware and software engineering services to clients. After completing one of ESD’s recent projects for a client, Dixon published an article titled “Smart Switch Management: Construct and MCU-Based, Net-Enabled Controller” in Circuit Cellar 263 (June 2012).

The following excerpt is the introduction to his article about the switch controller.

“Mate, we have a new project for you you’ll like this one,” said my pal from the contract assembly company. New projects are often referred to contract assembly companies and printed circuit board (PCB) designers, so it pays to be on good terms with them. This project was to design a controller for up to 50 smart switches. Smart switches are energy-saving devices installed in office blocks to automatically turn off the lights at the end of the day to conserve energy. The controller needed an accurate real-time clock (RTC) that would pulse a 24-V AC line once or twice to turn off the smart switches at the end of the working day, and repeat at two- to three-hour intervals in case the lights were turned on. After the first prototype was finished, the Ethernet interface was added.

The first prototype featured a Microchip Technology ENC28J60 Ethernet chip on a Vero board.

The design features Microchip Technology ENC28J60 Ethernet chip

You can read the entire article in the June 2012 issue.

Share your space! Circuit Cellar is interested in finding as many workspaces as possible and sharing them with the world. Email editor at circuitcellar.com to submit photos and information about your workspace. Write “workspace” in the subject line of the email, and include info such as where you’re located (city, country), the projects you build in your space, your tech interests, your occupation, and more. If you have an interesting space, we might feature it on CircuitCellar.com!

A Workspace Built for Precision Design

Brad Boegler is a do-it-yourselfer’s DIYer. His West Bloomfield, MI-based workspace is something to admire. It features a sturdy 8’ × 5’ workbench, a well-built machining bench, and dozens of handy tools that enable him to work on projects ranging from constructing a temperature-monitoring network to milling custom heatsinks. Simply put, it’s an appealing space for any innovator interested in DIY electronics and machining projects.

Photo 1: One of Boegler's Altera CPLD breakout boards is on the bench. He said he was "experimenting with some video generators in VHDL" when he took this picture. (Source: B. Boegler)

As I reviewed Boegler’s space, the same word kept popping into my mind: precision. Why? Let’s see.

Building a bench (or benches) for a workspace like Boegler’s takes a lot of precision measuring, cutting, fitting, and constructing. Check out the workbench in Photo 1. That’s no “Ikea hack.” The 8’ × 5’ bench fits a dual monitor setup, plenty of test/measurement equipment, a solder station, and more.

Boegler—who works as Linux sysadmin—described some of the equipment on this bench via email:

The left side of the bench is mostly RF equipment: there are two HP RF frequency generators, a VNA, and spectrum analyzer. The analog scope is a Tek 2246 and is one of my favorite scopes. Next to that is an HP 16500B logic analysis system and then a HP 54112D digital scope … The bench was custom made. I was not able to find any benches to my liking so I ended up building my own. It is 8′ wide by 5′ deep and constructed out of mostly 4×4s. It weighs a ton, but it has to be sturdy as a lot of this equipment is very heavy. I like very deep benches as I can push the equipment back far enough on it and still provide enough working space.

And don’t forget the power!

Those are various adjustable voltage current limiting power supplies, when working on projects needing various voltages you can never have too many supplies.

I’m sure everyone agrees that access to power supplies is key.

Photo 2: Boegler's workspace for machining (Source: B. Boegler)

On a separate bench (Photo 2) are Boegler’s milling machine and drill press, which are two tools intended for precision designing and machining. Boegler wrote:

The drill press is used almost daily, one of the best tools ever. I use the milling machine for custom shielded aluminum cases for RF boards, making special sized heatsinks, and it comes in handy for any special brackets I can make to hold boards or components.

I’m sure you’d agree that machining board cases and heatsinks requires a bit of exactitude.

Much like the bench in Photo 1, building the actual machine bench required precise measurements and cuts. Just look at its clean edges and sturdy frame. And don’t you like the shelf underneath? It’s a simple yet effective place for stowing frequently used tools.

On the topic of storage, check out Boegler’s wheeled shelf system. I like it and will consider something similar for my garage. (We all take wheels for granted until we’re in a pinch and need to move a heavy object. For instance, try moving a wheel-less six-shelf system full of parts in order to track down a screw that fell on the floor. Actually, don’t try that. It’s an accident waiting to happen.)

A wheeled shelf system for microcontrollers, op-amps, and parts of all sorts (Source: B. Boegler)

Lastly, check out the neatly labeled parts boxes. I see labels such as “Microcontrollers/DSP,” “Op-Amps,” “Serial Cables,” and more. Nice!

