Single-Chip Battery Controllers Enable USB Power Delivery

Texas Instruments (TI) has introduced a pair of highly flexible, single-chip buck-boost battery charge controllers for one- to four-cell (1S to 4S) designs. The bq25703A and bq25700A synchronous charge controllers support efficient charging through USB Type-C and other USB ports in end equipment ranging from notebooks and tablets to power banks, drones and smart home applications. To learn more about the bq25703A and bq25700A.

TI bq25703A-bq25700A

Supporting both I2C and SMBus interfaces, the bq25703Aand bq25700A feature a new advanced battery algorithm enabling full power output by adding intelligence to battery charging through maximum power point tracking technology. The unique algorithm, referred to as input current optimization (ICO), automatically detects the full capacity of input power to optimize current, while maintaining consistent system and charging current to ensure the utilization of maximum input power.

Key features and benefits

  • Input source flexibility: The device’s USB Power Delivery compatibility offers an input voltage range from 3.5 V to 24 V, which designers can use in multiple ports including USB 2.0, USB 3.0 and the newest standard, USB Type-C.
  • Wide USB On-the-Go (OTG) output compatibility: The new charge controllers support input-ready devices from 5 V to 20 V and adjustable output for USB OTG with programmable current regulation.
  • Compact configurations: TI’s new battery-charging algorithm and intelligent detection features enable the battery charge controllers to support wide input and output voltage ranges and more compact adaptor designs.
  • Seamless transition between different modes : The devices support 1S to 4S batteries and an efficient transition between buck and boost operation without any dead zone.

Designers can use the bq25700A evaluation module (EVM) to easily evaluate device features and performance and speed time to market. The bq25703A EVM and the bq25700A EVM  are available from the TI store and authorized distributors for US$149.00. Designers can use the WEBENCH Battery Charger Designer to calculate the efficiency of the battery charge controller.

The bq25703A and bq25700A charge controllers are now available through the TI store and authorized distributors. Offered in a 4-mm-by-4-mm, 32-pin quad flat no-lead (QFN) package, the controllers are priced at US$2.20 in 1,000-unit quantities.

Texas Instruments | www.ti.com

Promoter Group Announces USB 3.2 Spec Update

The USB 3.0 Promoter Group has announced the pending release of the USB 3.2 specification, an incremental update that defines multi-lane operation for new USB 3.2 hosts and devices, effectively doubling the bandwidth to extend existing USB Type-C cable performance. During the upcoming USB Developer Days 2017 event, the promoters will provide detailed technical training covering USB 3.2, fast charging advancements in USB Power Delivery, and other topics.

20170726120126_USB-Type-cFrontWeb

While USB hosts and devices were originally designed as single-lane solutions, USB Type-C cables were designed to support multi-lane operation to ensure a path for scalable performance. New USB 3.2 hosts and devices can now be designed as multi-lane solutions, allowing for up to two lanes of 5 Gbps or two lanes of 10 Gbps operation. This enables platform developers to continue advancing USB products by effectively doubling the performance across existing cables. For example, a USB 3.2 host connected to a USB 3.2 storage device will now be capable of realizing over 2 GB/sec data transfer performance over an existing USB Type-C cable that is certified for SuperSpeed USB 10 Gbps.

Key characteristics of the USB 3.2 solution include:

– Two-lane operation using existing USB Type-C cables

– Continued use of existing SuperSpeed USB physical layer data rates and encoding techniques

– Minor update to hub specification to address increased performance and assure seamless transitions between single and two-lane operation

For users to obtain the full benefit of this performance increase, a new USB 3.2 host must be used with a new USB 3.2 device and the appropriate certified USB Type-C cable. This update is part of the USB performance roadmap and is specifically targeted to developers at this time. Branding and marketing guidelines will be established after the final specification is published. The USB 3.2 specification is now in a final draft review phase with a planned formal release in time for the USB Developer Days North America event in September 2017.

The USB 3.0 Promoter Group, comprised of Apple, Hewlett-Packard, Intel Corporation, Microsoft Corporation, Renesas Electronics, ST Microelectronics, and Texas Instruments, continues to develop the USB 3.x family of specifications to meet the market needs for increased functionality and performance in SuperSpeed USB solutions. Additionally, the USB 3.0 Promoter Group develops specification addendums (USB Power Delivery, USB Type-C, and others) to extend or adapt its specifications to support more platform types or use cases where adopting USB 3.x technology will be beneficial in delivering a more ubiquitous, richer user experience.

