NXP MCU IoT Card with Wi-Fi Supports Amazon FreeRTOS

NXP Semiconductors has introduced the LPC54018 MCU-based IoT module with onboard Wi-Fi and support for newly launched Amazon FreeRTOS on Amazon Web Services (AWS), offering developers universal connections to AWS. Amazon FreeRTOS provides tools for users to quickly and easily deploy an MCU-based connected device and develop an IoT application without having to worry about the complexity of scaling across millions of devices. Once connected, IoT device applications can take advantage of the capabilities of the cloud or continue processing data locally with AWS Greengrass.

Amazon FreeRTOS enables security-strong orchestration with the edge-cluster to further leverage low latencies in edge computing configurations, which extends AWS Greengrass core devices’ reach to the nodes. Distributed and autonomous computing architectures become possible through the consistent interface provided between the nodes and their gateways, in both online and offline scenario.

OM40007-LPC54018-IoT-ModuleNXP’s IoT module, co-developed with Embedded Artists and based on the LPC54018 MCU, offers unlimited memory extensibility, a root of trust built on the embedded SRAM physical unclonable functions (PUF) and on-chip cryptographic accelerators. Together, LPC and Amazon FreeRTOS, with easy-to-use software libraries, bring multiple layers of network transport security, simplify cloud on-boarding and over-the-air device management.

NXP enables node-to-cloud AWS connectivity with its LPC54018-based IoT module available on Amazon.com and EmbeddedArtists.com at $35 direct to consumers.

NXP Semiconductors | www.nxp.com

Microchip PIC32MZEF MCUs Support Amazon FreeRTOS

Microchip Technology has expanded its collaboration with Amazon Web Services (AWS) to support cloud-connected embedded systems from the node to the cloud. Supporting Amazon Greengrass, Amazon FreeRTOS and AWS Internet of Things (IoT), Microchip provides all the components, tools, software and support needed to rapidly develop secure cloud-connected systems.

Microchip’s PIC32MZ EF series of microcontrollers now support Amazon FreeRTOS, an operating system that makes compact low-powered edge devices easy to program, deploy, secure and maintain. These high-performance MCUs incorporate industry-leading connectivity options, ample Flash memory, rich peripherals and a robust toolchain which empower embedded designers to rapidly build complex applications. Amazon FreeRTOS includes software libraries which make it easy to securely deploy over-the-air updates as well as the ability to connect devices locally to AWS Greengrass or directly to the cloud, providing a variety of data processing location options.

For systems requiring data collection and analysis at a local level, developers can use Microchip’s SAMA5D2 series of microprocessors with integrated AWS Greengrass software. This will enable systems to run local compute, messaging, data caching and sync capabilities for connected devices in a secure way. This type of execution provides improved event response, conserves bandwidth and enables more cost-effective cloud computing. The SAMA5D2 devices, also available in System-in-Package (SiP) variants, offer full Amazon Greengrass compatibility in a low-power, small form factor MPU targeted at industrial and long-life gateway and concentrator applications. Additionally, the integrated security features and extended temperature range allows these MPUs to be deployed in physically insecure and harsh environments.

In any cloud-connected design, security and ease of use are vital pieces of the puzzle. Microchip’s ATECC608A CryptoAuthentication device enables enhanced system security as well as easy-to-use registration. The secure element provides a unique, trusted and protected identity to each device that can be securely authenticated to protect a brand’s intellectual property and revenue. In addition to enhancing system security, the ATECC608A allows AWS customers to instantly connect to the cloud through the device’s Just-in-Time-Registration (JITR) powered by AWS IoT.

curiosityMicrochip has an extensive toolchain for rapid and reliable development. The Curiosity PIC32MZ EF development board (shown), to kick-start Amazon FreeRTOS-based designs, is a fully integrated 32-bit development platform which also includes two mikroBUS expansion sockets, enabling designers to easily add additional capabilities, such as Wi-Fi with the WINC1510 click board, to their designs. The SAMA5D2 Xplained Ultra board, which can be used for AWS Greengrass designs, is a fast prototyping and evaluation platform for the SAMA5D2 series of MPUs. Additionally, the CryptoAuth Xplained Pro evaluation and development kit is an add-on board for rapid prototyping of secure solutions on AWS IoT and is compatible with any Microchip Xplained or XplainedPro evaluation boards. AWS is also a part of Microchip’s Design Partner Program which provides technical expertise and cost-effective solutions in a timely manner.