Share your space! Circuit Cellar is interested in finding as many workspaces as possible and sharing them with the world. Click here to submit photos and information about your workspace. Write “workspace” in the subject line of the email, and include info such as where you’re located (city, country), the projects you build in your space, your tech interests, your occupation, and more. If you have an interesting space, we might feature it on CircuitCellar.com!

A Workspace Where Meccano Meets Arduino

Peeking into someone’s workspace gives you a glimpse of their interests, personality, and aspirations. Thus, in the same way no two personalities are exactly same, no two workspaces are identical. Some workspaces are retreat-like locations where designers spend their precious “alone time”; other spaces are 24/7 where innovators work, play, eat, and even sleep. Some spaces are intended for leisurely designing, learning, programming, and tinkering. Other spaces are high-pressure work zones where electronics innovators endeavor around the clock to create the systems and programs that pay their bills. And so it’s due to the personal nature of each workspace that we’re grateful to the generous innovators who’ve pulled back the curtains to give us a look.

Today let’s check out a space that’s intended more for innovation and learning than building the next money-making embedded system.

Ralph Laughton’s multifunctional London-based workspace was designed for model-making and Meccano-building. It wasn’t intended to be an electrical engineering workspace.

But Circuit Cellar and Elektor members shouldn’t overlook a space simply because it isn’t full of MCUs, soldering irons, PCBs, and EE test equipment. You can learn a lot by studying someone’s work area: innovative storage systems, novel workbench designs, handy power supply solutions, equipment customization, and more.

Laughton's bench in London

Laughton wrote the following with his submission:

Please find attached a photograph of my modest workspace here in my workshop in London, England. My space has to be shared with other activities such as model making as in this picture. Component storage and larger equipment is stored to one side of the bench, keeping the main area clear. The shelves across the window are mounted on adjustable brackets. Not only does this give flexibility, but it enables easy access to the window and blind for cleaning and maintenance.

On his blog he writes:

My workshop has to accommodate woodworking, model making, photography as well as anything else that needs fixing, modifying or investigating.

When comes to investigating, Laughton has begun learning about Arduino. In late April he posted the following about his early experiences with it:

I am now at the stage where I can make it do what it is supposed to do and I have even written and modified my own lump of code. This may not seem like much to some of you reading this but for me this is a big leap into the world of digital electronics and microprocessors—something I didn’t think I would ever entertain. Mind you, what do I know? I used to think digital photography would never catch on.

So, with Arduino and the recent purchase of a scope (see his May 2 post), Laughton is positioning himself to take on more electronics projects in his multifuctional workspace

We can’t wait to see what sorts of Arduino-controlled Meccano projects he creates.

Do you want to share photos of your personal electronics workspace, hackspace, or “circuit cellar”? Do you have an article or tutorial you’d Circuit Cellar to consider for publication? Click here to submit your proposal or write-up and photos. Write “Submission” or “Proposal” in the subject line of your email.

EE’s Two-Bench Workspace in Silicon Valley

I met Vincent Himpe—a Senior Staff Engineer at STMicroelectronics—a few years ago at the Emebdded Systems Conference in San Jose, CA. It took all of about 5 minutes to learn that he was an engineer with a lot on his mind. Himpe described his work on hard disk drives, sketched a few circuits on a piece of paper, and even mentioned a few ideas for books. (Yes, that’s books—plural.) Where does such a productive engineer get so many ideas and all that energy? I wondered after we parted. I didn’t get to ask him before the conference ended.

Fortunately, Himpe recently contacted me, so I took the opportunity to get more insight into the life of such a multitalented engineer. I sent him a few questions via email, and he kindly replied. We have some insight into where he does a lot of creating, problem solving, programming, and writing.

When Himpe isn’t working on advanced controller devices for hard disk drives at STMicro, he’s writing books (check out Mastering the I2C Bus, Elektor 2011), tackling personal design projects, and repairing surplus electronic electronic equipment in two-bench workspace in San Jose.

My short interview with Himpe appears after the following two photos of his San Jose-based workspace.

Vincent Himpe’s workbench for hardware development

Himpe’s workbench for programming

C. J.: What are you working these days?

VINCENT: I make the reference designs and the development system for a hard disk mechatronic interface chip. This chip spins the 3 phase motor, does the head positioning including velocity control for the seek algorithms, shock sensing (to park the heads when freefall or shock is detected), provides power to all other parts (it’s got 4 switching regulators onboard). In case of unexpected power loss, we protect the data by retracting the heads. We recycle the mechanical energy in the spinning platters by using the motor as generator. This gives us a few seconds of power where we can gracefully shutdown the drive, preventing disasters.

C. J.: What sorts of projects do you work on at these two workstations? Work-related projects? Personal projects?

VINCENT: Personal projects. I have a number of books published through Elektor. Some of the hardware for those was developed there.

