Robotics, Hardware Interfacing, and Vintage Electronics

Gerry O’Brien, a Toronto-based robotics and electronics technician at R.O.V. Robotics, enjoys working on a variety of projects in his home lab. His projects are largely driven by his passion for electronics hardware interfacing.

Gerry’s background includes working at companies such as Allen-Vanguard Corp., which builds remotely operated vehicle (ROV) robots and unmanned ground vehicles (UGVs) for military and police bomb disposal units worldwide. “I was responsible for the production, repair, programming and calibration of the robot control consoles, VCU (vehicle control unit) and the wireless communication systems,” he says.

Gerry recently sent Circuit Cellar photos of his home-based electronics and robotics lab. (More images are available on his website.) This is how he describes the lab’s layout and equipment:

In my lab I have various designated areas with lab benches that I acquired from the closing of a local Nortel  R&D office over 10 years ago.

All of my electronics benches have ESD mats and ground wrist straps.  All of my testing gear, I have purchased on eBay over the years….

PCB flip rack

PCB flip-rack

To start, I have my “Electronics Interfacing Bench” with a PCB flip-rack , which allows me to Interface PCBs while they are powered (in-system testing). I am able to interface my Tektronix TLA715 logic analyzer and other various testing equipment to the boards under test. My logic analyzer currently has two  logic I/O modules that have 136 channels each. So combined, I have 272 channels for logic analysis. I also have a four-channel digital oscilloscope module to use with this machine. I can now expand this even further by interfacing my newly acquired expansion box, which allows me to interface many more modules to the logic analyzer mainframe.

Gerry's lab bench

Gerry’s lab bench

Gerry recently upgraded his  Tektronix logic analyzer with an expansion box.

Gerry recently upgraded his Tektronix logic analyzer with an expansion box.

Interface probes

Logic analyzer interface probes

I also have a soldering bench where I have all of my soldering gear, including a hot-air rework station and 90x dissecting microscope with a video interface.

Dissecting microscope with video interface

Dissecting microscope with video interface

My devoted robotics bench has several robotic arm units, Scorbot and CRS robots with their devoted controllers and pneumatic Interface control boards.

Robotics bench

Robotics bench and CRS robot

On my testing bench, I currently have an Agilent/HP 54610B 500-MHz oscilloscope with the GPIB to RS-232 adapter for image capturing. I also have an Advantest model R3131A 9 kHz to 3-GHz bandwidth spectrum analyzer, a Tektronix model AFG3021 function generator, HP/Agilent 34401A multimeter and an HP 4CH programmable power supply. For the HP power supply, I built a display panel with four separate voltage output LCD displays, so that I can monitor the voltages of all four outputs simultaneously. The stock monochrome LCD display on the HP unit itself is very small and dim and only shows one output at a time.

Anyhow, my current testing bench setup will allow me to perform various signal mapping and testing on chips with a large pin count, such as the older Altera MAX9000 208-pin CPLDs and many others that I enjoy working with.

The testing bench

The testing bench

And last but not least… I have my programming and interfacing bench devoted to VHDL programming, PCB Design, FPGA hardware programming (JTAG), memory programming (EEPROM  and flash memory), web design, and video editing.

Interfacing bench and "octo-display"

Interfacing bench and “octo-display”

I built a PC computer and by using  a separate graphics display cards, one being an older Matrols four-port SVGA display card; I was able to build a “octo-display” setup. It seamlessly shares eight monitors providing a total screen resolution size of 6,545 x 1,980 pixels.

If you care to see how my monitor mounting assembly was built, I have posted pictures of its construction here.

A passion for electronics interfacing drives Gerry’s work:

I love projects that involve hardware Interfacing.  My area of focus is on electronics hardware compared to software programming. Which is one of the reasons I have focused on VHDL programming (hardware description language) for FPGAs and CPLDs.

I leave the computer software programming of GUIs to others. I will usually team up with other hobbyists that have more of a Knack for the Software programming side of things.  They usually prefer to leave the electronics design and hardware production to someone else anyhow, so it is a mutual arrangement.