PIC32MZ EF MCUs are available starting at $5.48 each in 10,000 unit quantities. The PIC32MZ EF Curiosity board (DM320104) is available for $47.99 each. SAMA5D2 MPUs are available starting at $4.42 each in 10,000 unit quantities. The SAMA5D2 Xplained Ultra board (ATSAMA5D2C-XULT) is available for $150 each. ATECC608A secure elements are available starting at $0.56 each in 10,000 unit quantities. The CryptoAuth Xplained Pro evaluation and development kit (ATCryptoAuth-XPRO-B) is available for $10 each.

Microchip Technology | www.microchip.com

STMicro Adds Amazon FreeRTOS to its IoT MCU Tool Suite

STMicroelectronics has announced its collaboration with Amazon Web Services (AWS) on Amazon FreeRTOS, the latest addition to the AWS Internet of Things (IoT) solution. Amazon FreeRTOS provides everything one needs to easily and securely deploy microcontroller-based connected devices and develop an IoT application without having to worry about the complexity of scaling across millions of devices. Once connected, IoT device applications can take advantage of all of the capabilities the cloud has to offer or continue processing data locally with AWS Greengrass.

ST’s collaboration with AWS speeds designers’ efforts to create easily connectable IoT nodes with the combination of ST’s semiconductor building blocks and Amazon FreeRTOS, which extends the leading free and open-source real-time operating-system kernel for embedded devices (FreeRTOS) with the appropriate libraries for local networking, cloud connectivity, security, and remote software updates.

For the STM32, ST’s family of 32-bit Arm Cortex-M microcontrollers, the modular and interoperable IoT development platform spans state-of-the-art semiconductor components, ready-to-use development boards, free software tools and common application examples. At the official release of Amazon FreeRTOS, a version of the OS and libraries were immediately made available to run on the ultra-low-power STM32L4 series of microcontrollers.

The starter kit for Amazon FreeRTOS is ST’s B-L475E-IOT01A Discovery kit for IoT node, a fully integrated development board that exploits low-power communication, multiway sensing, and a raft of features provided by the STM32L4 series microcontroller to enable a wide range of IoT-capable applications. The Discovery kit’s support for Arduino Uno V3 and PMOD connectivity ensures unlimited expansion capabilities with a large choice of specialized add-on boards.

STMicroelectronics | www.st.com

TI Integrates SimpleLink MCU Platform with Amazon FreeRTOS

Texas Instruments (TI) has announced the integration of the new Amazon FreeRTOS into the SimpleLink microcontroller platform. Amazon Web Services (AWS) has worked with TI in the development of an integrated hardware and software solution that enables developers to quickly establish a connection to AWS IoT service out-of-the-box and immediately begin system development.

TI SimpleLink™ MCU platform now supports new Amazon FreeRTOS (PRNewsfoto/Texas Instruments Incorporated)

TI’s SimpleLink Wi-Fi CC3220SF wireless MCU LaunchPad development kit, which now supports Amazon FreeRTOS, offers embedded security features such as secure storage, cloning protection, secure bootloader and networking security. Developers can now take advantage of these security features to help them protect cloud-connected IoT devices from theft of intellectual property (IP) and data or other risks.

TI offers a broad portfolio of building blocks for IoT nodes and gateways spanning wired and wireless connectivity, microcontrollers, processors, sensing technology, power management and analog solutions, along with a community of cloud service providers, such as AWS, to help developers get connected to the cloud faster.

The SimpleLink MCU platform from Texas Instruments is a single development environment that delivers flexible hardware, software and tool options for customers developing Internet of Things (IoT) applications. With a single software architecture, modular development kits and free software tools for every point in the design life cycle, the SimpleLink MCU ecosystem allows 100 percent code reuse across the portfolio of microcontrollers, which supports a wide range of connectivity standards and technologies including RS-485, Bluetooth low energy, Wi-Fi, Sub-1 GHz, 6LoWPAN, Ethernet, RF4CE and proprietary radio frequencies. SimpleLink MCUs help manufacturers easily develop and seamlessly reuse resources to expand their portfolio of connected products.

