Makelab Charleston, a place for hobbyists and professionals

Makelab Charleston is a hackerspace for hobbyist and professionals who share common interests in technology, computers, science, or digital/electronics art. It provides an environment for people to create anything they can imagine: from electronics, 3D printing, and construction, to networking, and programming.

Location 3955 Christopher St, North Charleston, SC 29405
Members 24

Treasurer David Vandermolen will tell us something more about Makelab Charleston.

MakeLabCharleston

Tell us about your meeting space!

We started in a 500 sq. ft. garage, but took a step up and are currently renting a 900+ sq. ft. home that’s been renovated.  We now have the space for a electronic/soldering room that also has our 3-D printer. One other room is dedicated to power-type tools and our CNC machine that is still being built by our members.  The other spaces in the house are used for classes and member activities such as LAN parties.

What tools do you have in your space? (Soldering stations? Oscilloscopes? 3-D printers?)

Soldering stations, oscilloscopes, 3-D printer, power tools, large table-top CNC machine (in progress), and a rack server for the IT minded to play with.

Are there any tools your group really wants or needs?

A laser CNC, nice tables, and chairs .

Does your group work with embedded tech (Arduino, Raspberry Pi, embedded security, MCU-based designs, etc.)?

We have members that dabble in multiple areas so we try to provide classes on the technology people want to learn about and explore.

Can you tell us about some of your group’s recent tech projects?

Our most recent tech project has been a overhaul of our server system. Other projects include the CNC currently in progress. That’s been an ongoing project for about a year.

What’s the craziest project your group or group members have completed?

Probably the wackiest project we completed was actually, something not tech related at all, building a bed for Charleston Bed Races. We put together a Lego bed (not real Legos) complete with Lego man and all.

Do you have any events or initiatives you’d like to tell us about? Where can we learn more about it?

We list any events or classes we are doing or plan on doing on our Website. Just click on classes and events on the main page or go to the calendar tab.

What would you like to say to fellow hackers out there?

Makelab Charleston is about opening the world to information and sharing that information with the people in our community. The best way to do that is through teaching.

Show us your hackerspace! Tell us about your group! Where does your group design, hack, create, program, debug, and innovate? Do you work in a 20′ × 20′ space in an old warehouse? Do you share a small space in a university lab? Do you meet a local coffee shop or bar? What sort of electronics projects do you work on? Submit your hackerspace and we might feature you on our website!

A Shed Packed with Projects and EMF Test Equipment

David Bellerose, a retired electronic equipment repairman for the New York State Thruway, has had a variety of careers that have honed the DIY skills he employs in his Lady Lake, FL, workspace.

Bellerose has been a US Navy aviation electronics technician and a computer repairman. “I also ran my own computer/electronic and steel/metal welding fabrication businesses, so I have many talents under my belt,” he says.

Bellerose’s Protostation, purchased on eBay, is on top shelf (left). He designed the setup on the right, which includes a voltmeter, a power supply, and transistor-transistor logic (TTL) oscillators. A second protoboard unit is on the middle shelf (left). On the right are various Intersil ICM7216D frequency-counter units and DDS-based signal generator units from eBay. The bottom shelf is used for protoboard storage.

Bellerose’s Protostation, purchased on eBay, is on top shelf (left). He designed the setup on the right, which includes a voltmeter, a power supply, and transistor-transistor logic (TTL) oscillators. A second protoboard unit is on the middle shelf (left). On the right are various Intersil ICM7216D frequency-counter units and DDS-based signal generator units from eBay. The bottom shelf is used for protoboard storage.

Bellerose’s project interests include model rockets, video security, solar panels, and computer systems. “My present project involves Intersil ICM7216D-based frequency counter modules to companion with various frequency generator modules, which I am also designing for a frequency range of 1 Hz to 12 GHz,” he says.

His workspace is an 8′-by-15′ shed lined with shelves and foldable tables. He describes how he tries to make the best use of the space available:

“My main bench is a 4′-by-6’ table with a 2’-by-6’ table to hold my storage drawers. A center rack holds my prototype units—one bought on eBay and two others I designed and built myself. My Tektronix 200-MHz oscilloscope bought on eBay sits on the main rack on the left, along with a video monitor. On the right is my laptop, a Heathkit oscilloscope from eBay, a 2.4-GHz frequency counter and more storage units. All the units are labeled.

“I try to keep all projects on paper and computer with plenty of storage space. My network-attached storage (NAS) totals about 23 terabytes of space.

“I get almost all of my test equipment from eBay along with parts that I can’t get from my distributors, such as the ICM7216D chips, which are obsolete. I try to cover the full EMF spectrum with my test equipment, so I have photometers, EMF testers, lasers, etc.”

The main workbench has a 4′-by-6′ center rack and parts storage units on the left and right. The main bench includes an OWON 25-MHz oscilloscope, storage drawers for lithium-ion (Li-on) batteries (center), voltage converter modules, various project modules on right, a Dremel drill press, and a PC monitor.

The main workbench has a 4′-by-6′ center rack and parts storage units on the left and right. The main bench includes an OWON 25-MHz oscilloscope, storage drawers for lithium-ion (Li-on) batteries (center), voltage converter modules, various project modules on the right, a Dremel drill press, and a PC monitor.

