A Engineering Workspace with Cost-Effective Solid Equipment

Engineering consultant Steve Hendrix of Sagamore Hills, OH, says the “corporate headquarters” of Hx Engineering, LLC, pictured below, “is pure function, minimal form, and barely fits.”

This basement workspace reflects Steven's diverse projects and clients.

This basement workspace reflects Steve’s diverse projects and clients.

It’s a home basement workspace that reflects a variety of projects and clients. “I do a range of design work, from transistor-level hardware design through microcontrollers and FPGAs, as well as the embedded firmware and PC-side software to run the products,” Steve says. “Most of my clients are small to medium businesses in northeast Ohio, although I’ve done designs for companies as far west as New Mexico, as far south as Florida, and as far east as Cypress.”

Steve describes a workspace layout that stresses utility and a certain attention to thriftiness:

As I look through my equipment, probably the central theme is cost-effective solid equipment, without necessarily being the ‘first kid on the block.’ I learned long ago to be the second kid on the block with the newest toy… er… TOOL. The early bird gets the worm, but the second mouse gets the cheese.

He provides the following detailed description of his equipment and desk, which is a very large, solid-core door purchased cheaply from a lumberyard because it had been damaged:

Being natural wood and not plastic, it makes an inherently anti-static workstation. I used a router to round the front edge to be a bit friendlier to elbows, and carefully trimmed it and wedged it between the wall on the right and the utility room wall on the left, supported by vertical plywood against the walls. My PCs are in the adjacent utility room so I don’t have to listen to fans all day and they’re up on custom brackets on the wall so I don’t have to shinny under the desk to get to them. All the wires pass through plumbing fittings in the wall. The main work computer runs the lower dual monitors. The next-older work computer is still used for some specialized hardware, via the monitor above and an extra mouse. Under the left monitor is an all-band receiver that I sometimes use to monitor equipment under development, but also listen to broadcast music.

My late father-in-law was always extremely thrifty, and salvaged the flatbed scanner at the top left from a dumpster. It’s turned out to be the best scanner I’ve seen, and I used it to scan their family pictures. There’s also an HP Photosmart scanner that’s excellent on slides and negatives.

The middle stack has a parts cabinet that I really should retire, holding mainly SN74 series dual in-line packages (DIPs) that I very rarely use these days. Below that is an Ethernet-enabled power switch that controls various equipment. Next down is my trusty old Tektronix TDS-220 oscilloscope

I was pleased to note that past contributors to [Circuit Cellar’s Workspace feature] also use that same scope. It was the first digital scope I ever encountered that wouldn’t fib to me about aliasing, and it’s still a real workhorse. The ability to do screen captures with the free PC software helps a lot in documenting a finished product and in discussing problems remotely. Below that is a very solid bench multimeter. If it just had a capacitance function, I could abandon my Fluke 12! Then there’s a basic analog function generator, and some manual switches for AC.

Over on the far right are some more parts cabinets, several power supplies (including the ±5V/±12V supply my dad helped me build during my very first excursions into the then-new SN74 series of logic), an RF signal generator, and a good old boat-anchor Hewlett-Packard (HP) spectrum analyzer. I got that one off eBay, and spent as much again to get it repaired and calibrated. It’s in many ways better than the newer instruments. If it had a synthesized local oscillator and a computer interface, it would do it all. Actually, I have on occasion faked a computer interface by connecting the video outputs on its front panel to my TDS-220, and then capturing the resulting waveform.

In front of that is my solder station and stereo zoom microscope. Sitting on its stage is a backup prototype identical to the one currently controlling 4,800 W of my total 6,800 W of installed solar capacity. I routinely do prototypes using 0603 parts and recently more 0402 parts, with occasional 0201 parts. Don’t sneeze around those! The cabinets on the right wall are mainly connectors and surface-mount parts.

I needed some more bench space for a project, so I added a “temporary” shelf between the right end of my bench and the bookshelves on the wall to the right. As you can imagine, the “temporary” part of that wasn’t. So now it holds a voltage standard, on which sits my solder station and a ham radio. The latter is powered directly by 12-V solar power. At the extreme right are an inverter connected to the same solar batteries and the side of a breaker panel that allows me to safely connect to those same batteries when I need a heavy-duty 12-V power supply.