Texas Instruments | www.ti.com

Partner Program to Focus on Security Design

Microchip Technology has also established a Security Design Partner Program for connecting developers with third-party partners that can enhance and expedite secure designs. Along with the program, the company has also released its ATECC608A CryptoAuthentication device, a secure element that allows developers to add hardware-based security to their designs.

Microchip 38318249941_bf38a56692_zAccording to Microchip, the foundation of secured communication is the ability to create, protect and authenticate a device’s unique and trusted identity. By keeping a device’s private keys isolated from the system in a secured area, coupled with its industry-leading cryptography practices, the ATECC608A provides a high level of security that can be used in nearly any type of design. The ATECC608A includes the Federal Information Processing Standard (FIPS)-compliant Random Number Generator (RNG) that generates unique keys that comply with the latest requirements from the National Institute of Standards and Technology (NIST), providing an easier path to a whole-system FIPS certification.

Other features include:

  • Boot validation capabilities for small systems: New commands facilitate the signature validation and digest computation of the host microcontroller firmware for systems with small MCUs, such as an ARM Cortex-M0+ based device, as well as for more robust embedded systems.
  • Trusted authentication for LoRa nodes: The AES-128 engine also makes security deployments for LoRa infrastructures possible by enabling authentication of trusted nodes within a network.
  •  Fast cryptography processing: The hardware-based integrated Elliptical Curve Cryptography (ECC) algorithms create smaller keys and establish a certificate-based root of trust more quickly and securely than other implementation approaches that rely on legacy methods.
  •  Tamper-resistant protections: Anti-tampering techniques protect keys from physical attacks and attempted intrusions after deployment. These techniques allow the system to preserve a secured and trusted identity.
  •  Trusted in-manufacturing provisioning: Companies can use Microchip’s secured manufacturing facilities to safely provision their keys and certificates, eliminating the risk of exposure during manufacturing.

In addition to providing hardware security solutions, customers have access to Microchip’s Security Design Partner Program. These industry-leading companies, including Amazon Web Services (AWS) and Google Cloud Platform, provide complementary cloud-driven security models and infrastructure. Other partners are well-versed in implementing Microchip’s security devices and libraries. Whether designers are looking to secure an Internet of Things (IoT) application or add authentication capabilities for consumables, such as cartridges or accessories, the expertise of the Security Design Partners can reduce both development cost and time to market.

For rapid prototyping of secure solutions, designers can use the new CryptoAuth Xplained Pro evaluation and development kit (ATCryptoAuth-XPRO-B) which is an add-on board, compatible with any Microchip Xplained or Xplained Pro evaluation board. The ATECC608A is available for $0.56 each in 10,000 unit quantities. The ATCryptoAuth-XPRO-B add-on development board is available for $10.00 each.

Microchip Technology | www.microchip.com

Renesas IoT Sandbox Expands with RX65N MCU Support

Renesas Electronics America has expanded its Renesas IoT Sandbox lineup with the new RX65N Wi-Fi Cloud Connectivity Kit. The RX65N Wi-Fi Cloud Connectivity Kit provides an easy-to-use platform for connecting to the cloud, evaluating IoT solutions and creating IoT applications through cloud services and real-time workflows. The RX65N Wi-Fi Cloud Connectivity Kit integrates the high-performance Renesas RX65N microcontroller (MCU) and Medium One’s Smart Proximity demo with the data intelligence featured in Renesas IoT Sandbox.

RX65N_IoT_Sandbox_Wifi_Kit_UnpackedThe Renesas IoT Sandbox provides a fast path from IoT concept to prototype. It enables personalized data intelligence for system developers working with the Renesas SynergyTM Platform, the Renesas RL78 Family and RX Family of MCUs, and the Renesas RZ Family of microprocessors. The new RX65N Wi-Fi Cloud Connectivity Kit is based on the Renesas RX65N Group of MCUs, which is part of the high-performance RX600 Series of MCUs.