Photo 3: This full-room view shows the main bench (center), storage racks (left), and an auxiliary folding bench to work on large repairs. The area on right includes network-attached storage (NAS) storage and two PCs with a range extender and 24-port network switch.

Photo 3: This full-room view shows the main bench (center), storage racks (left), and an auxiliary folding bench to work on large repairs. The area on right includes network-attached storage (NAS) and two PCs with a range extender and 24-port network switch.

Photo 4: Various versions of Bellerose’s present project are shown. The plug-in units are for eight-digit displays. They are based on the 28-pin Intersil ICM 7216D chip with a 10-MHz time base oscillator, a 74HC132 input buffer, and a 74HC390 prescaler to bring the range to 60 MHz. The units’ eight-digit displays vary from  1″ to 0.56″ and 0.36″.

Various versions of Bellerose’s present project are shown. The plug-in units are for eight-digit displays. They are based on the 28-pin Intersil ICM 7216D chip with a 10-MHz time base oscillator, a 74HC132 input buffer, and a 74HC390 prescaler to bring the range to 60 MHz. The units’ eight-digit displays vary from 1″ to 0.56″ and 0.36″.

Photo 5: This is a smaller version of Bellerose’s project with a 0.36″ display mounted over an ICM chip with 74hc132 and 74hc390 chips and 5-V regulators. Bellerose is still working on the final PCB layout. “With regulators, I can use a 9-V adapter,” he says.  “Otherwise, I use 5 V for increased sensitivity. I use monolithic microwave (MMIC) amplifiers (MSA-0486) for input.”

This is a smaller version of Bellerose’s project with a 0.36″ display mounted over an ICM chip with 74HC132 and 74HC390 chips and 5-V regulators. Bellerose is still working on the final PCB layout. “With regulators, I can use a 9-V adapter,” he says. “Otherwise, I use 5 V for increased sensitivity. I use monolithic microwave (MMIC) amplifiers (MSA-0486) for input.”

 

 

Electronics Workspace: Pure Function, Minimal Form

Engineering consultant Steve Hendrix of Sagamore Hills, OH, says the “corporate headquarters” of Hx Engineering, LLC, pictured below, “is pure function, minimal form, and barely fits.”

This basement workspace reflects Steven's diverse projects and clients.

This basement workspace reflects Steve’s diverse projects and clients.

It’s a home basement workspace that reflects a variety of projects and clients. “I do a range of design work, from transistor-level hardware design through microcontrollers and FPGAs, as well as the embedded firmware and PC-side software to run the products,” Hendrix says. “Most of my clients are small to medium businesses in northeast Ohio, although I’ve done designs for companies as far west as New Mexico, as far south as Florida, and as far east as Cypress.”

Hendrix describes a workspace layout that stresses utility and a certain attention to thriftiness:

As I look through my equipment, probably the central theme is cost-effective solid equipment, without necessarily being the ‘first kid on the block.’ I learned long ago to be the second kid on the block with the newest toy… er… TOOL. The early bird gets the worm, but the second mouse gets the cheese.

He provides the following detailed description of his equipment and desk, which is a very large, solid-core door purchased cheaply from a lumberyard because it had been damaged:

Being natural wood and not plastic, it makes an inherently anti-static workstation. I used a router to round the front edge to be a bit friendlier to elbows, and carefully trimmed it and wedged it between the wall on the right and the utility room wall on the left, supported by vertical plywood against the walls. My PCs are in the adjacent utility room so I don’t have to listen to fans all day and they’re up on custom brackets on the wall so I don’t have to shinny under the desk to get to them. All the wires pass through plumbing fittings in the wall. The main work computer runs the lower dual monitors. The next-older work computer is still used for some specialized hardware, via the monitor above and an extra mouse. Under the left monitor is an all-band receiver that I sometimes use to monitor equipment under development, but also listen to broadcast music.

My late father-in-law was always extremely thrifty, and salvaged the flatbed scanner at the top left from a dumpster. It’s turned out to be the best scanner I’ve seen, and I used it to scan their family pictures. There’s also an HP Photosmart scanner that’s excellent on slides and negatives.

The middle stack has a parts cabinet that I really should retire, holding mainly SN74 series dual in-line packages (DIPs) that I very rarely use these days. Below that is an Ethernet-enabled power switch that controls various equipment. Next down is my trusty old Tektronix TDS-220 oscilloscope

I was pleased to note that past contributors to [Circuit Cellar’s Workspace feature] also use that same scope. It was the first digital scope I ever encountered that wouldn’t fib to me about aliasing, and it’s still a real workhorse. The ability to do screen captures with the free PC software helps a lot in documenting a finished product and in discussing problems remotely. Below that is a very solid bench multimeter. If it just had a capacitance function, I could abandon my Fluke 12! Then there’s a basic analog function generator, and some manual switches for AC.

Over on the far right are some more parts cabinets, several power supplies (including the ±5V/±12V supply my dad helped me build during my very first excursions into the then-new SN74 series of logic), an RF signal generator, and a good old boat-anchor Hewlett-Packard (HP) spectrum analyzer. I got that one off eBay, and spent as much again to get it repaired and calibrated. It’s in many ways better than the newer instruments. If it had a synthesized local oscillator and a computer interface, it would do it all. Actually, I have on occasion faked a computer interface by connecting the video outputs on its front panel to my TDS-220, and then capturing the resulting waveform.

