Q&A with Arduino-Based Skube Codesigner

The Arduino-based Skube

The Arduino-based Skube

Andrew Spitz is a Copenhagen, Denmark-based sound designer, interaction designer, and programmer. Among his various innovative projects is the Arduino-based Skube music player, which is an innovative design that enables users to find and share music.

Spitz worked on the design with Andrew Nip, Ruben van der Vleuten, and Malthe Borch. Check out the video to see the Skube in action. On his blog SoundPlusDesign.com, Spitz writes: “It is a fully working prototype through the combination of using ArduinoMax/MSP and an XBee wireless network. We access the Last.fm API to populate the Skube with tracks and scrobble, and using their algorithms to find similar music when in Discover mode.”

Skube – A Last.fm & Spotify Radio from Andrew Nip on Vimeo.

The following is an abridged  version of an interview that appears in the December 2012 issue of audioXpress magazine, a sister publication of Circuit Cellar magazine..

SHANNON BECKER: Tell us a little about your background and where you live.

Andrew Spitz: I’m half French, half South African. I grew up in France, but my parents are South African so when I was 17, I moved to South Africa. Last year, I decided to go back to school, and I’m now based in Copenhagen, Denmark where I’m earning a master’s degree at the Copenhagen Institute of Interaction Design (CID).

SHANNON: How did you become interested in sound design? Tell us about some of your initial projects.

Andrew: From the age of 16, I was a skydiving cameraman and I was obsessed with filming. So when it was time to do my undergraduate work, I decided to study film. I went to film school thinking that I would be doing cinematography, but I’m color blind and it turned out to be a bigger problem than I had hoped. At the same time, we had a lecturer in sound design named Jahn Beukes who was incredibly inspiring, and I discovered a passion for sound that has stayed with me.

Shannon: What do your interaction design studies at CIID entail? What do you plan to do with the additional education?

Andrew: CIID is focused on a user-centered approach to design, which involves finding intuitive solutions for products, software, and services using mostly technology as our medium. What this means in reality is that we spend a lot of time playing, hacking, prototyping, and basically building interactive things and experiences of some sort.

I’ve really committed to the shift from sound design to interaction design and it’s now my main focus. That said, I feel like I look at design from the lens of a sound designer as this is my background and what has formed me. Many designers around me are very visual, and I feel like my background gives me not only a different approach to the work but also enables me to see opportunities using sound as the catalyst for interactive experiences. Lots of my recent projects have been set in the intersection among technology, sound, and people.

SHANNON: You have worked as a sound effects recordist and editor, location recordist and sound designer for commercials, feature films, and documentaries. Tell us about some of these experiences?

ANDREW: I love all aspects of sound for different reasons. Because I do a lot of things and don’t focus on one, I end up having more of a general set of skills than going deep with one—this fits my personality very well. By doing different jobs within sound, I was able to have lots of different experiences, which I loved! nLocation recording enabled me to see really interesting things—from blowing up armored vehicles with rocket-propelled grenades (RPGs) to interviewing famous artists and presidents. And, documentaries enabled me to travel to amazing places such as Rwanda, Liberia, Mexico, and Nigeria. As a sound effects recordist on Jock of the Bushvelt, a 3-D animation, I recorded animals such as lions, baboons, and leopards in the South African bush. With Bakgat 2, I spent my time recording and editing rugby sounds to create a sound effects library. This time in my life has been a huge highlight, but I couldn’t see myself doing this forever. I love technology and design, which is why I made the move...

SHANNON: Where did the idea for Skube originate?

Andrew: Skube came out of the Tangible User Interface (TUI) class at CIID where we were tasked to rethink audio in the home context. So understanding how and where people share music was the jumping-off point for creating Skube.

We realized that as we move more toward a digital and online music listening experience, current portable music players are not adapted for this environment. Sharing mSkube Videousic in communal spaces is neither convenient nor easy, especially when we all have such different taste in music.