USB 3.0 Promoter Group | www.usb.org

Triple-Output Power Supplies Feature Modern Interfaces

Keysight Technologies has announced the introduction of the E36300 Series triple-output programmable DC power supplies. With a large color display, intuitive user interface, modern device connections via LAN (LXI, USB and optional GPIB), the E36300 matches the performance of more expensive system power supplies. The E36300 Series’ low “normal mode” noise specifications assure quality power for precision circuitry applications, enabling engineers to power their designs with confidence. In addition, the power supplies are acoustically quiet. Each model provides excellent line/load regulation of 0.01 percent, fast transient response time of less than 50 ms, low-range current measurement, and over-voltage, over-current and over-temperature protection to prevent damage to the device under test.

Keysight Technologies-E36300

Keysight’s BenchVue software supports the E36300 Series, enabling control of power supplies to set parameters and status alerts, visualize power output, and log changing voltage and current over time. The included Test Flow capabilities let users quickly automate power-supply setups and measurements into test sequences. The E36300 Series is available to order now. The list price starts at $1,100.

Keysight Technologies | www.keysight.com

USB Microphone Array Serves Voice-Activated Applications

The new miniDSP UMA-8 is a high-performance yet low-cost multichannel USB microphone array built around XMOS multicore technology, designed for voice-recognition application development. Seven high-performance MEMS microphones are configured in a circular arrangement to provide high-quality voice capture for a wide range of applications. Leveraging the onboard DSP processing, the UMA-8 supports voice algorithms including beamforming, noise reduction, acoustic echo cancellation, and de-reverb.

miniDSPUMA 8BoardFlight

Developed with applications in voice-activated control, smart assistants, robotics, conferencing, and more in mind, the UMA-8 pocket-size platform targets both DIYers and the OEM market, and was engineered for flexibility in firmware, software and hardware. For advanced users, full control and configuration of the DSP array processing parameters are available with a real-time GUI. This can be used to fine tune the various algorithms: acoustic echo cancellation, noise reduction, voice activation detect, and so on, dramatically improving voice pickup.

The UMA-8 costs $95. Step-by-step application notes are available for setup and configuration of the UMA-8 with the most common smart assistants currently available, including Amazon Alexa Voice + Raspberry Pi, Microsoft Cortana, and Apple Siri. miniDSP will be expanding those application notes in the future.

miniDSP | www.minidsp.com

Renesas New R9J02G012 Controller Enables Device-to-Device Authentication in Support of Safer USB Power Delivery Ecosystem

Renesas Electronics announced its new R9J02G012 USB Power Delivery (USB PD) controller intended for use in a wide range of USB Power Delivery products employing direct current (DC) power including AC adapters, PCs, smartphones, other consumer and office equipment, and toys. The new R9J02G012 supports both USB Power Delivery Rev. 3.0 (USB PD 3.0) and USB Type-C Authentication Rev 1.0, which enables device-to-device authentication.

The demand for fast charging mobile devices is growing, driving increased demand for high DC power delivery (e.g. 100W). Previously, system manufacturers frequently implemented proprietary fast-charging methods using USB Micro-B connectors. However, with recent smartphone charging/battery incidents, it is critical to offer a safe ecosystem of USB PD compatible products. The USB Implementers Forum (USB-IF), an industry-leading technology consortium, has standardized the following specifications to provide open, unified and interoperable technologies to fulfill these market needs:

1) USB Type-C Rev 1.2 Specification: For simpler, easier physical connection of cables, chargers and devices

2) USB Power Delivery Rev 3.0 Specification: For higher power delivery protocols with additional performance, safety and upgradability features like PD firmware update

3) USB Type-C Authentication Rev 1.0 Specification: For device-to-device authentication allowing system manufacturers to implement additional charging policies for trusted high-power charging over USB Type-C

As a long-time supporting member and a board member for USB Implementers Forum, Renesas has adopted all three standards. The new R9J02G012, introduced during Computex Taipei 2017, is a flexible, small-package USB PD controller for USB Type-C port control on any USB PD devices. All connecting ports to these USB PD devices with the R9J02G012 will be able to electronically verify and trust its authenticity based on the certificates and public key infrastructure (PKI) defined in the USB Type-C Authentication specification. This mechanism allows system manufacturers to implement policies to examine the genuine origin of the connected PD devices such as cables and chargers before a high-power charging of (e.g., 20V at 3A) is executed.