In front of that is my solder station and stereo zoom microscope. Sitting on its stage is a backup prototype identical to the one currently controlling 4,800 W of my total 6,800 W of installed solar capacity. I routinely do prototypes using 0603 parts and recently more 0402 parts, with occasional 0201 parts. Don’t sneeze around those! The cabinets on the right wall are mainly connectors and surface-mount parts.

I needed some more bench space for a project, so I added a “temporary” shelf between the right end of my bench and the bookshelves on the wall to the right. As you can imagine, the “temporary” part of that wasn’t. So now it holds a voltage standard, on which sits my solder station and a ham radio. The latter is powered directly by 12-V solar power. At the extreme right are an inverter connected to the same solar batteries and the side of a breaker panel that allows me to safely connect to those same batteries when I need a heavy-duty 12-V power supply.

The whole office is lighted by strips of white LEDs run directly by 12-V solar power. The self-adhesive strips are just stuck to the drop-ceiling rails on each side of the standard florescent fixture. The standard fixture is still present and functional as a backup, but the solar lights are actually brighter and don’t flicker like a florescent. The 12-V solar is also wired to the rear jacks of the HP multimeter, so I can get an instant reading on the battery charge state. I have future plans to move some or all of my office circuits to the 120 VAC solar power that runs a portion of our home.

To the right and out of the picture is a solid wall of bookshelves that I built to hold databooks when I first set up this office over 20 years ago. The Internet and PDFs have pretty much made that obsolete, so those shelves now hold various supplies, projects in various states of completion, and some archival data. Behind me as I take this picture is a long table, made of another big door sitting atop filing cabinets. My original intent was for the desk to be for software/firmware, and the long table to be for hardware. Indeed, there are still a couple of RS-232 lines up through the ceiling and down to the table. However, now it serves as an assembly area when I have contractors doing assembly, as well as for storage and general workspace. But there’s Ethernet available on both the desk and the bench, for connecting Ethernet-enabled prototypes.

The biggest drawback to this office comes on a clear, cold, sunny day. The upstairs has lots of glass, so it absorbs lots of free solar heat. However, that means the furnace doesn’t run at all (even near zero outside), so the office and the rest of the basement get really cold. But since the furnace blower is on solar power, which is abundant under those conditions, I just force the blower on to share some of that heat!

If you’re interested in learning more about Hendrix’s work, check out our member profile posted last year. Also, be sure to pick up Circuit Cellar‘s upcoming July and August issues, which will include Hendrix’s two-part series on his personal solar-power setup.

These solar panels are mounted on Steve's east-facing roof.

These solar panels are mounted on Steve’s east-facing roof.

 

Build an Adequate Test Bench (EE Tip #127)

It’s in our makeup as engineers that we want to test our newly received boards as soon as possible. We just can’t wait to connect them to a power supply and then use our test bench equipment (e.g., generators, oscilloscopes, switches or LEDs, and so on) for simulation.

Circuit Cellar columnist Robert Lacoste's workspace in Chaville, France.

Circuit Cellar columnist Robert Lacoste’s clean, orderly workspace in Chaville, France.

But due to our haste, the result is usually a PCB under test lying on a crowded workbench in the middle of a mesh of test cables, alligator clamps, prototyping boards, and other probes. Experience shows that the probability of a short circuit or mismatched connection is high during this phase of engineering excitement.

Test Board

Rather than requiring a mesh of test wires, it is often wise to develop a small test PCB that will drastically simplify the test phase. Here the ancillary board provided a clean way to connect a Microchip Technology ICD3 debugger, a JTAG emulator, a debug analyzer, and a power supply input.

Take your time: prepare a real test bench to which you can connect your board. It could be as simple as a clean desk with properly labeled wires, but you might also need to anticipate the design of a test PCB in order to simplify the cabling.—Robert Lacoste, “Mixed-Signal Designs,” CC25:25th Anniversary Issue, 2013. 

 

A Workspace for Microwave Imaging, Small Radar Systems, and More

Gregory L. Charvat stays very busy as an author, a visiting research scientist at the Massachusetts Institute of Technology (MIT) Media Lab, and the hardware team leader at the Butterfly Network, which brings together experts in computer science, physics, and electrical engineering to create new approaches to medical diagnostic imaging and treatment.

If that wasn’t enough, he also works as a start-up business consultant and pursues personal projects out of the basement-garage workspace of his Westbrook, CT, home (see Photo 1). Recently, he sent Circuit Cellar photos and a description of his lab layout and projects.

Photo 1

Photo 1: Charvat, seated at his workbench, keeps his equipment atop sturdy World War II-era surplus lab tables.

Charvat’s home setup not only provides his ideal working conditions, but also considers  frequent moves required by his work.

Key is lots of table space using WW II surplus lab tables (they built things better back then), lots of lighting, and good power distribution.

I’m involved in start-ups, so my wife and I move a lot. So, we rent houses. When renting, you cannot install the outlets and things needed for a lab like this. For this reason, I built my own line voltage distribution panel; it’s the big thing with red lights in the middle upper left of the photos of the lab space (see Photo 2).  It has 16 outlets, each with its own breaker, pilot lamp (not LED).  The entire thing has a volt and amp meter to monitor power consumption and all power is fed through a large EMI filter.

