An Engineer Who Retires to the Garage

Jerry Brown, of Camarillo, CA, retired from the aerospace industry five years ago but continues to consult and work on numerous projects at home. For example, he plans to submit an article to Circuit Cellar about a Microchip Technology PIC-based computer display component (CDC) he designed and built for a traffic-monitoring system developed by a colleague.

Jerry Brown sits at his workbench. The black box atop the workbench is an embedded controller and is part of a traffic monitoring system he has been working on.

Jerry Brown sits at his workbench. The black box atop the workbench is an embedded controller and part of  his traffic monitoring system project.

“The traffic monitoring system is composed of a beam emitter component (BEC), a beam sensor component (BSC), and the CDC, and is intended for unmanned use on city streets, boulevards, and roadways to monitor and record the accumulative count, direction of travel, speed, and time of day for vehicles that pass by a specific location during a set time period,” he says.

Brown particularly enjoys working with PWM LED controllers. Circuit Cellar editors look forward to seeing his project article. In the meantime, he sent us the following description and pictures of the space where he conceives and executes his creative engineering ideas.

Jerry's garage-based lab.

Brown’s garage-based lab.

My workspace, which I call my “lab,” is on one side of my two-car garage and is fairly well equipped. (If you think it looks a bit messy, you should have seen it before I straightened it up for the “photo shoot.”)  

I have a good supply of passive and active electronic components, which are catalogued and, along with other parts and supplies, are stored in the cabinets and shelves alongside and above the workbench. I use the computer to write and compile software programs and to program PIC flash microcontrollers.  

The photos show the workbench and some of the instrumentation I have in the lab, including a waveform generator, a digital storage oscilloscope, a digital multimeter, a couple of power supplies, and a soldering station.  

The black box visible on top of the workbench is an embedded controller and is part of the traffic monitoring system that I have been working on.

Instruments in Jerry's lab include a waveform generator, a digital storage oscilloscope, a digital multimeter, a couple of power supplies, and a soldering station.

Instruments in Brown’s lab include a waveform generator, a digital storage oscilloscope, a digital multimeter, a couple of power supplies, and a soldering station. 

Brown has a BS in Electrical Engineering and a BS in Business Administration from California Polytechnic State University in San Luis Obispo, CA. He worked in the aerospace industry for 30 years and retired as the Principal Engineer/Manager of a Los Angeles-area aerospace company’s electrical and software design group.

Innovation Space: A Workspace for Prototyping, Programming, and Writing

RobotBASIC co-developer John Blankenship accomplishes a lot in his “cluttered” Vero Beach, FL-based workspace.

JohnBlankenship

John Blankenship in his workspace, where he develops, designs, and writes.

He develops software, designs hardware, packages robot parts for sale, and write books and magazine articles. Thus, his workspace isn’t always neat and tidy, he explained.

“The walls are covered with shelves filled with numerous books, a wide variety of parts, miscellaneous tools, several pieces of test equipment, and many robot prototypes,” he noted.

“Most people would probably find my space cluttered and confining, but for me it comforting knowing everything I might need is close at hand.”

Blankenship co-developed RobotBASIC with Samuel Mishal, a friend and talented programmer. The introductory programming language is geared toward high school-level students.

This PCB makes it easy to build a RobotBASIC-compatible robot.

This PCB makes it easy to build a RobotBASIC-compatible robot.

You can read Blankenship’s article, “Using a Simulated Robot to Decrease Development Time,” in the March 2014 edition of Circuit Cellar. He details how implementing a robotic simulation can reduce development time. Here’s an excerpt:

If you have ever built a robot, you know the physical construction and electronic aspects are only the first step. The real work begins when you start programming your creation.

A typical starting point is to develop a library of subroutines that implement basic behaviors. Later, the routines can be combined to create more complex behaviors and eventually full-blown applications. For example, navigational skills (e.g., hugging a wall, following a line, or finding a beacon) can serve as basic building blocks for tasks such as mowing a yard, finding a charging station, or delivering drinks to guests at a party. Developing basic behaviors can be difficult though, especially if they must work for a variety of situations. For instance, a behavior that enables a robot to transverse a hallway to find a specified doorway and pass through it should work properly with different-width hallways and doorways. Furthermore, the robot should at least attempt to autonomously contend with problems arising from the imprecise movements associated with most hobby robots.

Such problems can generally be solved with a closed-loop control system that continually modifies the robot’s movements based on sensor readings. Unfortunately, sensor readings in a real-world environment are often just as flawed as the robot’s movements. For example, tray reflections from ultrasonic or infrared sensors can produce erroneous sensor readings. Even when the sensors are reading correctly, faulty data can be obtained due to unexpected environmental conditions. These types of problems are generally random and are therefore difficult to detect and identify because the offending situations cannot easily be duplicated. A robot simulator can be a valuable tool in such situations.