The R9J02G012 integrates support for the USB PD 3.0 and USB Type-C Authentication standards in a single package, where previously each required a separate chip. It is available in an easy-to-mount QFN package as well as the more compact BGA package, reducing the mounting area in cables or electronic devices. The board mounting area is less than 50 percent the area required when using the existing Renesas R9A02G011.

The R9J02G012 also supports the Power Delivery Firmware Update (PDFU) Specification, Revision 1.0. This optional PD feature is an open standard enabling firmware updates of the device via a USB Type-C cable.

Samples of the R9A02G011 are available from June 2017. Mass production is scheduled to begin in the beginning of January 2018. Renesas plans to expand its range of reference designs for applications such as USB Type-C power banks and mobile batteries by combining the R9J02G012 with power products from Renesas and Intersil Corporation, which was acquired by Renesas in February 2017. With the introduction of the R9J02G012, system manufacturers can easily construct a trusted power charging ecosystem of USB PD products based on the USB PD and USB Type-C Authentication standards.
renesas.com

Tracealyzer 3.1 Offers Support for Trace Streaming Over USB

Percepio AB recently released Tracealyzer 3.1, which is a trace tool that supports RTOS trace using just a standard USB cable. You can increase your development speed by using Tracealyzer for debugging, validation, profiling, documentation, and training. Percepio-Tracealyzer

The trace recorder library is now easier to configure for streaming over custom interfaces, and includes support for USB streaming on STM32. (It can be adapted for other microcontrollers.) USB offers excellent performance for RTOS tracing and over 600 KB/s has been measured on an STM32 using USB 2, several times more than required. Other stream ports include TCP/IP and SEGGER J-Link debug probes. Tracealyzer 3.1 can also receive trace streams via Windows COM ports (e.g., from USB CDC connections), UART connections, or any virtual COM port provided by other target interfaces.

Tracealyzer 3.1 can identify memory leaks in systems that use dynamic memory allocation. It can record memory allocation events (e.g. malloc, free) from multiple operating systems, and it can display such allocations that have not been released. Since the memory allocation events are linked to the task trace, you quickly find the context of the allocation and investigate the problem. The recorder library simplifies integration and now provides a common API for both streaming and snapshot recording.

 

Source: Percepio AB

 

New USB Micromodule Transceiver Protects Against High Voltages

Linear Technology Corp. recently introduced the LTM2894 USB µModule (micromodule) reinforced isolator that guards against ground-to-ground voltage differentials and large common-mode transients. With a rugged interface and internal isolation, the LTM2894 is well suited for implementing USB in harsh environments where protection from high voltages is needed.LTM2894

The LTM2894’s features, specs, and benefits:

  • Isolated USB Transceiver: 7,500 VRMS for 1 minute
  • USB 2.0 Full sspeed and low speed compatible
  • Auto-configuration of USB bus speed
  • 4.4-to-36 V VBUS and VBUS2 opperating range
  • 3.3-V LDO Output supply signal references: VLO, VLO2
  • 50-kV/µs Common mode transient immunity
  • ±20-kV HBM ESD on USB interface pins
  • 1414 VPEAK Maximum continuous working voltage
  • 17.4-mm Creepage distance
  • 22 mm × 6.25 mm BGA Package

Source: Linear Technology

New USB 3.0 UVC Class Bridge ICs

FTDI Chip recently introduced a new series of USB 3.0 UVC class bridge ICs. The FT602 devices support streaming of video from HD camera equipment. Imaging systems that once could only deliver low-resolution material can now have improved video quality while still running at 60-fps frame rates.FTDIPR74 FTDI

The FT602 devices’ characteristics, benefits, and specs:

  • Improved performance while viewing captured imaging data via standard UVC-enabled hardware and common media player platforms
  • Plug-and-play implementationl; custom drivers aren’t required
  • Complements FTDI’s FT600 and FT601 capable of providing both USB 3.0 SuperSpeed (5 Gbps) and USB 2.0 High Speed (480 Mbps) interfacing
  • Key applications: surveillance/security, machine vision, home/building automation, metrology, and real-time microscopy