Photo 2: This is another view of the lab, where strong lighting and two oscilloscopes are the minimum requirements.

Photo 2: This is another view of the lab, where strong lighting and two oscilloscopes are the minimum requirements.

Projects in the basement-area workplace reflect Charvat’s passion for everything from microwave imaging systems and small radar sensor technology to working with vacuum tubes and restoring antique electronics.

My primary focus is the development of microwave imaging systems, including near-field phased array, quasi-optical, and synthetic-aperture radar (SAR). Additionally, I develop small radar sensors as part of these systems or in addition to. Furthermore, I build amateur radio transceivers from scratch. I developed the only all-tube home theater system (published in the May-June 2012 issues of audioXpress magazine) and like to restore antique radio gear, watches, and clocks.

Charvat says he finds efficient, albeit aging, gear for his “fully equipped microwave, analog, and digital lab—just two generations too late.”

We’re fortunate to have access to excellent test gear that is old. I procure all of this gear at ham fests, and maintain and repair it myself. I prefer analog oscilloscopes, analog everything. These instruments work extremely well in the modern era. The key is you have to think before you measure.

Adequate storage is also important in a lab housing many pieces for Charvat’s many interests.

I have over 700 small drawers full of new inventory.  All standard analog parts, transistors, resistors, capacitors of all types, logic, IF cans, various radio parts, RF power transistors, etc., etc.

And it is critical to keep an orderly workbench, so he can move quickly from one project to the next.

No, it cannot be a mess. It must be clean and organized. It can become a mess during a project, but between projects it must be cleaned up and reset. This is the way to go fast.  When you work full time and like to dabble in your “free time” you must have it together, you must be organized, efficient, and fast.

Photos 3–7 below show many of the radar and imaging systems Charvat says he is testing in his lab, including linear rail SAR imaging systems (X and X-band), a near-field S-band phased-array radar, a UWB impulse X-band imaging system, and his “quasi-optical imaging system (with the big parabolic dish).”

Photo 3: This shows impulse rail synthetic aperture radar (SAR) in action, one of many SAR imaging systems developed in Charvat’s basement-garage lab.

Photo 3: This photo shows the impulse rail synthetic aperture radar (SAR) in action, one of many SAR imaging systems developed in Charvat’s basement-garage lab.

Photo 4: Charvat built this S-band, range-gated frequency-modulated continuous-wave (FMCW) rail SAR imaging system

Photo 4: Charvat built this S-band, range-gated frequency-modulated continuous-wave (FMCW) rail SAR imaging system.

Photo 5: Charvat designed an S-band near-field phased-array imaging system that enables through-wall imaging.

Photo 5: Charvat designed an S-band near-field phased-array imaging system that enables through-wall imaging.

Photo 5: Charvat's X-band, range-gated UWB FMCW rail SAR system is shown imaging his bike.

Photo 6: Charvat’s X-band, range-gated UWB FMCW rail SAR system is shown imaging his bike.

Photo 7: Charvat’s quasi-optical imaging system includes a parabolic dish.

Photo 7: Charvat’s quasi-optical imaging system includes a parabolic dish.

To learn more about Charvat and his projects, read this interview published in audioXpress (October 2013). Also, Circuit Cellar recently featured Charvat’s essay examining the promising future of small radar technology. You can also visit Charvat’s project website or follow him on Twitter @MrVacuumTube.

A Quiet Place for Soldering and Software Design

Senior software engineer Carlo Tauraso, of Trieste, Italy, has designed his home workspace to be “a distraction-free area where tools, manuals, and computer are at your fingertips.”

Tauraso, who wrote his first Assembler code in the 1980s for the Sinclair Research ZX Spectrum PC, now works on developing firmware for network devices and microinterfaces for a variety of European companies. Several of his articles and programming courses have been published in Italy, France, Spain, and the US. Three of his articles have appeared in Circuit Cellar since 2008.

Photo 1: This workstation is neatly divided into a soldering/assembling area on the left and developing/programming area on the right.

Photo 1: This workstation is neatly divided into a soldering/assembling area on the left and a developing/programming area on the right.

Tauraso keeps an orderly and, most importantly, quiet work area that helps him stay focused on his designs.

This is my “magic” designer workspace. It’s not simple to make an environment that’s perfectly suited to you. When I work and study I need silence.

I am a software engineer, so during designing I always divide the work into two main parts: the analysis and the implementation. I decided, therefore, to separate my workspace into two areas: the developing/programming area on the right and the soldering/assembling area on the left (see Photo 1). When I do one or the other activity, I move physically in one of the two areas of the table. Assembling and soldering are manual activities that relax me. On the other hand, programming often is a rather complex activity that requires a lot more concentration.

Photo 2: The marble slab at the right of Tauraso’s assembling/soldering area protects the table surface and the optical inspection camera nearby helps him work with tiny ICs.

Photo 2: The marble slab at the right of Tauraso’s assembling/soldering area protects the table surface. The optical inspection camera nearby helps him work with tiny ICs.

The assembling/soldering area is carefully set up to keep all of Tauraso’s tools within easy reach.

I fixed a marble slab square on the table to solder without fear of ruining the wood surface (see Photo 2). As you can see, I use a hot-air solder station and the usual iron welder. Today’s ICs are very small, so I also installed a camera for optical inspection (the black cylinder with the blue stripe). On the right, there are 12 outlets, each with its own switch. Everything is ready and at your fingertips!