The result of our exploration was Skube. It is a music player that enables you to discover and share music and facilitates the decision process of picking tracks when in a communal setting.

audioXpress is an Elektor International Media publication.

ISM Basics (EE Tip #100)

The industrial, scientific, and medical (ISM) bands are radio frequency ranges freely available for industrial, scientific and medical applications, although there are also many devices aimed at private users that operate in these bands. ISM devices require only general type approval and no individual testing.

Source: Wolfgang Rudolph & Burkhard Kainka’s article, “ATM18 on the Air,” 080852, Elektor, 1/2009.

Source: Wolfgang Rudolph & Burkhard Kainka’s article, “ATM18 on the Air,” 080852, Elektor, 1/2009.

The radio communication sector of the International Telecommunication Union (ITUR) defines the ISM bands at an international level. Wi-Fi and Bluetooth operate in ISM bands, as do many radio headphones and remote cameras, although these are not usually described as ISM devices. These devices are responsible for considerable radio communications interference (especially at 433 MHz and at 2.4 GHz).

ITU-R defines the following bands, not all of which are available in every country:

  • 6.765 to 6.795 MHz
  • 13.553 to 13.567 MHz
  • 26.957 to 27.283 MHz
  • 40.66 to 40.70 MHz
  • 433.05 to 434.79 MHz
  • 902 to 928 MHz
  • 2.400 to 2.500 GHz
  • 5.725 to 5.875 GHz
  • 24 to 24.25 GHz

Some countries allocate further ISM bands in addition to those above. ISM applications have the lowest priority within any given band. Many bands available for ISM are shared with other spectrum users: for example the 433 MHz ISM band is shared with 70 cm amateur radio communications.

ISM users must not interfere with other users, but must be able to tolerate the interference to their own communications caused by higher-priority users in the same band. The band from 868 MHz to 870 MHz is often mistakenly characterized as an ISM band. It is nevertheless available to short-range radio devices, such as RFID tags, remote switches, remote alarm systems, and radio modules.

For more information, refer to Wolfgang Rudolph & Burkhard Kainka’s article, “ATM18 on the Air,” 080852, Elektor, 1/2009.

Internet of Things (IoT) Resources

Here we list several handy resources for engineers interested in the Internet of Things (IoT).IoT-WordCloud

  • The IoT Events site is an easy-to-use resource for find IoT events and meet-ups around the world.
  • The Internet of Things Conference is a resource for information relating to “IoT applications, IoT solutions, IoT example and m2m opportunities in smart cities, connected cars, smart grids, consumer electronics and mobile healthcare.”
  • The IoT Counsel website includes useful info such as bios and contact info for engineers, innovators, and thinkers working on IoT-related projects.
  • Michael Chui, Markus Loffler, and Roger Roberts present a comprehensive article on IoT in the McKinsey Quarterly. While this isn’t a design-centric document, you’ll find it’s an interesting in-depth overview of the technology and its applications.
  • The Business Leaders Network (BLN) has a page on the IoT. The most recent IoT even took place in June, but the site still has some interesting info about speakers, partners, and more.

Let us know about other good resources. Send your links via email or Twitter @circuitcellar.

CC278: Battery Basics

Front of a battery analyzer

The University of Washington recently announced its engineers have created a wireless communications system that enables everyday devices to power up and connect to the web without the use of batteries. Instead, such devices would tap the energy available in wireless signals.

According to an August article on the university’s website,  engineers have developed a communication system that takes advantage of what they call  “ambient backscatter,”  the TV and cellular transmissions all around us. You can read more about the breakthrough by checking out the university article.

It will be some time before such an approach becomes commercially viable. In the meantime, we’ll still be relying heavily on batteries. With that in mind, you should check out columnist George Novacek’s article in Circuit Cellar’s September issue. Novacek goes “back to the basics” of batteries in this first installment of a two-part series.

“Battery usage has increased due to the proliferation of mobile and cordless devices,” Novacek says in Part 1. “This article describes battery types generally available in retail stores. I’ll discuss their features, operation, and usages. While many exotic batteries and custom packages are available, this article focuses on standard batteries, which are the type you are most likely to encounter.”