Source: FTDI Chip

USBXpress Controller for Simplified USB Connectivity

Silicon Labs recently added new lower-power member to its line of USBXpress bridge devices. The CP2102N USB controller provides a simpler faster way to add USB connectivity to your embedded designs. Offering advanced functionality in QFN packages as compact as 3 mm × 3 mm, the CP2102N is intended for a variety of portable, space-constrained applications, such as USB dongles, gaming controllers, and wearable medical devices.USBXpress SiliconLabs

 

The CP2102N USBXpress feaures and specs include:

  • Data transfer rates up to 3 Mbaud
  • A low active current of less than 10 mA
  • Remote wake-up capability
  • USB battery charger detection capability (USB BCS 1.2) for detecting the type of charger connected to the system
  • Crystal-less operation and integrated regulator to reduce bill of materials cost
  • Small-footprint package options: 3 mm × 3 mm QFN20, 4 mm × 4 mm QFN24, and 5 mm × 5 mm QFN28
  • Royalty-free Virtual COM port drivers
  • Easy-to-use software tools including Xpress Configurator

Prices for the CP2102N begin at $0.91 in 10,000-unit quantities. The CP2102N-EK evaluation kit costs $25.

Source: Silicon Labs

IEC Adopts USB Type-C, USB Power Delivery, & USB 3.1 Specs

The International Electrotechnical Commission (IEC) and USB Implementers Forum (USB-IF) recently announced that IEC has formally adopted the latest USB-IF specifications for high-speed data delivery and enhanced usages for device charging. In particular, the USB Type-C Cable and Connector, USB Power Delivery and USB 3.1 (SuperSpeed USB 10 Gbps) specifications. These specifications define a truly single-cable solution for audio/video, data, and power delivery.

The standards are expected to advance global action on reducing e-waste and improving the reusability of power supplies with a range of electronic devices. The IEC approach for ongoing standardization work in this space is driven by the ultimate goals of increasing external power supply re-usability, supporting consumer convenience, maintaining product reliability and safety, and providing for future technology innovations. In addition, widespread adoption of the resulting International Standards will help to reduce the encroachment of poorly designed or manufactured aftermarket substitutes which may affect the operation of electronic devices in compliance with regulatory requirements.USB

The IEC specification numbers :

  • IEC 62680-1-3 (USB Type-C)
  • IEC 62680-1-2 (USB PD)
  • IEC 62680-3-1 (USB 3.1)

The USB Type-C specification defines the physical USB Type-C cable and connector form factor to facilitate thinner and sleeker product designs, enhance usability and provide a growth path for performance enhancements for future versions of USB.

USB Power Delivery was developed to provide flexible, bi-directional power capabilities by enabling faster charging and increased power levels up to 100W. The USB Power Delivery specification defines standardized features that support the global adoption of interoperable power supplies, helping to reduce electronic waste and increase re-usability of adapters and chargers for consumer electronics.

USB 3.1 enables speeds up to 10 Gbps, supporting audio/video for USB hosts, hubs, and devices. Combined with USB Type-C, USB 3.1 and USB Power Delivery define a truly single-cable solution for audio/video, data and power delivery, building on the existing global ecosystem of USB/IEC 62680 series of International Standards compliant devices.

The International Electrotechnical Commission (IEC) brings together 166 countries, representing 98% of the world population and 96% of world energy generation, and close to 15,000 experts who cooperate on the global, neutral and independent IEC platform to ensure that products work everywhere safely with each other. The IEC is the world’s leading organization that prepares and publishes globally relevant International Standards for the whole energy chain, including all electrical, electronic and related technologies, devices and systems. The IEC also supports all forms of conformity assessment and administers four Conformity Assessment Systems that certify that components, equipment and systems used in homes, offices, healthcare facilities, public spaces, transportation, manufacturing, explosive environments and energy generation conform to them.

IEC work covers a vast range of technologies: power generation (including all renewable energy sources), transmission, distribution, Smart Grid & Smart Cities, batteries, home appliances, office and medical equipment, all public and private transportation, semiconductors, fiber optics, nanotechnology, multimedia, information technology, and more. It also addresses safety, EMC, performance, and the environment.