Photo 3: This developing and programming space, with its three small computers, is called “the little Hydra.”

Photo 3: This developing and programming space, with its three small computers, is called “the little Hydra.”

The workspace’s developing and programming area makes it easy to multitask (see Photo 3).

In the foreground you can see a network of three small computers that I call “the little Hydra” in honor of the object-based OS developed at Carnegie Mellon University in Pittsburgh, PA, during the ’70s. The HYDRA project sought to demonstrate the cost-performance advantages of multiprocessors based on an inexpensive minicomputer. I used the same philosophy, so I have connected three Mini-ITX motherboards. Here I can test network programming with real hardware—one as a server, one as a client, one as a network sniffer or an attacker—while, on the other hand, I can front-end develop Windows and the [Microchip Technology] PIC firmware while chatting with my girlfriend.

This senior software designer has created a quiet work area with all his tools close at hand.

Senior software engineer Tauraso has created a quiet work area with all his tools close at hand.

Circuit Cellar will be publishing Tauraso’s article about a wireless thermal monitoring system based on the ANT+ protocol in an upcoming issue. In the meantime, you can follow Tauraso on Twitter @CarloTauraso.

A Personal Hackerspace in Lyon, France

Jean Noël Lefebvre, of Lyon, France, is the inventor of the Ootsidebox touchless technology, an innovative interface that enables adding touchless technology to an existing tablet. (Watch the Elektor.LABS video interview with Lefebvre to find out more about Ootside box and how it works).

Recently, Lefebvre shared with Circuit Cellar photos of his workspace, which he prefers to call his “personal hackerspace”  where he conceives inventive ideas and builds them.

Deskweb

Lefebvre’s desk reflects his new project.

His desk has an old oscilloscope, with only two inputs. “I have to upgrade it as soon as possible,” he says.

He is working on a shield for the Arduino UNO board on his desk, which is also where he keeps a Weller soldering iron with specific tools for surface mount devices (SMDs).

“On the screen of the computer you can see the logo of my project Ootsidebox and also the logo of Noisebridge, the San Francisco hackerspace.”

A diverse library

A diverse library

Lefebvre says his library is filled with “a lot of good books (old and modern)” covering many different topics and skills, including electronics, software, signal processing, cryptography, physics, biology, mathematics, and inventors’ biographies.

What is he currently working on in his hackerspace?

“I’m working on my own invention: a touchless gesture user Interface based on electric-fields (E-fields) sensing,” he says. “It’s an open-source  and open-hardware project, compatible with the Arduino environment.”

You can learn more about how his project is being shared on the Elektor.LABS website.

Storage for some of Lefebvre's stock components

Storage for some of Lefebvre’s stock components

Although Lefebvre is currently working alone in his “personal hackerspace” at his family’s home, his dream is to go to San Francisco, CA, and work out of the well-equipped Noisebridge hackerspace.

A few years ago, he says, big ideas and innovations in technology started in garages.  “Today this will take place in hackerspaces, where creativity and technical skills are omnipresent,” he says. “By making stuff in such a place, you are fully connected with a worldwide network of creative people of different backgrounds, and this synergy highly accelerates the innovation process.”

You can view pictures and video Lefebvre posted from his last Noisebridge visit.  And you can follow Lefebvre and his work on Twitter.

An Engineer Who Retires to the Garage

Jerry Brown, of Camarillo, CA, retired from the aerospace industry five years ago but continues to consult and work on numerous projects at home. For example, he plans to submit an article to Circuit Cellar about a Microchip Technology PIC-based computer display component (CDC) he designed and built for a traffic-monitoring system developed by a colleague.

Jerry Brown sits at his workbench. The black box atop the workbench is an embedded controller and is part of a traffic monitoring system he has been working on.

Jerry Brown sits at his workbench. The black box atop the workbench is an embedded controller and part of  his traffic monitoring system project.

“The traffic monitoring system is composed of a beam emitter component (BEC), a beam sensor component (BSC), and the CDC, and is intended for unmanned use on city streets, boulevards, and roadways to monitor and record the accumulative count, direction of travel, speed, and time of day for vehicles that pass by a specific location during a set time period,” he says.

Brown particularly enjoys working with PWM LED controllers. Circuit Cellar editors look forward to seeing his project article. In the meantime, he sent us the following description and pictures of the space where he conceives and executes his creative engineering ideas.

Jerry's garage-based lab.

Brown’s garage-based lab.

My workspace, which I call my “lab,” is on one side of my two-car garage and is fairly well equipped. (If you think it looks a bit messy, you should have seen it before I straightened it up for the “photo shoot.”)  

I have a good supply of passive and active electronic components, which are catalogued and, along with other parts and supplies, are stored in the cabinets and shelves alongside and above the workbench. I use the computer to write and compile software programs and to program PIC flash microcontrollers.  

The photos show the workbench and some of the instrumentation I have in the lab, including a waveform generator, a digital storage oscilloscope, a digital multimeter, a couple of power supplies, and a soldering station.  

The black box visible on top of the workbench is an embedded controller and is part of the traffic monitoring system that I have been working on.

Instruments in Jerry's lab include a waveform generator, a digital storage oscilloscope, a digital multimeter, a couple of power supplies, and a soldering station.