Do you want to share images of your workspace, hackspace, or “circuit cellar”? Send your images and space info to editor@circuitcellar.com.

One Professor and Two Orderly Labs

Professor Wolfgang Matthes has taught microcontroller design, computer architecture, and electronics (both digital and analog) at the University of Applied Sciences in Dortmund, Germany, since 1992. He has developed peripheral subsystems for mainframe computers and conducted research related to special-purpose and universal computer architectures for the past 25 years.

When asked to share a description and images of his workspace with Circuit Cellar, he stressed that there are two labs to consider: the one at the University of Applied Sciences and Arts and the other in his home basement.

Here is what he had to say about the two labs and their equipment:

In both labs, rather conventional equipment is used. My regular duties are essentially concerned  with basic student education and hands-on training. Obviously, one does not need top-notch equipment for such comparatively humble purposes.

Student workplaces in the Dortmund lab are equipped for basic training in analog electronics.

Student workplaces in the Dortmund lab are equipped for basic training in analog electronics.

In adjacent rooms at the Dortmund lab, students pursue their own projects, working with soldering irons, screwdrivers, drills,  and other tools. Hence, these rooms are  occasionally called the blacksmith’s shop. Here two such workplaces are shown.

In adjacent rooms at the Dortmund lab, students pursue their own projects, working with soldering irons, screwdrivers, drills, and other tools. Hence, these rooms are occasionally called “the blacksmith’s shop.” Two such workstations are shown.

Oscilloscopes, function generators, multimeters, and power supplies are of an intermediate price range. I am fond of analog scopes, because they don’t lie. I wonder why neither well-established suppliers nor entrepreneurs see a business opportunity in offering quality analog scopes, something that could be likened to Rolex watches or Leica analog cameras.

The orderly lab at home is shown here.

The orderly lab in Matthes’s home is shown here.

Matthes prefers to build his  projects so that they are mechanically sturdy. So his lab is equipped appropriately.

Matthes prefers to build mechanically sturdy projects. So his lab is appropriately equipped.

Matthes, whose research interests include advanced computer architecture and embedded systems design, pursues a variety of projects in his workspace. He describes some of what goes on in his lab:

The projects comprise microcontroller hardware and software, analog and digital circuitry, and personal computers.

Personal computer projects are concerned with embedded systems, hardware add-ons, interfaces, and equipment for troubleshooting. For writing software, I prefer PowerBASIC. Those compilers generate executables, which run efficiently and show a small footprint. Besides, they allow for directly accessing the Windows API and switching to Assembler coding, if necessary.

Microcontroller software is done in Assembler and, if required, in C or BASIC (BASCOM). As the programming language of the toughest of the tough, Assembler comes second after wire [i.e., the soldering iron].

My research interests are directed at computer architecture, instruction sets, hardware, and interfaces between hardware and software. To pursue appropriate projects, programming at the machine level is mandatory. In student education, introductory courses begin with the basics of computer architecture and machine-level programming. However, Assembler programming is only taught at a level that is deemed necessary to understand the inner workings of the machine and to write small time-critical routines. The more sophisticated application programming is usually done in C.

Real work is shown here at the digital analog computer—bring-up and debugging of the master controller board. Each of the six microcontrollers is connected to a general-purpose human-interface module.

A digital analog computer in Matthes’s home lab works on master controller board bring-up and debugging. Each of the six microcontrollers is connected to a general-purpose human-interface module.

Additional photos of Matthes’s workspace and his embedded electronics and micrcontroller projects are available at his new website.

 

 

 

The Transistor: Something for Every DIY-er

The Transistor is a UT-based hackerspace. Its members have a love for all things open source and DIY. They enjoy working with embedded electronics and have created their own version of Arduino.

Orem

Location 1187 S 1480 W Orem, UT 84058
Members 55

Salt Lake City

Location 440 S 700 E
Unit #102, Salt Lake City, UT 84102
Members 18

The Transistor Hackerspace

Founder Deven Fore tells us about The Transistor:

ROBBERT: Tell us about your meeting space!

DEVEN: We currently have two locations. One in Salt Lake City, UT and one in Orem, UT.

Our Salt Lake City location is about 1,000 sq ft in a nice office building. We have one main area and two smaller rooms.

Our Orem location is about 5,700 sq ft in a large warehouse that also has offices. We have sectioned off a wood shop, a metal shop, a clean CNC, an assembly area, a members desks area, a lounge, a server room, an electronics room, and a few other dedicated areas.

ROBBERT: What tools do you have in your space? (Soldering stations? Oscilloscopes? 3-D printers?)

DEVEN: Too many things to list. All the general things you would expect, such as:

  • Soldering irons
  • Oscilloscopes
  • Analyzers
  • PCB work stations
  • Laser cutter
  • Vinyl cutter
  • Heat press
  • Chop saws
  • Mini lathe
  • Servers
  • Air tools
  • Cut-off saws
  • Mig welder
  • V90 FireBall router
  • A couple small miscellaneous CNC routers
  • 3-D printers
  • Networking gear

ROBBERT: Are there any tools your group really wants or needs?