The new kit features the Smart Proximity demo implemented by Medium One. System developers can use workflows to extract data from the Ultrasonic Range Finder Sensor and then transmit distance data and duration length for objects close to the sensor to provide intelligence on end-user engagement with the objects. For instance, when deployed in retail environments, business owners can leverage the data to determine when and for how long shoppers view specific merchandise, providing greater insight on shoppers’ selection behaviors.

Developers can sign up for a Renesas IoT Sandbox account at www.renesas.com/iotsandbox. The data intelligence developer area is ready for immediate prototyping use. The RX65N Wi-Fi Connectivity Kit is available for order at Amazon for $59 per kit.

Renesas Electronics | www.renesas.com

Antenna Measurement Made Easy

For web Lacoste Lead Image

Covering the Basics

If you’re doing any kind of wireless communications application, that probably means including an antenna in your design. The science of antennas is complex. But here Robert shows how the task of measuring an antenna’s performance is less costly and exotic than you’d think.

By Robert Lacoste

Now that wireless communications is ubiquitous, chances are you’ll be using Bluetooth, Wi-Fi, cellular, LoRa, MiWi or other flavor of wireless interface in your next design. And that means including an antenna. Unfortunately, antenna design is not an easy topic. Even very experienced designers sometimes have had to wrestle with unexpected bad performances by their antennas. Case in point: Google “iPhone 4 antenna problem” and you will get more than 3 million web pages! In a nutshell, Apple tried to integrate a clever antenna in that model that was threaded around the phone. They didn’t anticipate that some users would put their fingers exactly where the antenna was the most sensitive to detuning. Was it a design flaw? Or a mistake by the users? It was hotly debated, but this so-called “Antennagate” probably had significant impact on Apple’s sales for a while.

I already devoted an article to antenna design and impedance matching (“The Darker Side: Antenna Basics”, Circuit Cellar 211, February 2008). Whether you include a standard antenna or design your own, you will never be sure it is working properly until you measure its actual performance. Of course, you could simply evaluate how far the system is working. But how do you go farther if the range is not enough? How do you figure out if the problem is coming from the receiver, the transmitter, propagation conditions or the antenna itself? My personal experience has been that the antenna is very often the culprit. With that in mind, it really is mandatory to measure whether or not an antenna is behaving correctly. Take a seat. This month, I will explain how to easily measure the actual performance of an antenna. You will see that the process is quite easy and that it won’t even need costly or exotic equipment.

SOME ANTENNA BASICS

Let’s start with some basics on antennas. First, all passive antennas have the same performance whether transmitting or receiving. For this article, I’ll consider the antenna as transmitting because that’s easier to measure. Let’s consider an antenna that we inject with a given radio frequency power Pconducted into its connector. Where will this power go? First off, impedance matching should be checked. If the impedance of the antenna is not well matched to the impedance of the power generator, then a part of the power will be reflected back to the generator. This will happen in particular when the transmit frequency is not equal to the resonant frequency of the antenna. In such a case, a part of Pconducted will be lost.  That is known as mismatch losses: Pavailable= Pconducted – MismatchLosses. While that itself is a very interesting subject, I have already discussed impedance matching in detail in my February 2008 article. I also devoted another article to a closely linked topic: standing waves. Standing waves appear when there is a mismatch. The article is “The Darker Side: Let’s play with standing waves” (Circuit Cellar 271, February 2013).

For the purpose of discussion here, I will for now assume that there isn’t any mismatching—and therefore no mismatch loss. …

Read the full article in the October 327 issue of Circuit Cellar

We’ve made the October 2017 issue of Circuit Cellar available as a sample issue. In it, you’ll find a rich variety of the kinds of articles and information that exemplify a typical issue of the current magazine.
Don’t miss out on upcoming issues of Circuit Cellar. Subscribe today!

Wi-Fi MCU Platform Update Targets Smart Home

Cypress Semiconductor has announced an updated version of its turnkey development platform for the IoT that simplifies the integration of wireless connectivity into smart home applications. The Wireless Internet Connectivity for Embedded Devices (WICED) Studio platform now adds iCloud remote access support for Wi-Fi-based accessories that support Apple HomeKit. Developers can leverage iCloud support in the WICED software Cypress WICED IoT Development Kit_0development kit (SDK) and Cypress’ CYW43907 Wi-Fi MCU to create hub-independent platforms that connect directly to Siri voice control and the Apple Home app remotely. Developers can access the WICED Studio platform, ecosystem and community at www.cypress.com/wicedcommunity.

