Cabinet-Based DIY Electronics Workspace

Micrcontrollers and electrical engineering probably don’t come to mind when you flip through an IKEA product catalog. But when you think about it, IKEA has plenty of easy-to-assemble tables, cabinets, and storage containers that could be handy for outfitting a electronics workspace or “circuit cellar.”

(Source: Patrik Thalin)

(Source: Patrik Thalin)

Sweden-based Patrik Thalin built a workspace within an IKEA Husar cabinet. The setup is compact, orderly, and well-planned. He noted:

It has a pull-out keyboard shelf that I use it as an extension of the workspace when the doors are open. My inspiration came from a friend that had built his lab in a two door closet. The main idea is to have a workspace that can be closed when not used and to be able to resume my work later. I have used this lab for nearly ten years and I am still happy with it!

In the upper part of the cabinet I keep commonly used tools and instruments. On the top shelf are two PSUs, a signal generator, assortment boxes with components, the SMD component kit and shelf trays with cables and small tools. On the lower shelves are things like multimeter, callipers and a power drill. At the bottom is the work space with a soldering station. On the left wall are screwdrivers,wrenches and pliers. To the left are cables hanging on hooks.The thing hanging under the shelf is an old radio scanner. You can also see a small vise hanging on the front of the workspace.

The lower part of the cabinet is for additional storage, he noted.

(Source: Patrik Thalin)

(Source: Patrik Thalin)

The information and images were submitted by Patrik Thalin. For more information about his space and work, visit his blog.

System Engineer’s Space for Designing & Testing

Many complicated motion control and power electronics systems comprise thousands of parts and dozens of embedded systems. Thus, it makes sense that a systems engineer like New Jersey-based John Roselle would have more than one workspace for simultaneously planning, designing, and testing multiple systems.

(Source: John Roselle)

John Roselle’s space for designing circuits and electronic systems (Source: John Roselle)

Roselle recently submitted images of his space and provided some interesting feedback when we asked him about it.

My main work space for testing and debugging of circuits consists of nothing more than a kitchen table with two shelves attached to the wall.  Shown in the picture (see above) a 265-V digital motor drive for a fin control system for an under water application.  In a second room I have a computer design center.

I design and test mostly motor drives for motion control products for various applications, such as underwater vehicles, missile hatch door motor drives, and test equipment for testing the products I design.

Computer design center (Source: John Roselle)

A second room serves as “computer design center” (Source: John Roselle)

John’s third workspace is used mainly for testing and assembling. At times there might be two or three different projects going on at once, he added.

(Source: John Roselle)

The third space is used to test and assemble systems (Source: John Roselle)

Do you want to share images of your workspace, hackspace, or “circuit cellar”? Send us your images and info about your space.

Professor’s Convertible Electronics Workspace

In addition to serving as a contributor and technical reviewer for Circuit Cellar, Chris Coulston heads the Computer Science and Software Engineering department at Penn State Erie, The Behrend College. He has a broad range of technical interests, including embedded systems, computer graphics algorithms, and sensor design.

Since 2005, he has submitted five articles for publication in Circuit Cellar, on projects and topics ranging from DIY motion-controlled gaming to a design for a “smart” jewelry pendant utilizing RGB LEDs.

We asked him to share photos and a description of the workspace in his Erie, PA, home. His office desk (see Photo 1) has something of an alter ego. When need and invention arise, he reconfigures it into an “embedded workstation.”

Coulston's workspace configured as an office desk

Photo 1: Coulston’s workspace configured as an office desk

When working on my projects, my embedded workstation contains only the essential equipment that I need to complete my project (see Photo 2).  What it lacks in quantity I’ve tried to make up for in quality instrumentation; a Tektronix TDS 3012B oscilloscope, a Fluke 87-V digital multimeter, and a Weller WS40 soldering iron.  While my workstation lacks a function generator and power supply, most of my projects are digital and have modest power requirements.

Coulston can reconfigure his desk into the embedded workstation pictured here.

Photo 2: Coulston can reconfigure his desk into the embedded workstation pictured here.

Coulston says his workspace must function as a “typical office desk” 80 percent of the time and electronics station 20 percent of the time.

It must do this while maintaining some semblance of being presentable—my wife shares a desk in the same space. The foundation of my workstation is a recycled desk with a heavy plywood backing on which I attached shelving. Being a bit clumsy, I’ve tried to screw down anything that could be knocked over—speakers, lights, bulletin board, power strip, cable modem, and routers.

The head of a university department has different needs in a workspace than does an electronics designer. So how does Coulston make his single office desk suffice for both his professional and personal interests? It’s definitely not a messy solution.

My role as department chair and professor means that I spend a lot time grading, writing, and planning. For this work, there is no substitute for uncluttered square footage—getting all the equipment off the working surface. However, when it’s time to play with the circuits, I need to easily reconfigure this space.

I have found organization to be key to successfully realize this goal. Common parts are organized in a parts case, parts for each project are put in their own bag, the active project is stored in the top draw, frequently used tools, jumper wires, and DMM are stored in the next draw. All other equipment is stored in a nearby closet.

I’ve looked at some of the professional-looking workspaces in Circuit Cellar and must admit that I am a bit jealous. However, when it comes to operating under the constraints of a busy professional life, I have found that my reconfigurable space is a practical compromise.

To learn more about Coulston and his technical interests, check out his Member Profile.