The whole office is lighted by strips of white LEDs run directly by 12-V solar power. The self-adhesive strips are just stuck to the drop-ceiling rails on each side of the standard florescent fixture. The standard fixture is still present and functional as a backup, but the solar lights are actually brighter and don’t flicker like a florescent. The 12-V solar is also wired to the rear jacks of the HP multimeter, so I can get an instant reading on the battery charge state. I have future plans to move some or all of my office circuits to the 120 VAC solar power that runs a portion of our home.

To the right and out of the picture is a solid wall of bookshelves that I built to hold databooks when I first set up this office over 20 years ago. The Internet and PDFs have pretty much made that obsolete, so those shelves now hold various supplies, projects in various states of completion, and some archival data. Behind me as I take this picture is a long table, made of another big door sitting atop filing cabinets. My original intent was for the desk to be for software/firmware, and the long table to be for hardware. Indeed, there are still a couple of RS-232 lines up through the ceiling and down to the table. However, now it serves as an assembly area when I have contractors doing assembly, as well as for storage and general workspace. But there’s Ethernet available on both the desk and the bench, for connecting Ethernet-enabled prototypes.

The biggest drawback to this office comes on a clear, cold, sunny day. The upstairs has lots of glass, so it absorbs lots of free solar heat. However, that means the furnace doesn’t run at all (even near zero outside), so the office and the rest of the basement get really cold. But since the furnace blower is on solar power, which is abundant under those conditions, I just force the blower on to share some of that heat!

If you’re interested in learning more about Steve’s work, check out our member profile posted last year. Also, be sure to pick up Circuit Cellar‘s upcoming July and August issues, which will include Steve’s two-part series on his personal solar-power setup.

These solar panels are mounted on Steve's east-facing roof.

These solar panels are mounted on Steve’s east-facing roof.

 

Build an Adequate Test Bench (EE Tip #127)

It’s in our makeup as engineers that we want to test our newly received boards as soon as possible. We just can’t wait to connect them to a power supply and then use our test bench equipment (e.g., generators, oscilloscopes, switches or LEDs, and so on) for simulation.

Circuit Cellar columnist Robert Lacoste's workspace in Chaville, France.

Circuit Cellar columnist Robert Lacoste’s clean, orderly workspace in Chaville, France.

But due to our haste, the result is usually a PCB under test lying on a crowded workbench in the middle of a mesh of test cables, alligator clamps, prototyping boards, and other probes. Experience shows that the probability of a short circuit or mismatched connection is high during this phase of engineering excitement.

Test Board

Rather than requiring a mesh of test wires, it is often wise to develop a small test PCB that will drastically simplify the test phase. Here the ancillary board provided a clean way to connect a Microchip Technology ICD3 debugger, a JTAG emulator, a debug analyzer, and a power supply input.

Take your time: prepare a real test bench to which you can connect your board. It could be as simple as a clean desk with properly labeled wires, but you might also need to anticipate the design of a test PCB in order to simplify the cabling.—Robert Lacoste, “Mixed-Signal Designs,” CC25:25th Anniversary Issue, 2013. 

 

A Workspace for Microwave Imaging, Small Radar Systems, and More

Gregory L. Charvat stays very busy as an author, a visiting research scientist at the Massachusetts Institute of Technology (MIT) Media Lab, and the hardware team leader at the Butterfly Network, which brings together experts in computer science, physics, and electrical engineering to create new approaches to medical diagnostic imaging and treatment.

If that wasn’t enough, he also works as a start-up business consultant and pursues personal projects out of the basement-garage workspace of his Westbrook, CT, home (see Photo 1). Recently, he sent Circuit Cellar photos and a description of his lab layout and projects.

Photo 1

Photo 1: Charvat, seated at his workbench, keeps his equipment atop sturdy World War II-era surplus lab tables.

Charvat’s home setup not only provides his ideal working conditions, but also considers  frequent moves required by his work.

Key is lots of table space using WW II surplus lab tables (they built things better back then), lots of lighting, and good power distribution.

I’m involved in start-ups, so my wife and I move a lot. So, we rent houses. When renting, you cannot install the outlets and things needed for a lab like this. For this reason, I built my own line voltage distribution panel; it’s the big thing with red lights in the middle upper left of the photos of the lab space (see Photo 2).  It has 16 outlets, each with its own breaker, pilot lamp (not LED).  The entire thing has a volt and amp meter to monitor power consumption and all power is fed through a large EMI filter.