I love to design and build projects involving vintage Altera CPLDs and FPGAs such as the Altera MAX7000 and MAX9000 series of Altera components. Over the years, I have a managed to collect a large arsenal of vintage Altera programming hardware from the late ’80s and early ’90s.  Mainly for the Altera master programming unit (MPU) released by Altera in the early ’90s. I have been building up an arsenal of the programming adapters for this system. Certain models are very hard to find. Due to the rarity of this Altera programming system, I am currently working on designing my own custom adapter interface that will essentially allow me to connect any compatible Altera component to the system… without the need of the unique adapter. A custom made adapter essentially.  Not too complicated at all really, it’s just a lot of fun to build and then have the glory of trying out other components.

I love to design, build, and program FPGA projects using the VHDL hardware description language and also interface to external memory and sensors. I have a devoted website and YouTube channel where I post various hardware repair videos or instructional videos for many of my electronics projects. Each project has a devoted webpage where I post the instructional videos along with written procedures and other information relating to the project. Videos from “Robotic Arm Repair” to a “DIY SEGA Game Gear Flash Cartridge” project. I even have VHDL software tutorials.

The last project I shared on my website was a project to help students dive into a VHDL based VGA Pong game using the Altera DE1 development board.

 

Makelab Charleston, a place for hobbyists and professionals

Makelab Charleston is a hackerspace for hobbyist and professionals who share common interests in technology, computers, science, or digital/electronics art. It provides an environment for people to create anything they can imagine: from electronics, 3D printing, and construction, to networking, and programming.

Location 3955 Christopher St, North Charleston, SC 29405
Members 24

Treasurer David Vandermolen will tell us something more about Makelab Charleston.

MakeLabCharleston

Tell us about your meeting space!

We started in a 500 sq. ft. garage, but took a step up and are currently renting a 900+ sq. ft. home that’s been renovated.  We now have the space for a electronic/soldering room that also has our 3-D printer. One other room is dedicated to power-type tools and our CNC machine that is still being built by our members.  The other spaces in the house are used for classes and member activities such as LAN parties.

What tools do you have in your space? (Soldering stations? Oscilloscopes? 3-D printers?)

Soldering stations, oscilloscopes, 3-D printer, power tools, large table-top CNC machine (in progress), and a rack server for the IT minded to play with.

Are there any tools your group really wants or needs?

A laser CNC, nice tables, and chairs .

Does your group work with embedded tech (Arduino, Raspberry Pi, embedded security, MCU-based designs, etc.)?

We have members that dabble in multiple areas so we try to provide classes on the technology people want to learn about and explore.

Can you tell us about some of your group’s recent tech projects?

Our most recent tech project has been a overhaul of our server system. Other projects include the CNC currently in progress. That’s been an ongoing project for about a year.

What’s the craziest project your group or group members have completed?

Probably the wackiest project we completed was actually, something not tech related at all, building a bed for Charleston Bed Races. We put together a Lego bed (not real Legos) complete with Lego man and all.

Do you have any events or initiatives you’d like to tell us about? Where can we learn more about it?

We list any events or classes we are doing or plan on doing on our Website. Just click on classes and events on the main page or go to the calendar tab.

What would you like to say to fellow hackers out there?

Makelab Charleston is about opening the world to information and sharing that information with the people in our community. The best way to do that is through teaching.

Show us your hackerspace! Tell us about your group! Where does your group design, hack, create, program, debug, and innovate? Do you work in a 20′ × 20′ space in an old warehouse? Do you share a small space in a university lab? Do you meet a local coffee shop or bar? What sort of electronics projects do you work on? Submit your hackerspace and we might feature you on our website!

A Shed Packed with Projects and EMF Test Equipment

David Bellerose, a retired electronic equipment repairman for the New York State Thruway, has had a variety of careers that have honed the DIY skills he employs in his Lady Lake, FL, workspace.

