Windows-Compatible Dev Board

Intel, Microsoft, and Circuit Co. have teamed up to produce a development board designed for the production of software and drivers used on mobile devices such as phones, tablets and similar System on a Chip (SoC) platforms running Windows and Android operating systems with Intel processors.

Source: SharksCove.org

Source: SharksCove.org

The 6″ × 4″ Sharks Cove board and features a number of interfaces including GPIO, I2C, I2S, UART, SDIO, mini USB, USB, and MIPI for display and camera.

Its main features include:

  • Intel  ATOM Processor Z3735G , 2M Cache, 4 Core, 1.33 GHz up
    to 1.88 GHz
  • Intel HD Graphics
  • 1 GB 1×32 DDR3L-RS-1333, 16-GB EMMC storage, micro SD Card
  • HDMI full size connector, MIPI display connector
  • Twelve (5 × 2) Shrouded pin header connectors, 1 (2 × 10) sensor header, 2 × 60 pin MIPI connector for display, camera and 5 (2 × 2) headers for power
  • One USB 2.0 type A connector
  • One micro USB type A/B for debug
  • Audio Codec Realtek ALC5640, speaker output header and onboard digital mic
  • Ethernet or WiFi via USB
  • Intel UEFI BIOS
  • Power, volume up, volume down, home screen and rotation lock
  • One micro USB type A/B for Power
  • SPI debug programming header

You can preorder the board for $299. It includes a Windows 8.1 image together with all the necessary utilities for it to run on Sharks Cove.

Flexible I/O Expansion for Rugged Applications

WynSystemsThe SBC35-CC405 series of multi-core embedded PCs includes on-board USB, gigabit Ethernet, and serial ports. These industrial computers are designed for rugged embedded applications requiring extended temperature operation and long-term availability.

The SBC35-CC405 series features the latest generation Intel Atom E3800 family of processors in an industry-standard 3.5” single-board computer (SBC) format COM Express carrier. A Type 6 COM Express module supporting a quad-, dual-, or single-core processor is used to integrate the computer. For networking and communications, the SBC35-CC405 includes two Intel I210 gigabit Ethernet controllers with IEEE 1588 timestamping and 10-/100-/1,000-Mbps multispeed operation. Four Type-A connectors support three USB 2.0 channels and one high-speed USB 3.0 channel. Two serial ports support RS-232/-422/-485 interface levels with clock options up to 20 Mbps in the RS-422/-485 mode and up to 1 Mbps in the RS-232 mode.

The SBC35-CC405 series also includes two MiniPCIe connectors and one IO60 connector to enable additional I/O expansion. Both MiniPCIe connectors support half-length and full-length cards with screw-down mounting for improved shock and vibration durability. One MiniPCIe connector also supports bootable mSATA solid-state disks while the other connector includes USB. The IO60 connector provides access to the I2C, SPI, PWM, and UART signals enabling a simple interface to sensors, data acquisition, and other low-speed I/O devices.

The SBC35-CC405 runs over a 10-to-50-VDC input power range and operates at temperatures from –40°C to 85°C. Enclosures, power supplies, and configuration services are also available.

Linux, Windows, and other x86 OSes can be booted from the CFast, mSATA, SATA, or USB interfaces, providing flexible data storage options. WinSystems provides drivers for Linux and Windows 7/8 as well as preconfigured embedded OSes.
The single-core SBC35-CC405 costs $499.

Winsystems, Inc.
www.winsystems.com

Member Profile: Walter O. Krawec

Walter O. Krawec

Walter O. Krawec

LOCATION:
Upstate New York

OCCUPATION:
Research Assistant and PhD Student, Stevens Institute of Technology

MEMBER STATUS:
Walter has been reading Circuit Cellar since he got his first issue in 1999. Free copies were available at the Trinity College Fire Fighting Robot Contest, which was his first experience with robotics. Circuit Cellar was the first magazine for which he wrote an article (“An HC11 File Manager,” two-part series, issues 129 and 130, 2001).

TECH INTERESTS:
Robotics, among other things. He is particularly interested in developmental and evolutionary robotics (where the robot’s strategies, controllers, and so forth are evolved instead of programmed in directly).

RECENT TECH ACQUISITION:
Walter is enjoying his Raspberry Pi. “What a remarkable product! I think it’s great that I can take my AI software, which I’ve been writing on a PC, copy it to the Raspberry Pi, compile it with GCC, then off it goes with little or no modification!”

CURRENT PROJECTS:
Walter is designing a new programming language and interpreter (for Windows/Mac/Linux, including the Raspberry Pi) that uses a simulated quantum computer to drive a robot. “What better way to learn the basics of quantum computing than by building a robot around one?” The first version of this language is available on his website (walterkrawec.org). He has plans to release an improved version.

THOUGHTS ON EMBEDDED TECH:
Walter said he is amazed with the power of the latest embedded technology, for example the Raspberry Pi. “For less than $40 you have a perfect controller for a robot that can handle incredibly complex programs. Slap on one of those USB battery packs and you have a fully mobile robot,” he said. He used a Pololu Maestro to interface the motors and analog sensors. “It all works and it does everything I need.” However, he added, “If you want to build any of this yourself by hand it can be much harder, especially since most of the cool stuff is surface mount, making it difficult to get started.”