Photo 2: This is another view of the lab, where strong lighting and two oscilloscopes are the minimum requirements.

Photo 2: This is another view of the lab, where strong lighting and two oscilloscopes are the minimum requirements.

Projects in the basement-area workplace reflect Charvat’s passion for everything from microwave imaging systems and small radar sensor technology to working with vacuum tubes and restoring antique electronics.

My primary focus is the development of microwave imaging systems, including near-field phased array, quasi-optical, and synthetic-aperture radar (SAR). Additionally, I develop small radar sensors as part of these systems or in addition to. Furthermore, I build amateur radio transceivers from scratch. I developed the only all-tube home theater system (published in the May-June 2012 issues of audioXpress magazine) and like to restore antique radio gear, watches, and clocks.

Charvat says he finds efficient, albeit aging, gear for his “fully equipped microwave, analog, and digital lab—just two generations too late.”

We’re fortunate to have access to excellent test gear that is old. I procure all of this gear at ham fests, and maintain and repair it myself. I prefer analog oscilloscopes, analog everything. These instruments work extremely well in the modern era. The key is you have to think before you measure.

Adequate storage is also important in a lab housing many pieces for Charvat’s many interests.

I have over 700 small drawers full of new inventory.  All standard analog parts, transistors, resistors, capacitors of all types, logic, IF cans, various radio parts, RF power transistors, etc., etc.

And it is critical to keep an orderly workbench, so he can move quickly from one project to the next.

No, it cannot be a mess. It must be clean and organized. It can become a mess during a project, but between projects it must be cleaned up and reset. This is the way to go fast.  When you work full time and like to dabble in your “free time” you must have it together, you must be organized, efficient, and fast.

Photos 3–7 below show many of the radar and imaging systems Charvat says he is testing in his lab, including linear rail SAR imaging systems (X and X-band), a near-field S-band phased-array radar, a UWB impulse X-band imaging system, and his “quasi-optical imaging system (with the big parabolic dish).”

Photo 3: This shows impulse rail synthetic aperture radar (SAR) in action, one of many SAR imaging systems developed in Charvat’s basement-garage lab.

Photo 3: This photo shows the impulse rail synthetic aperture radar (SAR) in action, one of many SAR imaging systems developed in Charvat’s basement-garage lab.

Photo 4: Charvat built this S-band, range-gated frequency-modulated continuous-wave (FMCW) rail SAR imaging system

Photo 4: Charvat built this S-band, range-gated frequency-modulated continuous-wave (FMCW) rail SAR imaging system.

Photo 5: Charvat designed an S-band near-field phased-array imaging system that enables through-wall imaging.

Photo 5: Charvat designed an S-band near-field phased-array imaging system that enables through-wall imaging.

Photo 5: Charvat's X-band, range-gated UWB FMCW rail SAR system is shown imaging his bike.

Photo 6: Charvat’s X-band, range-gated UWB FMCW rail SAR system is shown imaging his bike.

Photo 7: Charvat’s quasi-optical imaging system includes a parabolic dish.

Photo 7: Charvat’s quasi-optical imaging system includes a parabolic dish.

To learn more about Charvat and his projects, read this interview published in audioXpress (October 2013). Also, Circuit Cellar recently featured Charvat’s essay examining the promising future of small radar technology. You can also visit Charvat’s project website or follow him on Twitter @MrVacuumTube.

A Quiet Place for Soldering and Software Design

Senior software engineer Carlo Tauraso, of Trieste, Italy, has designed his home workspace to be “a distraction-free area where tools, manuals, and computer are at your fingertips.”

Tauraso, who wrote his first Assembler code in the 1980s for the Sinclair Research ZX Spectrum PC, now works on developing firmware for network devices and microinterfaces for a variety of European companies. Several of his articles and programming courses have been published in Italy, France, Spain, and the US. Three of his articles have appeared in Circuit Cellar since 2008.

Photo 1: This workstation is neatly divided into a soldering/assembling area on the left and developing/programming area on the right.

Photo 1: This workstation is neatly divided into a soldering/assembling area on the left and a developing/programming area on the right.

Tauraso keeps an orderly and, most importantly, quiet work area that helps him stay focused on his designs.

This is my “magic” designer workspace. It’s not simple to make an environment that’s perfectly suited to you. When I work and study I need silence.