Bellerose has been a US Navy aviation electronics technician and a computer repairman. “I also ran my own computer/electronic and steel/metal welding fabrication businesses, so I have many talents under my belt,” he says.

Bellerose’s Protostation, purchased on eBay, is on top shelf (left). He designed the setup on the right, which includes a voltmeter, a power supply, and transistor-transistor logic (TTL) oscillators. A second protoboard unit is on the middle shelf (left). On the right are various Intersil ICM7216D frequency-counter units and DDS-based signal generator units from eBay. The bottom shelf is used for protoboard storage.

Bellerose’s Protostation, purchased on eBay, is on top shelf (left). He designed the setup on the right, which includes a voltmeter, a power supply, and transistor-transistor logic (TTL) oscillators. A second protoboard unit is on the middle shelf (left). On the right are various Intersil ICM7216D frequency-counter units and DDS-based signal generator units from eBay. The bottom shelf is used for protoboard storage.

Bellerose’s project interests include model rockets, video security, solar panels, and computer systems. “My present project involves Intersil ICM7216D-based frequency counter modules to companion with various frequency generator modules, which I am also designing for a frequency range of 1 Hz to 12 GHz,” he says.

His workspace is an 8′-by-15′ shed lined with shelves and foldable tables. He describes how he tries to make the best use of the space available:

“My main bench is a 4′-by-6’ table with a 2’-by-6’ table to hold my storage drawers. A center rack holds my prototype units—one bought on eBay and two others I designed and built myself. My Tektronix 200-MHz oscilloscope bought on eBay sits on the main rack on the left, along with a video monitor. On the right is my laptop, a Heathkit oscilloscope from eBay, a 2.4-GHz frequency counter and more storage units. All the units are labeled.

“I try to keep all projects on paper and computer with plenty of storage space. My network-attached storage (NAS) totals about 23 terabytes of space.

“I get almost all of my test equipment from eBay along with parts that I can’t get from my distributors, such as the ICM7216D chips, which are obsolete. I try to cover the full EMF spectrum with my test equipment, so I have photometers, EMF testers, lasers, etc.”

The main workbench has a 4′-by-6′ center rack and parts storage units on the left and right. The main bench includes an OWON 25-MHz oscilloscope, storage drawers for lithium-ion (Li-on) batteries (center), voltage converter modules, various project modules on right, a Dremel drill press, and a PC monitor.

The main workbench has a 4′-by-6′ center rack and parts storage units on the left and right. The main bench includes an OWON 25-MHz oscilloscope, storage drawers for lithium-ion (Li-on) batteries (center), voltage converter modules, various project modules on the right, a Dremel drill press, and a PC monitor.

Photo 3: This full-room view shows the main bench (center), storage racks (left), and an auxiliary folding bench to work on large repairs. The area on right includes network-attached storage (NAS) storage and two PCs with a range extender and 24-port network switch.

Photo 3: This full-room view shows the main bench (center), storage racks (left), and an auxiliary folding bench to work on large repairs. The area on right includes network-attached storage (NAS) and two PCs with a range extender and 24-port network switch.

Photo 4: Various versions of Bellerose’s present project are shown. The plug-in units are for eight-digit displays. They are based on the 28-pin Intersil ICM 7216D chip with a 10-MHz time base oscillator, a 74HC132 input buffer, and a 74HC390 prescaler to bring the range to 60 MHz. The units’ eight-digit displays vary from  1″ to 0.56″ and 0.36″.

Various versions of Bellerose’s present project are shown. The plug-in units are for eight-digit displays. They are based on the 28-pin Intersil ICM 7216D chip with a 10-MHz time base oscillator, a 74HC132 input buffer, and a 74HC390 prescaler to bring the range to 60 MHz. The units’ eight-digit displays vary from 1″ to 0.56″ and 0.36″.