He opens his discussion by distinguishing between batteries vs. cells and describing common battery packages.

“Although we tend to use the words ‘battery’ and ‘cell’ interchangeably, there is a difference,” Novacek says. “Batteries comprise cells (e.g., the well-known 9-V battery contains six 1.5-V cells, while the omnipresent AA ‘battery’ and many others are just single cells). I will use the common terminology, even though it may be at times technically incorrect.

“Batteries store chemical energy. When activated, the chemical process occurring internally converts the chemical into electrical energy. Alessandro Volta, an Italian physicist, is credited with inventing the “voltaic pile” in the early 19th century, although archeological discoveries suggest that some form of an electrical battery was known in ancient Babylon. National Carbon Company, known today as Eveready, began marketing a precursor of the ubiquitous carbon-zinc battery in 1896…

“According to Wikipedia, the most common battery packages available today include AA, AAA, C, D, 9-V pack, and different types of “button cells”. There is also a plethora of custom-made battery packs for power tools, cordless telephones, and so forth. No matter what kind of packaging, the battery principles for the given type remain the same.

“There are two categories of batteries: primary (i.e., single use) and rechargeable. Carbon-zinc is the oldest—and at one point the most common—primary battery. They are available in standard packages and inexpensive. Consequently, carbon-zinc batteries are often included by original equipment manufacturers (OEM) with devices (e.g., TV remote controls, portable radios, etc.). Although they have been improved over the years, some significant shortcomings remain, so I avoid using them.”

Novacek goes on to examine the drawbacks and advantages of carbon-zinc, alkaline, lithium, mercuric-oxide, silver-oxide button cell, lead-acid, nickel-cadmium (NiCad), and nickel-metal hydride (NiMH) batteries.

To learn more about what may be powering your handheld or other device, check out the September issue.

Embedded Sensor Innovation at MIT

During his June 5 keynote address at they 2013 Sensors Expo in Chicago, Joseph Paradiso presented details about some of the innovative embedded sensor-related projects at the MIT Media Lab, where he is the  Director of the Responsive Environments Group. The projects he described ranged from innovative ubiquitous computing installations for monitoring building utilities to a small sensor network that transmits real-time data from a peat bog in rural Massachusetts. Below I detail a few of the projects Paradiso covered in his speech.

DoppleLab

Managed by the Responsive Enviroments group, the DoppelLab is a virtual environment that uses Unity 3D to present real-time data from numerous sensors in MIT Media Lab complex.

The MIT Responsive Environments Group’s DoppleLab

Paradiso explained that the system gathers real-time information and presents it via an interactive browser. Users can monitor room temperature, humidity data, RFID badge movement, and even someone’s Tweets has he moves throughout the complex.

Living Observatory

Paradiso demoed the Living Observatory project, which comprises numerous sensor nodes installed in a peat bog near Plymouth, MA. In addition to transmitting audio from the bog, the installation also logs data such as temperature, humidity, light, barometric pressure, and radio signal strength. The data logs are posted on the project site, where you can also listen to the audio transmission.

The Living Observatory (Source: http://tidmarsh.media.mit.edu/)

GesturesEverywhere

The GesturesEverywhere project provides a real-time data stream about human activity levels within the MIT Media Lab. It provides the following data and more:

  • Activity Level: you can see the Media Labs activity level over a seven-day period.
  • Presence Data: you can see the location of ID tags as people move in the building

The following video is a tracking demo posted on the project site.

The aforementioned projects are just a few of the many cutting-edge developments at the MIT Media Lab. Paradiso said the projects show how far ubiquitous computing technology has come. And they provide a glimpse into the future. For instance, these technologies lend themselves to a variety of building-, environment-, and comfort-related applications.

“In the early days of ubiquitous computing, it was all healthcare,” Paradiso said. “The next frontier is obviously energy.”