I am a software engineer, so during designing I always divide the work into two main parts: the analysis and the implementation. I decided, therefore, to separate my workspace into two areas: the developing/programming area on the right and the soldering/assembling area on the left (see Photo 1). When I do one or the other activity, I move physically in one of the two areas of the table. Assembling and soldering are manual activities that relax me. On the other hand, programming often is a rather complex activity that requires a lot more concentration.

Photo 2: The marble slab at the right of Tauraso’s assembling/soldering area protects the table surface and the optical inspection camera nearby helps him work with tiny ICs.

Photo 2: The marble slab at the right of Tauraso’s assembling/soldering area protects the table surface. The optical inspection camera nearby helps him work with tiny ICs.

The assembling/soldering area is carefully set up to keep all of Tauraso’s tools within easy reach.

I fixed a marble slab square on the table to solder without fear of ruining the wood surface (see Photo 2). As you can see, I use a hot-air solder station and the usual iron welder. Today’s ICs are very small, so I also installed a camera for optical inspection (the black cylinder with the blue stripe). On the right, there are 12 outlets, each with its own switch. Everything is ready and at your fingertips!

Photo 3: This developing and programming space, with its three small computers, is called “the little Hydra.”

Photo 3: This developing and programming space, with its three small computers, is called “the little Hydra.”

The workspace’s developing and programming area makes it easy to multitask (see Photo 3).

In the foreground you can see a network of three small computers that I call “the little Hydra” in honor of the object-based OS developed at Carnegie Mellon University in Pittsburgh, PA, during the ’70s. The HYDRA project sought to demonstrate the cost-performance advantages of multiprocessors based on an inexpensive minicomputer. I used the same philosophy, so I have connected three Mini-ITX motherboards. Here I can test network programming with real hardware—one as a server, one as a client, one as a network sniffer or an attacker—while, on the other hand, I can front-end develop Windows and the [Microchip Technology] PIC firmware while chatting with my girlfriend.

This senior software designer has created a quiet work area with all his tools close at hand.

Senior software engineer Tauraso has created a quiet work area with all his tools close at hand.

Circuit Cellar will be publishing Tauraso’s article about a wireless thermal monitoring system based on the ANT+ protocol in an upcoming issue. In the meantime, you can follow Tauraso on Twitter @CarloTauraso.

A Personal Hackerspace in Lyon, France

Jean Noël Lefebvre, of Lyon, France, is the inventor of the Ootsidebox touchless technology, an innovative interface that enables adding touchless technology to an existing tablet. (Watch the Elektor.LABS video interview with Lefebvre to find out more about Ootside box and how it works).

Recently, Lefebvre shared with Circuit Cellar photos of his workspace, which he prefers to call his “personal hackerspace”  where he conceives inventive ideas and builds them.

Deskweb

Lefebvre’s desk reflects his new project.

His desk has an old oscilloscope, with only two inputs. “I have to upgrade it as soon as possible,” he says.

He is working on a shield for the Arduino UNO board on his desk, which is also where he keeps a Weller soldering iron with specific tools for surface mount devices (SMDs).

“On the screen of the computer you can see the logo of my project Ootsidebox and also the logo of Noisebridge, the San Francisco hackerspace.”

A diverse library

A diverse library

Lefebvre says his library is filled with “a lot of good books (old and modern)” covering many different topics and skills, including electronics, software, signal processing, cryptography, physics, biology, mathematics, and inventors’ biographies.

What is he currently working on in his hackerspace?

“I’m working on my own invention: a touchless gesture user Interface based on electric-fields (E-fields) sensing,” he says. “It’s an open-source  and open-hardware project, compatible with the Arduino environment.”

You can learn more about how his project is being shared on the Elektor.LABS website.

Storage for some of Lefebvre's stock components

Storage for some of Lefebvre’s stock components

Although Lefebvre is currently working alone in his “personal hackerspace” at his family’s home, his dream is to go to San Francisco, CA, and work out of the well-equipped Noisebridge hackerspace.

A few years ago, he says, big ideas and innovations in technology started in garages.  “Today this will take place in hackerspaces, where creativity and technical skills are omnipresent,” he says. “By making stuff in such a place, you are fully connected with a worldwide network of creative people of different backgrounds, and this synergy highly accelerates the innovation process.”

You can view pictures and video Lefebvre posted from his last Noisebridge visit.  And you can follow Lefebvre and his work on Twitter.