Photo 5: This is a smaller version of Bellerose’s project with a 0.36″ display mounted over an ICM chip with 74hc132 and 74hc390 chips and 5-V regulators. Bellerose is still working on the final PCB layout. “With regulators, I can use a 9-V adapter,” he says.  “Otherwise, I use 5 V for increased sensitivity. I use monolithic microwave (MMIC) amplifiers (MSA-0486) for input.”

This is a smaller version of Bellerose’s project with a 0.36″ display mounted over an ICM chip with 74HC132 and 74HC390 chips and 5-V regulators. Bellerose is still working on the final PCB layout. “With regulators, I can use a 9-V adapter,” he says. “Otherwise, I use 5 V for increased sensitivity. I use monolithic microwave (MMIC) amplifiers (MSA-0486) for input.”

 

 

Electronics Workspace: Pure Function, Minimal Form

Engineering consultant Steve Hendrix of Sagamore Hills, OH, says the “corporate headquarters” of Hx Engineering, LLC, pictured below, “is pure function, minimal form, and barely fits.”

This basement workspace reflects Steven's diverse projects and clients.

This basement workspace reflects Steve’s diverse projects and clients.

It’s a home basement workspace that reflects a variety of projects and clients. “I do a range of design work, from transistor-level hardware design through microcontrollers and FPGAs, as well as the embedded firmware and PC-side software to run the products,” Hendrix says. “Most of my clients are small to medium businesses in northeast Ohio, although I’ve done designs for companies as far west as New Mexico, as far south as Florida, and as far east as Cypress.”

Hendrix describes a workspace layout that stresses utility and a certain attention to thriftiness:

As I look through my equipment, probably the central theme is cost-effective solid equipment, without necessarily being the ‘first kid on the block.’ I learned long ago to be the second kid on the block with the newest toy… er… TOOL. The early bird gets the worm, but the second mouse gets the cheese.

He provides the following detailed description of his equipment and desk, which is a very large, solid-core door purchased cheaply from a lumberyard because it had been damaged:

Being natural wood and not plastic, it makes an inherently anti-static workstation. I used a router to round the front edge to be a bit friendlier to elbows, and carefully trimmed it and wedged it between the wall on the right and the utility room wall on the left, supported by vertical plywood against the walls. My PCs are in the adjacent utility room so I don’t have to listen to fans all day and they’re up on custom brackets on the wall so I don’t have to shinny under the desk to get to them. All the wires pass through plumbing fittings in the wall. The main work computer runs the lower dual monitors. The next-older work computer is still used for some specialized hardware, via the monitor above and an extra mouse. Under the left monitor is an all-band receiver that I sometimes use to monitor equipment under development, but also listen to broadcast music.

My late father-in-law was always extremely thrifty, and salvaged the flatbed scanner at the top left from a dumpster. It’s turned out to be the best scanner I’ve seen, and I used it to scan their family pictures. There’s also an HP Photosmart scanner that’s excellent on slides and negatives.

The middle stack has a parts cabinet that I really should retire, holding mainly SN74 series dual in-line packages (DIPs) that I very rarely use these days. Below that is an Ethernet-enabled power switch that controls various equipment. Next down is my trusty old Tektronix TDS-220 oscilloscope

I was pleased to note that past contributors to [Circuit Cellar’s Workspace feature] also use that same scope. It was the first digital scope I ever encountered that wouldn’t fib to me about aliasing, and it’s still a real workhorse. The ability to do screen captures with the free PC software helps a lot in documenting a finished product and in discussing problems remotely. Below that is a very solid bench multimeter. If it just had a capacitance function, I could abandon my Fluke 12! Then there’s a basic analog function generator, and some manual switches for AC.

Over on the far right are some more parts cabinets, several power supplies (including the ±5V/±12V supply my dad helped me build during my very first excursions into the then-new SN74 series of logic), an RF signal generator, and a good old boat-anchor Hewlett-Packard (HP) spectrum analyzer. I got that one off eBay, and spent as much again to get it repaired and calibrated. It’s in many ways better than the newer instruments. If it had a synthesized local oscillator and a computer interface, it would do it all. Actually, I have on occasion faked a computer interface by connecting the video outputs on its front panel to my TDS-220, and then capturing the resulting waveform.