Instruments in Brown’s lab include a waveform generator, a digital storage oscilloscope, a digital multimeter, a couple of power supplies, and a soldering station. 

Brown has a BS in Electrical Engineering and a BS in Business Administration from California Polytechnic State University in San Luis Obispo, CA. He worked in the aerospace industry for 30 years and retired as the Principal Engineer/Manager of a Los Angeles-area aerospace company’s electrical and software design group.

Innovation Space: A Workspace for Prototyping, Programming, and Writing

RobotBASIC co-developer John Blankenship accomplishes a lot in his “cluttered” Vero Beach, FL-based workspace.

JohnBlankenship

John Blankenship in his workspace, where he develops, designs, and writes.

He develops software, designs hardware, packages robot parts for sale, and write books and magazine articles. Thus, his workspace isn’t always neat and tidy, he explained.

“The walls are covered with shelves filled with numerous books, a wide variety of parts, miscellaneous tools, several pieces of test equipment, and many robot prototypes,” he noted.

“Most people would probably find my space cluttered and confining, but for me it comforting knowing everything I might need is close at hand.”

Blankenship co-developed RobotBASIC with Samuel Mishal, a friend and talented programmer. The introductory programming language is geared toward high school-level students.

This PCB makes it easy to build a RobotBASIC-compatible robot.

This PCB makes it easy to build a RobotBASIC-compatible robot.

You can read Blankenship’s article, “Using a Simulated Robot to Decrease Development Time,” in the March 2014 edition of Circuit Cellar. He details how implementing a robotic simulation can reduce development time. Here’s an excerpt:

If you have ever built a robot, you know the physical construction and electronic aspects are only the first step. The real work begins when you start programming your creation.

A typical starting point is to develop a library of subroutines that implement basic behaviors. Later, the routines can be combined to create more complex behaviors and eventually full-blown applications. For example, navigational skills (e.g., hugging a wall, following a line, or finding a beacon) can serve as basic building blocks for tasks such as mowing a yard, finding a charging station, or delivering drinks to guests at a party. Developing basic behaviors can be difficult though, especially if they must work for a variety of situations. For instance, a behavior that enables a robot to transverse a hallway to find a specified doorway and pass through it should work properly with different-width hallways and doorways. Furthermore, the robot should at least attempt to autonomously contend with problems arising from the imprecise movements associated with most hobby robots.

Such problems can generally be solved with a closed-loop control system that continually modifies the robot’s movements based on sensor readings. Unfortunately, sensor readings in a real-world environment are often just as flawed as the robot’s movements. For example, tray reflections from ultrasonic or infrared sensors can produce erroneous sensor readings. Even when the sensors are reading correctly, faulty data can be obtained due to unexpected environmental conditions. These types of problems are generally random and are therefore difficult to detect and identify because the offending situations cannot easily be duplicated. A robot simulator can be a valuable tool in such situations.

Do you want to share images of your workspace, hackspace, or “circuit cellar”? Send your images and space info to editor@circuitcellar.com.

The Transistor: Something for Every DIY-er

The Transistor is a UT-based hackerspace. Its members have a love for all things open source and DIY. They enjoy working with embedded electronics and have created their own version of Arduino.

Orem

Location 1187 S 1480 W Orem, UT 84058
Members 55

Salt Lake City

Location 440 S 700 E
Unit #102, Salt Lake City, UT 84102
Members 18

The Transistor Hackerspace

Founder Deven Fore tells us about The Transistor:

ROBBERT: Tell us about your meeting space!

DEVEN: We currently have two locations. One in Salt Lake City, UT and one in Orem, UT.

Our Salt Lake City location is about 1,000 sq ft in a nice office building. We have one main area and two smaller rooms.

Our Orem location is about 5,700 sq ft in a large warehouse that also has offices. We have sectioned off a wood shop, a metal shop, a clean CNC, an assembly area, a members desks area, a lounge, a server room, an electronics room, and a few other dedicated areas.

ROBBERT: What tools do you have in your space? (Soldering stations? Oscilloscopes? 3-D printers?)

DEVEN: Too many things to list. All the general things you would expect, such as:

  • Soldering irons
  • Oscilloscopes
  • Analyzers
  • PCB work stations
  • Laser cutter
  • Vinyl cutter
  • Heat press
  • Chop saws
  • Mini lathe
  • Servers
  • Air tools
  • Cut-off saws
  • Mig welder
  • V90 FireBall router
  • A couple small miscellaneous CNC routers
  • 3-D printers
  • Networking gear

ROBBERT: Are there any tools your group really wants or needs?

DEVEN: We would love to have a large mill (CNC or manual) some day. Also, just all-around upgrades to current equipment.

ROBBERT: Does your group work with embedded tech (Arduino, Raspberry Pi, embedded security, MCU-based designs, etc.)?

DEVEN: All the time.

ROBBERT: Can you tell us about some of your group’s recent tech projects?

DEVEN: Currently we are working on miniature MAME cabinets. They are two player and will hold up to a 22″ LCD. We will release the CNC plans to the public as soon as we are done.

We’re working on a lot of miscellaneous projects: software, hardware, security, and so forth.

We’re also currently working on building some displays for The Living Planet Aquarium, in Sandy UT.

ROBBERT: What’s the craziest project your group or group members have completed?