C. J.: Can you tell us a bit about the equipment at your hardware workstation? What do you use most frequently?

VINCENT: This is almost all salvaged equipment that was half functioning or broken. Some machines were repaired by combining two broken ones. I scout local surplus stores and eBay for damaged equipment. And once in a while you get lucky. There was a local company moving to a new building. They had ceased hardware development a couple of years ago and only do IP blocks now. They had a “yard sale.” That’s where I picked up my logic analyzer and my favorite scope: an Agilent mso7104: 4 analog and 16 digital channels 1GHz bandwidth with deep memory and all the protocols enabled.

C. J.: It looks like you’re working on something at the hardware bench. On the shelf is some equipment with red wires.

VINCENT: Those are three bench power supplies e3410 from Agilent. Next to it are three 34401 multimeters, also Agilent. I’m a bit of an Agilent fan. The fact that you can easily get full-service manuals that include schematics, calibration and troubleshooting procedures makes it ideal to fix these machines. That’s not the case with many other brands. Plus, they are built to last.

C. J.: What’s the piece of equipment directly under the magnifier/lamp?

VINCENT: Looks like a roll of desoldering wick. I was working on the ringlight. You can see a circular PCB just above it. Thirty-six white LEDs driven by a current-controlled boost pump with PWM. The halogen light bulbs in my Mantis burn out too easily. So I will replace them with this ringlight.

C. J.: How many solder stations do you have at your hardware station?

VINCENT: About seven. I have a Microtouch for precision work, SMD tweezers to remove passives, a hot air pencil, two WSP80s with different tips (so I don’t have to switch tip continuously while working), and a regular desoldering station with a vacuum pump. These are all surplus and/or repaired machines.

C. J.: What is board you’re working with at your software station?

VINCENT: That is a controller board for a UV exposure unit to make PCBs. It’s got an ATmega328 and LCD display. The board does double duty as pizza oven reflow controller. Just install two thermocouple interface chips and change software.

CircuitCellar.com is an Elektor International Media (EIM) publication. EIM published Himpe’s book, Mastering the I2C Bus.

One Electronics Workspace Among Nuremberg’s Thousands

Living in and around the international technology hub of Nuremberg, Germary, are tens of thousands of professional electrical engineers, tech-focused academics, and electronics DIYers. According to the city’s website, the IT sector—comprising radio technologies, embedded systems, and software development—has more than 100,000 employees working in more than 7,000 companies.

Heiner Tucher's bright, sufficiently powered electronics workspace

Within this burgeoning city and metro area are innovative circuit cellars, hack spaces, and workspaces of all sorts. Let’s take a look Heiner Tucher’s space.

With a general interest in electronics, Tucher built the space to serve as his “personal hobby room.” He works with older parts, and builds some of them himself. The tube-based generator is still full functional, he said.

If you look closely, you’ll see Tucher smartly equipped his workbench with a few essentials that every serious electronics designer should consider for his or her space:

  • Sufficient power: It’s no secret that easily accessible, wall-mounted power strips make designers’ lives much easier. Tucher has a great power supply setup.
  • Smart Storage: The process of designing and programming an electronic system comes with plenty of obstacles and bugs. So why create more headaches for yourself by cluttering your space or mixing random parts in unlabelled boxes and drawers? A storage system doesn’t have to be expensive or elaborate. Tucher made good use of what look like basic cabinets with decent depth. Nice and simple, yet extremely useful.
  • Proper lighting: Check out the overhead lamp Tucher placed suffificently above the main work bench. Notice how you don’t see any shadows from his various pieces of equipment. That’s essential when working with small components.

Do you want to share images of your workspace, hackspace, or “circuit cellar” with the world? Click here to email us your images and workspace info.

A Workspace for Radio & Metrology Projects

Ralph Berres, a television technician in Germany, created an exemplary design space in his house for working on projects relating to his two main technical interests: amateur radio and metrology (the science of measurement). He even builds his own measurement equipment for his bench.

Ralph Berres built this workspace for his radio and metrology projects

“I am a licensed radio amateur with the call sign DF6WU… My hobby is high-frequency and low-frequency metrology,” Berres wrote in his submission.

Amateur radio is popular among Circuit Cellar readers. Countless electrical engineers and technical DIYers I’ve met or worked with during the past few years are amateur radio operators. Some got involved in radio during childhood. Others obtained radio licenses more recently. For instance, Rebecca Yang of Tymkrs.com chronicled the process in late 2011. Check it out: http://youtu.be/9HfmyiHTWZI and http://tymkrs.tumblr.com/.

Do you want to share images of your workspace, hackspace, or “circuit cellar” with the world? Click here to email us your images and workspace info.