In front of that is my solder station and stereo zoom microscope. Sitting on its stage is a backup prototype identical to the one currently controlling 4,800 W of my total 6,800 W of installed solar capacity. I routinely do prototypes using 0603 parts and recently more 0402 parts, with occasional 0201 parts. Don’t sneeze around those! The cabinets on the right wall are mainly connectors and surface-mount parts.

I needed some more bench space for a project, so I added a “temporary” shelf between the right end of my bench and the bookshelves on the wall to the right. As you can imagine, the “temporary” part of that wasn’t. So now it holds a voltage standard, on which sits my solder station and a ham radio. The latter is powered directly by 12-V solar power. At the extreme right are an inverter connected to the same solar batteries and the side of a breaker panel that allows me to safely connect to those same batteries when I need a heavy-duty 12-V power supply.

The whole office is lighted by strips of white LEDs run directly by 12-V solar power. The self-adhesive strips are just stuck to the drop-ceiling rails on each side of the standard florescent fixture. The standard fixture is still present and functional as a backup, but the solar lights are actually brighter and don’t flicker like a florescent. The 12-V solar is also wired to the rear jacks of the HP multimeter, so I can get an instant reading on the battery charge state. I have future plans to move some or all of my office circuits to the 120 VAC solar power that runs a portion of our home.

To the right and out of the picture is a solid wall of bookshelves that I built to hold databooks when I first set up this office over 20 years ago. The Internet and PDFs have pretty much made that obsolete, so those shelves now hold various supplies, projects in various states of completion, and some archival data. Behind me as I take this picture is a long table, made of another big door sitting atop filing cabinets. My original intent was for the desk to be for software/firmware, and the long table to be for hardware. Indeed, there are still a couple of RS-232 lines up through the ceiling and down to the table. However, now it serves as an assembly area when I have contractors doing assembly, as well as for storage and general workspace. But there’s Ethernet available on both the desk and the bench, for connecting Ethernet-enabled prototypes.

The biggest drawback to this office comes on a clear, cold, sunny day. The upstairs has lots of glass, so it absorbs lots of free solar heat. However, that means the furnace doesn’t run at all (even near zero outside), so the office and the rest of the basement get really cold. But since the furnace blower is on solar power, which is abundant under those conditions, I just force the blower on to share some of that heat!

If you’re interested in learning more about Hendrix’s work, check out our member profile posted last year. Also, be sure to pick up Circuit Cellar‘s upcoming July and August issues, which will include Hendrix’s two-part series on his personal solar-power setup.

These solar panels are mounted on Steve's east-facing roof.

These solar panels are mounted on Steve’s east-facing roof.

 

Build an Adequate Test Bench (EE Tip #127)

It’s in our makeup as engineers that we want to test our newly received boards as soon as possible. We just can’t wait to connect them to a power supply and then use our test bench equipment (e.g., generators, oscilloscopes, switches or LEDs, and so on) for simulation.

Circuit Cellar columnist Robert Lacoste's workspace in Chaville, France.

Circuit Cellar columnist Robert Lacoste’s clean, orderly workspace in Chaville, France.

But due to our haste, the result is usually a PCB under test lying on a crowded workbench in the middle of a mesh of test cables, alligator clamps, prototyping boards, and other probes. Experience shows that the probability of a short circuit or mismatched connection is high during this phase of engineering excitement.

Test Board

Rather than requiring a mesh of test wires, it is often wise to develop a small test PCB that will drastically simplify the test phase. Here the ancillary board provided a clean way to connect a Microchip Technology ICD3 debugger, a JTAG emulator, a debug analyzer, and a power supply input.

Take your time: prepare a real test bench to which you can connect your board. It could be as simple as a clean desk with properly labeled wires, but you might also need to anticipate the design of a test PCB in order to simplify the cabling.—Robert Lacoste, “Mixed-Signal Designs,” CC25:25th Anniversary Issue, 2013.