High-Voltage Gate Driver IC

Allegro A4900 Gate Driver IC

Allegro A4900 Gate Driver IC

The A4900 is a high-voltage brushless DC (BLDC) MOSFET gate driver IC. It is designed for high-voltage motor control for hybrid, electric vehicle, and 48-V automotive battery systems (e.g., electronic power steering, A/C compressors, fans, pumps, and blowers).

The A4900’s six gate drives can drive a range of N-channel insulated-gate bipolar transistors (IGBTs) or power MOSFET switches. The gate drives are configured as three high-voltage high-side drives and three low-side drives. The high-side drives are isolated up to 600 V to enable operation with high-bridge (motor) supply voltages. The high-side drives use a bootstrap capacitor to provide the supply gate drive voltage required for N-channel FETs. A TTL logic-level input compatible with 3.3- or 5-V logic systems can be used to control each FET.

A single-supply input provides the gate drive supply and the bootstrap capacitor charge source. An internal regulator from the single supply provides the logic circuit’s lower internal voltage. The A4900’s internal monitors ensure that the high- and low-side external FET’s gate source voltage is above 9 V when active.

The control inputs to the A4900 offer a flexible solution for many motor control applications. Each driver can be driven with an independent PWM signal, which enables implementation of all motor excitation methods including trapezoidal and sinusoidal drive. The IC’s integrated diagnostics detect undervoltage, overtemperature, and power bridge faults that can be configured to protect the power switches under most short-circuit conditions. Detailed diagnostics are available as a serial data word.

The A4900 is supplied in a 44-lead QSOP package and costs $3.23 in 1,000-unit quantities.

Allegro MicroSystems, LLC

Dual-Channel Waveform Generators

B&K Precision 4053 Waveform Generator

B&K Precision 4053 Waveform Generator

The 4050 Series is a new line of four dual-channel function/arbitrary waveform generators. The instruments can generate 5-to-50-MHz waveforms for applications requiring stable and precise sine, square, triangle, and pulse waveforms with modulation and arbitrary waveform capabilities.

All models provide a main output voltage that can be vary from 0 to 10 VPP into 50 Ω and a secondary output that can vary from 0 to 3 VPP into 50 Ω. The generators feature a 3.5” color LCD, a rotary control knob, and a numeric keypad with dedicated waveform keys and output buttons.

The 4050 Series provides users with 48 built-in arbitrary waveforms. Using the included waveform editing software via the standard USB interface on the rear, users can create and load up to 10 custom 16-kpt waveforms. For general-purpose interface bus (GPIB) connectivity, an optional USB-to-GPIB adapter is available.

The generators offer a variety of modulation schemes for modulated signal applications including amplitude and frequency modulation (AM/FM), double sideband amplitude modulation (DSB-AM), amplitude and frequency shift keying (ASK/FSK), phase modulation (PM), and pulse-width modulation (PWM). Additional standard features include a linear and logarithmic sweep function, a built-in counter, sync output, a trigger I/O terminal, and a USB host port on the front panel to save and recall instrument settings and waveforms. A standard external 10-MHz reference clock input is provided to synchronize the instrument to another generator.

The 4052 (5-MHz) costs $499, the 4053 (10 MHz) costs $599, the 4054 (25 MHz) costs $850, and the 4055 (50 MHz) costs $1,050. Note: B&K Precision is offering 10% off MSRP through November 30, 2013. See website for details.

B&K Precision Corp.

Voltage Regulator Protection (EE Tip #103)

In many cases, the load connected to a voltage regulator is not returned to ground. It goes to an even lower voltage or perhaps even the negative power supply voltage. (Here we make the assumption of using positive voltages, when using voltage regulators with negative output voltages the reverse is true.)

Op-amps and level-shifters come to mind. In such cases, a diode (1N4001 or equivalent) connected across the output of the regulator IC usually provides sufficient protection (see Figure 1).

Source:Ton Giesberts, Elektor, 080943-I, 4/2009

Source:Ton Giesberts, Elektor, 080943-I, 4/2009

Polarity inversions which could occur, for example, during power on or during a short circuit could prove fatal for the regulator IC, but such a diode prevents the output of the IC going lower than ground (well, minus 0.7 V, to be accurate).

A short-circuit proof voltage regulator (such as the 78xx series) will survive such a situation without any problems. It is also possible for the input voltage of a voltage regulator to drop quicker than the output voltage—for example, when there is a protection circuit that shorts the input power supply voltage as a result of an overvoltage at the output.

If the output voltage of the regulator is more than 7 V higher than the input voltage, the emitter-base junction of the internal power transistor can break down and cause the transistor to fail.

You can use a shunt diode to prevent this condition (see Figure 2). This ensures that any higher voltage at the output of the regulator is shorted to the input.

—Ton Giesberts, Elektor, 080943-I, 4/2009

Linear Regulator with Current and Temperature Monitor Outputs

Linear Technology Corp

Linear Technology Corp

The LT3081 is a rugged 1.5-A wide input voltage range linear regulator with key usability, monitoring, and protection features. The device has an extended safe operating area (SOA) compared to existing regulators, making it well suited for high input-to-output voltage and high output current applications where older regulators limit the output.

The LT3081 uses a current source reference for single-resistor output voltage settings and output adjustability down to ”0.” A single resistor can be used to set the output current limit. This regulator architecture, combined with low-millivolt regulation, enables multiple ICs to be easily paralleled for heat spreading and higher output current. The current from the device’s current monitor can be summed with the set current for line-drop compensation, where the LT3081’s output increases with current to compensate for line drops.

The LT3081 achieves line and load regulation below 2 mV independent of output voltage and features a 1.2-to-40-V input voltage range. The device is well suited for applications requiring multiple rails. The output voltage is programmable with a single resistor from 0 to 38.5 V with a 1.2-V dropout. The on-chip trimmed 50-µA current reference is ±1% accurate. The regulation, transient response, and output noise (30 µVRMS) are independent of output voltage due to the device’s voltage follower architecture.

Two resistors are used to configure the LT3081 as a two-terminal current source. Input or output capacitors for stability are optional in either linear regulator or current-source operation mode. The LT3081 provides several monitoring and protection functions. A single resistor is used to program the current limit, which is accurate to ±10%. Monitor outputs provide a current output proportional to temperature (1 µA/°C) and output current (200 µA/A), enabling easy ground-based measurement. The current monitor can compensate for cable drops. The LT3081’s internal protection circuitry includes reverse-input protection, reverse-current protection, internal current limiting, and thermal shutdown.

A variety of grades/temperature ranges are offered including: the E and  I grades (–40°C to 125°C), the H grade (–40°C to 150°C), and the high-reliability MP grade (–55°C to 50°C). Pricing for the E-grade starts at $2.60 each in 1,000-piece quantities.

Linear Technology Corp.

DC Motor for Fine Rotary Motions

The RE 30 EB precious metal brushed motor features a low start-up voltage, even after a long period in standstill. With a 53-mNm rated torque, the powerful motor provides twice the power of an Maxon RE 25 EB. In addition, the RE 30 EB features minimal high-frequency interference.

The RE 30 EB motor is specifically designed for haptic applications (e.g., surgical robots). Therefore, the motor can also be used as a highly sensitive sensor, acting as the sense of touch to register mechanical resistance.

Contact Maxon for pricing.

Maxon Precision Motors