DEVEN: We would love to have a large mill (CNC or manual) some day. Also, just all-around upgrades to current equipment.

ROBBERT: Does your group work with embedded tech (Arduino, Raspberry Pi, embedded security, MCU-based designs, etc.)?

DEVEN: All the time.

ROBBERT: Can you tell us about some of your group’s recent tech projects?

DEVEN: Currently we are working on miniature MAME cabinets. They are two player and will hold up to a 22″ LCD. We will release the CNC plans to the public as soon as we are done.

We’re working on a lot of miscellaneous projects: software, hardware, security, and so forth.

We’re also currently working on building some displays for The Living Planet Aquarium, in Sandy UT.

ROBBERT: What’s the craziest project your group or group members have completed?

DEVEN: Nothing too crazy. We built a drink cooler a year or so ago for the Red Bull Challenge. We designed and build a few full-size four-player MAME cabinets (planned for release to the public on our website, and featured in J. Baichtal’s Hack This: 24 Incredible Hackerspace Projects from the DIY Movement (Que Publishing, 2011).

4-player MAME cabinet

4-player MAME cabinet

ROBBERT: Do you have any events or initiatives you’d like to tell us about? Where can we learn more about it?

DEVEN: Lots of things are going on right now. Nothing specific, aside from working with the aquarium. We have a lot of public events/user groups that meet at our space. Our calender is on our website if you are interested in specifics.

ROBBERT: What would you like to say to fellow hackers out there?

DEVEN: Have fun, be productive, be safe.

Want to learn more about The Transistor? Check out their Facebook or MeetUp page!

Check out their calender to see what The Transistor is up to.

Show us your hackerspace! Tell us about your group! Where does your group design, hack, create, program, debug, and innovate? Do you work in a 20′ × 20′ space in an old warehouse? Do you share a small space in a university lab? Do you meet a local coffee shop or bar? What sort of electronics projects do you work on? Submit your hackerspace and we might feature you on our website!

One Desk Serves Two Roles for Professor and Designer

Chris Coulston, head of the Computer Science and Software Engineering department at Penn State Erie, The Behrend College, has a broad range of technical interests, including embedded systems, computer graphics algorithms, and sensor design.

Since 2005, he has submitted five articles for publication in Circuit Cellar, on projects and topics ranging from DIY motion-controlled gaming to a design for a “smart” jewelry pendant utilizing RGB LEDs.

We asked him to share photos and a description of the workspace in his Erie, PA, home. His office desk (see Photo 1) has something of an alter ego. When need and invention arise, he reconfigures it into an “embedded workstation.”

Coulston's workspace configured as an office desk

Photo 1: Coulston’s workspace configured as an office desk

When working on my projects, my embedded workstation contains only the essential equipment that I need to complete my project (see Photo 2).  What it lacks in quantity I’ve tried to make up for in quality instrumentation; a Tektronix TDS 3012B oscilloscope, a Fluke 87-V digital multimeter, and a Weller WS40 soldering iron.  While my workstation lacks a function generator and power supply, most of my projects are digital and have modest power requirements.

Coulston can reconfigure his desk into the embedded workstation pictured here.

Photo 2: Coulston can reconfigure his desk into the embedded workstation pictured here.

Coulston says his workspace must function as a “typical office desk” 80 percent of the time and electronics station 20 percent of the time.

It must do this while maintaining some semblance of being presentable—my wife shares a desk in the same space. The foundation of my workstation is a recycled desk with a heavy plywood backing on which I attached shelving. Being a bit clumsy, I’ve tried to screw down anything that could be knocked over—speakers, lights, bulletin board, power strip, cable modem, and routers.

The head of a university department has different needs in a workspace than does an electronics designer. So how does Coulston make his single office desk suffice for both his professional and personal interests? It’s definitely not a messy solution.

My role as department chair and professor means that I spend a lot time grading, writing, and planning. For this work, there is no substitute for uncluttered square footage—getting all the equipment off the working surface. However, when it’s time to play with the circuits, I need to easily reconfigure this space.

I have found organization to be key to successfully realize this goal. Common parts are organized in a parts case, parts for each project are put in their own bag, the active project is stored in the top draw, frequently used tools, jumper wires, and DMM are stored in the next draw. All other equipment is stored in a nearby closet.

I’ve looked at some of the professional-looking workspaces in Circuit Cellar and must admit that I am a bit jealous. However, when it comes to operating under the constraints of a busy professional life, I have found that my reconfigurable space is a practical compromise.

To learn more about Coulston and his technical interests, check out our Member Profile posted earlier this year.

 

Chris Coulston

Chris Coulston