Using Cypress’ WICED development platform and ultra-low power CYW20719 Bluetooth/BLE MCU, developers can integrate HomeKit support into products such as smart lighting devices, leverage Siri voice control and connect to the Apple Home app seamlessly. WICED Studio provides a single development environment for multiple wireless technologies, including Cypress’ world-class Wi-Fi, Bluetooth and combo solutions, with an easy-to-use application programming interface in the world’s most integrated and interoperable wireless SDK. The kit includes broadly deployed and rigorously tested Wi-Fi and Bluetooth protocol stacks, and it offers simplified application programming interfaces that free developers from needing to learn about complex wireless technologies. The SDK also supports Cypress’ high-performance 802.11ac Wi-Fi solutions that use high-speed transmissions to enable IoT devices with faster downloads and better range, as well as lower power consumption by quickly exploiting deep sleep modes.

The Cypress CYW43907 SoC integrates dual-band IEEE 802.11b/g/n Wi-Fi with a 320-MHz ARM Cortex-R4 RISC processor and 2 MB of SRAM to run applications and manage IoT protocols. The SoC’s power management unit simplifies power topologies and optimizing energy consumption. The WICED SDK provides code examples, tools and development support for the CYW43907.

 WICED Studio IoT Development Platform

The WICED platform supports a broad range of other popular cloud services and eliminates the need for developers to implement the various protocols to connect to them, reducing development time and costs. The WICED Studio SDK enables cloud connectivity in minutes with its robust libraries that uniquely integrate popular cloud services such as iCloud, Amazon Web Services, IBM Bluemix, Alibaba Cloud, and Microsoft Azure, along with services from private cloud partners and China’s Weibo social media platform.

In line with the IoT trend toward dual-mode connectivity, the kit supports Cypress’ Wi-Fi and Bluetooth combination solutions and its low-power Bluetooth and Bluetooth Low Energy (BLE) combination solutions. The SDK features a single installer package for multiple wireless technologies with an Eclipse-based Integrated Development Environment (IDE) that runs on multiple operating systems, including Windows, MacOS and Linux.

Cypress’ WICED Studio connectivity suite is microcontroller (MCU)-agnostic and provides ready support for a variety of third-party MCUs to address the needs of complex IoT applications. The platform also enables cost efficient solutions for simple IoT applications by integrating MCU functionality into the connectivity device. Wi-Fi and Bluetooth protocol stacks can run transparently on a host MCU or in embedded mode, allowing for flexible platform architectures with common firmware.

Cypress Semiconductor | www.cypress.com

Galdi Taps Eurotech’s IoT Gateway for Food Packaging Market

Eurotech has announced a design win with Galdi, a leading producer of packaging machines for the food market. Galdi chose Eurotech’s Multi-Service IoT Gateway ReliaGATE 10-20 to communicate with its production machines for valuable data collection, management and remote monitoring through Eurotech IoT Integration Platform Everyware Cloud.

ReliaGATE-10-20angle

Galdi selected Eurotech gateway because of its globally-compliant Wi-Fi and cellular certifications. Implementing this IoT technology will enable Galdi to remotely manage its plants and its customers by providing greater access to valuable data.

The ReliaGATE 10-20 is an industrial grade smart IoT gateway that provides communications, computation power and a simplified application framework for IoT platform integration and services applications. The gateway offers a variety of communication interfaces including cellular, Wi-Fi and Bluetooth enabling connectivity to a wide range of sensors and edge devices essential in M2M/IoT applications. It also includes interfaces for wired connectivity such as Dual Gigabit Ethernet, CANBus, up to four serial ports and three USB ports. ReliaGATE 10-20 is simple to manage and delivers out-of-the-box connectivity and intuitive configuration of the routing parameters thanks to a web GUI and over-the-air options.