DEVEN: Nothing too crazy. We built a drink cooler a year or so ago for the Red Bull Challenge. We designed and build a few full-size four-player MAME cabinets (planned for release to the public on our website, and featured in J. Baichtal’s Hack This: 24 Incredible Hackerspace Projects from the DIY Movement (Que Publishing, 2011).

4-player MAME cabinet

4-player MAME cabinet

ROBBERT: Do you have any events or initiatives you’d like to tell us about? Where can we learn more about it?

DEVEN: Lots of things are going on right now. Nothing specific, aside from working with the aquarium. We have a lot of public events/user groups that meet at our space. Our calender is on our website if you are interested in specifics.

ROBBERT: What would you like to say to fellow hackers out there?

DEVEN: Have fun, be productive, be safe.

Want to learn more about The Transistor? Check out their Facebook or MeetUp page!

Check out their calender to see what The Transistor is up to.

Show us your hackerspace! Tell us about your group! Where does your group design, hack, create, program, debug, and innovate? Do you work in a 20′ × 20′ space in an old warehouse? Do you share a small space in a university lab? Do you meet a local coffee shop or bar? What sort of electronics projects do you work on? Submit your hackerspace and we might feature you on our website!

One Desk Serves Two Roles for Professor and Designer

Chris Coulston, head of the Computer Science and Software Engineering department at Penn State Erie, The Behrend College, has a broad range of technical interests, including embedded systems, computer graphics algorithms, and sensor design.

Since 2005, he has submitted five articles for publication in Circuit Cellar, on projects and topics ranging from DIY motion-controlled gaming to a design for a “smart” jewelry pendant utilizing RGB LEDs.

We asked him to share photos and a description of the workspace in his Erie, PA, home. His office desk (see Photo 1) has something of an alter ego. When need and invention arise, he reconfigures it into an “embedded workstation.”

Coulston's workspace configured as an office desk

Photo 1: Coulston’s workspace configured as an office desk

When working on my projects, my embedded workstation contains only the essential equipment that I need to complete my project (see Photo 2).  What it lacks in quantity I’ve tried to make up for in quality instrumentation; a Tektronix TDS 3012B oscilloscope, a Fluke 87-V digital multimeter, and a Weller WS40 soldering iron.  While my workstation lacks a function generator and power supply, most of my projects are digital and have modest power requirements.

Coulston can reconfigure his desk into the embedded workstation pictured here.

Photo 2: Coulston can reconfigure his desk into the embedded workstation pictured here.

Coulston says his workspace must function as a “typical office desk” 80 percent of the time and electronics station 20 percent of the time.

It must do this while maintaining some semblance of being presentable—my wife shares a desk in the same space. The foundation of my workstation is a recycled desk with a heavy plywood backing on which I attached shelving. Being a bit clumsy, I’ve tried to screw down anything that could be knocked over—speakers, lights, bulletin board, power strip, cable modem, and routers.

The head of a university department has different needs in a workspace than does an electronics designer. So how does Coulston make his single office desk suffice for both his professional and personal interests? It’s definitely not a messy solution.

My role as department chair and professor means that I spend a lot time grading, writing, and planning. For this work, there is no substitute for uncluttered square footage—getting all the equipment off the working surface. However, when it’s time to play with the circuits, I need to easily reconfigure this space.

I have found organization to be key to successfully realize this goal. Common parts are organized in a parts case, parts for each project are put in their own bag, the active project is stored in the top draw, frequently used tools, jumper wires, and DMM are stored in the next draw. All other equipment is stored in a nearby closet.

I’ve looked at some of the professional-looking workspaces in Circuit Cellar and must admit that I am a bit jealous. However, when it comes to operating under the constraints of a busy professional life, I have found that my reconfigurable space is a practical compromise.

To learn more about Coulston and his technical interests, check out our Member Profile posted earlier this year.

 

Chris Coulston

Chris Coulston

A Well-Organized Workspace for Home Automation Systems

Organization and plenty of space to work on projects are the main elements of Dean Boman’s workspace (see Photo 1). Boman, a retired systems engineer, says most of his projects involve home automation. He described some of his workspace features via e-mail:

My test equipment suite consists of a Rigol digital oscilloscope, a triple-output power supply, various single-output power supplies, and several Microchip Technology in-circuit development tools.

I have also built a simple logic analyzer, an FPGA programmer, and an EPROM programmer. For PCB fabrication, I have a complete setup from MG Chemicals to expose, develop, etch, and plate boards up to about 6” × 9” in size.

Photo 1: Boman’s workbench includes overhead cabinets to help reduce clutter. The computer in the foreground is his web server and main home-automation system controller. (Source: D. Boman)

Photo 1: Boman’s workbench includes overhead cabinets to help reduce clutter. The computer in the foreground is his web server and main home-automation system controller. (Source: D. Boman)

Boman is currently troubleshooting a small 1-W ham radio transmitter (see Photo 2).

Photo 2: Boman is currently troubleshooting a small 1-W ham radio transmitter (Source: D. Boman)

Photo 2: Here is his workbench with the radio transmitter. (Source: D. Boman)

Boman says the 10’ long countertop surface (in the background in Photo 3) is:

Great for working on larger items (e.g., computers). It is also a great surface for debugging designs as you have plenty of room for test equipment, drawings, and datasheets.