Chris Coulston

Chris Coulston

Engineer’s Transformable Workspace

No two workspaces or circuit cellars are alike. And that’s what makes studying these submissions so fascinating. Each space reflects the worker’s interests, needs, and personality.

Succasunna, NJ-based Mike Sydor’s penchant for “hacking” isn’t relegated solely to electronics. His entire workspace is actually a hack designed for both hardware and software projects. It’s an excellent example of what you can do with a little creativity and planning!

When the front is open, Mike can tackle hardware projects (Source: Mike Sydor)

We love the “transformer” theme that runs through the entire space. Simply put, the compact space is easily rearranged to serve Mike’s various needs:

  • When the front is closed, Mike can work on the “soft arts” of coding, diagramming, and design planning.
  • When the front is open, Mike has easy access to essential tools such as an oscilloscope, isolation transformer, and solder station.
  • A KVM switch enables Mike move back and forth between Linux and Windows

    Mike simply closes the front when he shifts from hardware mode to software mode (Source: Mike Sydor)

Another interesting point to note is that Mike can detach the shelf/drawer so the workspace can fit through a door if necessary. Great idea! Now he can take the workspace with him if he ever moves.

Submitted by Mike Sydor:

Here is my workspace for your consideration.  It is basically a custom, drop-front workspace on wheels so that I can move it easily to reconfigure the equipment or otherwise get to all the gear.  It has two configurations.  The ‘software’ setting (front closed) where I can focus on the code, design docs, etc.  The shelf can also hold a midi keyboard for music ‘hacking.’  There is a drawer in that shelf for miscellaneous items.  With the front open, you have a nice workspace for assembly and debugging, you can still access the drawer, and you can access all of the gear.  Everything is self-contained – only a single power and network cable are ‘on the floor.’  The shelf/drawer assembly detaches for moving day – otherwise it is too wide to fit through a standard door opening.  I also only use three wheels.  This makes a tripod, which is stable on any surface.  I live in an older home – no level floors! – so mobility does not compromise stability and I don’t have to shim one side or the other to keep it from wobbling.   The mass of all the gear keeps the bench stable.  The monitors are mounted on a custom stand so that they can be positioned, via swing arms and are otherwise stable when you need to move the bench around.  I use a KVM switch with multiple computers (windows, Linux) and have a set of cables so that I can plug in a project computer and use the same monitors and keyboard.  All the computers are on the same switch for optimal Ethernet performance.  I build kits, prototype circuits for sensor conditioning and muck around with micro-controllers, as well as fix/hack your various consumer electronics.  Cheers, Mike Sydor.

All the good stuff in one place! Power, a solder station, a scope, and more! (Source: Mike Sydor)

Do you want to share images of your workspace, hackspace, or “circuit cellar”? Send us your images and info about your space.

Birmingham-Based Electronics Design Nook

Steve Karg of Birmingham, AL, recently submitted info about his well-planned, cost-conscious design nook where he builds lighting control products, develops software, tests and debugs his projects, and more. The workspace is compact yet intelligently stocked with essentials such as a laptop, a scope, a toaster, a magnifier, a labelled parts bin, an AC source, and more.

Karg writes:

Here is a photo of my electronics workspace in my cellar. I use the toaster oven for soldering surface mount parts to printed circuit boards, the scope and meters for the usual diagnostics and validation, the AC source for developing line voltage dimming and switching lighting control products, the laptop for developing software including the open source BACnet Stack and Wireshark, and the light tent for deriving dimming curves for various lamps.  I bought the chairs and lab bench at a Martin-Marietta yard sale in Colorado, and they moved 3 times with me to Pennsylvania, Georgia, and now Alabama. I found the Metcal soldering iron in a dumpster in Maryland near an office building.—Steve Karg, Birmingham, AL

Steve Karg’s circut cellar in Birmingham, AL

In addition to placing his essential tools within reach, Karg did a few things we think every designer should consider when planning his or her workspace.

One, Karg neatly labelled the parts box located on the right side of the shelf above his workbench. Label now and you’ll thank yourself later.

Two, Karg has deep, sturdy, wall-mounted shelves above his workbench. As you can see, they’re capable of holding fairly large bins and boxes. They aren’t flimsy 8″ deep shelves intended for displaying lightweight curios or paperback books. If you’re planning a workspace, consider following Karg’s lead by installing sturdy shelving capable of holding everything from electronic equipment to every copy of Circuit Cellar since 1988.

Three, we applaud Karg’s magnification and lighting equipment. A cellar can be dark place, especially if it is completely underground and isn’t a “walkout” (or “daylight basement”) with a windowed door. Many basements have only a few small hopper windows that enable daylight and fresh air to get inside. In such spaces, darkness and shadows can be problematic for electrical engineers and electronics DIYers working on small projects. Without a properly placed light or lighting system, your body can overshadow your work. Good luck trying taking a close look at a board or attempting to repair a PCB trace without proper lighting. It’s clear Karg has proper lighting in mind. As you can see, he has plenty of lamps and light sources at his disposal.

And finally, kudos to Karg for purchasing the bench at a yard sale and staying with the discarded soldering iron he found in a dumpster. We all know the saying: “If ain’t broke, don’t fix it.” We agree, except when what’s broke is mounted on your circuit board, of course!

Do you want to share images of your workspace, hackspace, or “circuit cellar” with the world? Click here to email us your images and workspace info.