Eurotech | www.eurotech.com

SMARC Module Serves up Snapdragon 820 Chipset

iWave Systems has launched its latest System On Module based on Qualcomm’s Snapdragon 820 chipset in the SMARC R2.0 form factor. The SOM integrates Qualcomm’s APQ8096 SOC offering 64-bit Quad Kryo CPU, with on SOM 802.11a/b/g/n/ac Wi-Fi, BT4.1 and the GPS support. The Qualcomm APQ8096 SOC incorporates 64-bit Quad Kryo CPU, among which are Dual Kryo cores Gold cluster operates at 2.15 GHz and Dual Kryo cores Silver cluster operates at 1.6 GHz. It also includes Adreno 530 3D Graphics at 624MHz, H.265 4K60 HW decode, 4K30 HW encode and Qualcomm Hexagon 680 DSP at 825MHz.

qualcomm-snapdragon820-smarc-som

The Snapdragon 820 SOM module is intended for high end embedded computing applications which require high processing power, graphics and multimedia capabilities such as augmented and virtual reality, 4K digital signage, media streaming, Connected home & entertainment, High end wearables, drones, secure POS, video analytics and more.  The modulesupports 3 Gbytes of LPDDR4 RAM and 32 Gbytes eMMC Flash with optional micro SD card support. This SOM is supported with Android BSP support at the launch and followed by Linux.

iWave Systems | www.iwavesystems.com

New Wi-Fi Hardware and Device Platform

Texas Instruments recently announced its next generation of Wi-Fi hardware and the new SimpleLink MCU platform. The products include the SimpleLink Wi-Fi CC3220 wireless MCU and CC3120 wireless network processor. Designed with security in mind, the CC3220 products are built with two separate execution environments within a single chip.ti simplelink

Promoted as the “new standard for IoT developers,” The SimpleLink MCU Platform offers you the following:

  • 100% code compatibility across SimpleLink MCU portfolio
  • Encryption-enabled security features
  • TI Drivers offers standardized set of functional APIs for integrated peripherals
  • Integrated TI-RTOS, a robust, intelligent kernel for complete, out-of-the-box development
  • POSIX-compatible APIs offer flexible OS/kernels support
  • IoT stacks and plugins to add functionality to your design

Source: Texas Instruments

Wi-Fi-Enabled E-Paper

Pervasive Displays recently released a low-power, Wi-Fi-enabled e-paper display (EPD). The SimpleLink Wi-Fi CC3200 wireless MCU-based EPD is compatible with any of five different EPD panel sizes. You can control it wirelessly over the Internet with the MQTT protocol.pervasive WiFi

The low-power design comprises a SimpleLink Wi-Fi CC3200 LaunchPad development kit featuring n ARM Cortex-M4-based wireless microcontroller. The EPD sits on a BoosterPack-compatible plug-in board, which enables you to choose one of five e-paper display sizes from 1.44″ to 2.7″. An SPI enables communication between the microcontroller and the display.

Operating in the range of 2.3 to 3.6 VDC, the efficient EPD display can be updated via either an attached network or the Internet with a cloud-based application. Application firmware running permits control of the displayed image either via an embedded HTTP page or an MQTT client. With the HTTP client, you can choose from text and image format templates to be displayed and configured according to your needs.

The SimpleLink Wi-Fi CC3200 SDK contains an MQTT example along with the Pervasive Displays driver. The microcontroller uses a FreeRTOS environment with a thread for the SimpleLink functions and a thread for the display communication.

Source: Pervasive Displays

 

802.11ax Wi-Fi Solution

Quantenna Communications recently introduced the QSR10G-AX Access Point, which supports the latest 802.11ax Draft 1.0 specification. Based on Quantenna’s QSR10G Wave 3 Wi-Fi platform, the QSR10G-AX supports 12 streams—eight streams in the 5-GHz band and four streams in the 2.4-GHz band. In addition, it supports both downlink and uplink Orthogonal Frequency-Division Multiple Access (OFDMA).

The QSR10G-AX’s features, benefits, and specs include:

  • Integrated AP chipset for dual-band (5 and 2.4 GHz), dual-concurrent operation and management
  • Pin-to-Pin compatibility with QSR10G
  • 12-Stream operation
  • Compliant with 802.11ax Draft 1.0
  • Supports interfaces to external hosts (e.g., PCIe Gen3/Gen2, RXAUI, and RGMII)
  • Supports 2.4-GHz coexistence interface
  • Enables full offload for external host
  • Cloud managed

The QSR10G-AX samples should be available in early 2017.