Photo 3: Boman’s setup includes plenty of spacefor large projects. (Source: D. Boman)

Photo 3: Boman’s setup includes plenty of room for large projects. (Source: D. Boman)

Most of Boman’s projects involve in-home automation (see Photo 4).

My current system provides functions such as: security system monitoring, irrigation control, water leak detection, temperature monitoring, electrical usage monitoring, fire detection, access control, weather monitoring, water usage monitoring, solar hot water system control, and security video recording. I also have an Extra Class ham radio license (WE7J) and build some ham radio equipment.

Here is how he described his system setup:

The shelf on the top contains the network routers and the security system. The cabinets on the wall contain an irrigation system controller and a network monitor for network management. I was fortunate in that we built a custom home a few years ago so I was able to run about two miles of cabling in the walls during construction.

Photo 4: Boman has various elements of his home-automation control system mounted on the wall. (Source: D. Boman)

Photo 4: Boman has various elements of his home-automation control system mounted on the wall. (Source: D. Boman)

Boman uses small containers to hold an inventory of surface-mount components (see Photo 5).

Over the past 10 years or so I have migrated to doing surface-mount designs almost exclusively. I have found that once you get over the learning curve, the surface-mount designs are much simpler to design and troubleshoot then the through-hole type technology. The printed wiring boards are also much simpler to fabricate, which is important since I etch my own boards.

Photo 5: Surface-mount components are neatly corralled in containers. (Source: D. Boman)

Photo 5: Surface-mount components are neatly corralled in containers. (Source: D. Boman)

Overall, Boman’s setup is well suited to his interests. He keeps everything handy in well-organized containers and has plenty of testing space In addition, his custom-built home enabled him to run behind-the-scenes cabling, freeing up valuable workspace.

Do you want to share images of your workspace, hackspace, or “circuit cellar”? Send your images and space info to editor<at>circuitcellar.com.

RL78 Challenge Winner’s Workspace in Lewisville, TX

Lewisville, TX-based electrical engineer Michael Hamilton has been a busy man. During the past 10 years, he created two companies: A&D Technologies, which supplies wireless temperature and humidity controllers, and Point & Track, which provides data-gathering apps and other business intelligence tools. And in his spare time, he designed a cloud electrofusion machine for welding 0.5″ to 2″ polyethylene fittings. It  won Second Prize in the 2012 Renesas RL78 Green Energy Challenge.

In an interview slated for publication in Circuit Cellar 273 (April 2013), Hamilton describes some of his projects, shares details about his first microcontroller design, and more.

Michael Hamilton in his workspace. Check out the CNC machine and 3-D printer.

During the interview process, he also provided a details about his workspace, in which he has a variety of interesting tools ranging from a CNC machine to a MakerBot 3-D printer. Hamilton said:

I have a three-axis CNC machine and MakerBot 3-D printer. I use the CNC machine to cut out enclosures and the 3-D printer to create bezels for LCDs and also to create 3-D prototypes. These machines are extremely useful if you need to make any precise cuts or if you want to create 3-D models of future products.

Hamilton also noted:

I recently purchased a Rigol Technologies DSA-815-TG spectrum analyzer. This device is a must-have, right behind the oscilloscope. It enables you to see all the noise/interference present in a PCB design and also test it for EMI issues.

Michael Hamilton’s test bench and DSA815

He has a completely separate area for PCB work.

A separate space for PCB projects

Overall, this is an excellent setup. Hamilton clearly has a nice collection must-have EE tools and test equipment, as well as a handy CNC machine and decent desktop storage system. The separate PCB bench is a great feature that helps keep the space orderly and clean.

As for the 3-D printer, well, it’s awesome.

A Dutch Designer’s “Comfort Zone”

Check out this amusing workspace submission from Henk Stegeman who lives and works in The Netherlands (which is widely referred to as the land of Elektor). We especially like his Dutch-orange power strips, which stand out in relation to the muted grey, white, and black colors of his IT equipment and furniture. 

Some might call the space busy. Others might say it’s cramped. Stegeman referred to it his “comfort zone.” He must move and shift a lot of objects before he starts to design. But, hey, whatever works, right?

Hi,

Attached you picture of my workspace.
Where ? (you might ask.)
I just move the keyboard aside.
To where ?
Euuh… (good question)

Regards

Henk
The Netherlands

Visit Circuit Cellar‘s Workspace page for more write-ups and photos of engineering workbenches and tools from around the world!

Want to share your space? Email our editorial team pics and info about your spaces!

Show Your Circuit Cellar, Hackspace, Design Space!

Where do you design, hack, create, program, debug, and innovate? Do you work in a 20′ × 20′ space in your cellar? Do you share a small workspace in a lab at a university? Do you design in your dorm room? Do you work at your office after hours when the 9-to-5 employees are long gone? Have you built a “design cave” in your garage? Do you construct your projects at your local hackspace facility? We want to see where you design and program! Show us your personal circuit cellar or whatever you call your design space!

Email your pics, as well as a short description of the space, to editor@circuitcellar.com

We might feature your space on our website!

Check out these spaces:

Inside the Elektor lab in Limbricht, The Netherlands (November 2011)

 

Circuit Cellar columnist Robert Lacoste’s workspace in Chaville, France.

 

The Elektor Lab November 2011