Source: Quantenna Communications

New Low-Power Embedded Wi-Fi Solutions for the IoT

Microchip Technology recently launched four low-power, highly integrated solutions that enable Wi-Fi and networking capability to be embedded into a wide variety of devices, including Internet of Things (IoT) applications. These four modules provide complete solutions for 802.11b/g/n and are industry-certified in a variety of countries.Microcontroller  MRF24

The new RN1810 and RN1810E are stand-alone, surface-mount WiFly radio modules that include a TCP/IP stack, cryptographic accelerator, power management subsystem, 2.4-GHz 802.11b/g/n-compliant transceivers, and 2.4 RF power amplifier. You can pair them with any microcontroller and configure them using simple ASCII commands. WiFly provides a simple data pipe for sending data over a Wi-Fi network, requiring no prior Wi-Fi experience to get a product connected. Once configured, the device automatically accesses a Wi-Fi network and sends and receives serial data. The RN1810 features an integrated PCB antenna. The RN1810E supports an external antenna.

The new MRF24WN0MA and MRF24WN0MB are Wi-Fi modules that interface with Microchip’s PIC32 microcontrollers and support Microchip’s MPLAB Harmony integrated software framework with a TCP/IP stack that can be downloaded for free at www.microchip.com/harmony. The modules connect to the microcontroller via a four-wire SPI. They area an ideal solution for low-power, low-data-rate Wi-Fi sensor networks, home automation, building automation, and consumer applications. In addition, an MRF24WN0MA has an integrated PCB antenna, while the MRF24WN0MB supports an external antenna.

The RN1810/E and MRF24WN0MA/B are now available and start at $13.05 each in 1,000-unit quantities. Also available is the $34.95 MRF24WN0MA Wi-Fi PICtail/PICtail Plus Daughter Board, a demonstration board for evaluating Wi-Fi connectivity using PIC microcontrollers and the MRF24WN0MA module (part # AC164153). In addition, a $49.95 RN1810 Wi-Fi PICtail/PICtail Plus Daughter Board is available today with a fully integrated TCP/IP stack and USB interface for easy plug-and-play development with a PC (part # RN-1810-PICTAIL).

Source: Microchip Technology

Arcturus uCMK64-IoT module: TLS security, Ethernet, Wi-Fi and more (Sponsored)

The Arcturus uCMK64-IoT is a 60x60mm module for developing secure IoT devices that require a combination of connectivity and control. The hardware uses a 120MHz, Freescale Kinetis K64 microcontroller with Ethernet, Wi-Fi, TLS security, peripheral connectivity and optional audio. The platform is controlled using a simple command protocol over a UART or TCP/IP socket, providing options for both host-MCU or cloud integration. The protocol supports I/O, bi-directional UART-to-net communication, device services and settings. A “call home” feature automatically originates the secure TLS socket connection to a remote server, helping to egress firewalls.

uCMK64-MOD-Top_PennyThe platform is fully compatible with the eco-system of Arcturus IoT tools, including Mbarx-System Manager, a powerful tool for securely managing entire network sites. Developers can easily connect, change firmware, configure, control or probe attached sensors and peripherals. An IoT apps store, provides direct access to firmware.

The uCMK64 is IoT made easy, no complex BSP or software system integration. The development kit contains everything you need to get started.

uCMK64-Kit_ContentsKey features:

  • 120MHz ARM® Cortex® M4 microcontroller
  • Ethernet with network stack
  • 11bgn Wi-Fi
  • Optional audio
  • Socket or UART control
  • Eco-system of IoT Tools
  • -40 to +85C parts rating

Firmware:

  • TLS based secure connectivity
  • I/O controls
  • UART-to-net peripheral connectivity
  • Optional VoIP, audio and PA firmware

How to buy:

  • uCMK64-IoT Development Kit
  • uCMK64-MOD – Module
  • uCMK64-SSB – Board

Learn more at ArcturusNetworks.com

Arcturus_Logo_WHT