Source: International Electromechanical Commission

All-in-One Comprehensive Power Delivery Compliance Tester

Saelig Company recently announced the MQP Packet-Master USB-PDT all-in-one comprehensive Power Delivery Compliance Tester. Intended for testing protocol, measuring transmitter signal quality, receiver quality and interference rejection, and power load testing, the USB-PDT s a complete compliance tester and development tool for USB power delivery, incorporating analyzer, exerciser, compliance tester, PD VBUS generator, PD VBUS load, VBUS voltage, and current monitor functions. The unit performs comprehensive PHY, protocol and power compliance tests on PD devices, and PHY and protocol tests on PD cable marker chips.Saelig usb pdt

The base unit, which incorporates a plug-in module design, comes with GraphicUSB, an easy-use graphical Windows application for driving and reporting on the compliance tests and capturing and displaying every detail of power delivery interactions. “Power Delivery” is a specification allowing USB ports to provide power in a more flexible and adaptable way. The industry standard BMC version uses two-way signaling on the CC wire of a USB C-cable. The Packet-Master USB-PDT behaves as one end of a power delivery link. It can emulate the behavior of an initial Downstream Facing Port (DFP) or Upstream Facing Port (UFP) in controlled ways, and can confirm the responses of the connected Unit Under Test (UUT). It is also designed to perform all the required protocol and PHY Compliance Tests on Electronic Cable Markers.

The Packet-Master USB-PDT’s plug-in module design concept has the following advantages for connecting test devices:

  • USB-PD connectors can be damaged by handling. If a connector becomes damaged, you can simply replace the plug-in module.
  • The Type-C receptacle on the plug-in is itself a user-replaceable item.
  • Different connector styles are available for USB-PD use. Swapping plug-in modules provides the flexibility required.

Designed USB experts MQP Electronics, the USB-PDT will be available from Saelig in Q1 2016.

Source: Saelig Company

New Dual-Channel USB Port Power Controller

Microchip Technology recently expanded its programmable USB-port power controller portfolio with the dual-channel UCS2112. This UCS2112 port power controller supports two ports, with eight programmable continuous current limits for each port, ranging from 0.53 to 3 A for faster charging times at higher currents. You can use it as is or with USB hubs to create a complete charging or USB communication system.Microchip UCS2112

 

The UCS2112 port power controller is supported by Microchip’s new $140 UCS2112 Evaluation Board. The UCS2112 is available for sampling and volume production in a 20-pin QFN package. Pricing starts at $1.80 each, in 5,000-unit quantities. Microchip Eval Board USC21212

Source: Microchip Technology

Evaluation Boards for SuperSpeed USB-to-FIFO Bridge ICs

FTDI recently launched a new family of evaluation/development modules to encourage the implementation of its next-generation USB interfacing technology. Its FT600/1Q USB 3.0 SuperSpeed ICs are in volume production and backed up by the UMFT60XX offering. The family comprises four models that provide different FIFO bus interfaces and data bit widths. With these modules, the operational parameters of FT600/1Q devices can be fully assessed and interfacing with external hardware undertaken, such as FPGA platforms.

At 78.7 mm × 60 mm, the UMFT600A and UMFT601A each have a high-speed mezzanine card (HSMC) interface with 16-bit-wide and 32-bit-wide FIFO buses, respectively. The UMFT600X and UMFT601X measure 70 mm × 60 mm and incorporate field-programmable mezzanine card (FMC) connectors with 16-bit-wide and 32-bit-wide FIFO buses, respectively.

The HSMC interface is compatible with most Altera FPGA reference design boards, while the FMC connector delivers the same functionality in relation to Xilinx boards. Fully compatible with USB 3.0 SuperSpeed (5 Gbps), USB 2.0 High Speed (480 Mbips), and USB 2.0 Full Speed (12 Mbps) data transfer, the UMFT60xx modules support two parallel slave FIFO bus protocols with an achievable data burst rate of around 400 MBps. The multi-channel FIFO mode can handle up to four logic channels. It is complemented by the 245 synchronous FIFO mode, which is optimized for more straightforward operation.

Source: FTDI

High-Speed, Conditioned Measurements with Channel-to-Channel Isolation

Measurement Computing Corp. recently announced the release of the SC-1608 Series of USB and Ethernet data acquisition devices. The series features analog signal conditioning that enables you to measure voltage, thermocouple, RTD, strain, frequency, and current. Isolated analog output and solid-state relays make it a good solution for systems requiring flexible conditioning and low cost per channel.MCC-SC-1608-Series

There are four devices in the SC-1608 Series with sample rates up to 500 ksps. Each device accommodates up to eight 8B isolated analog signal conditioning modules and eight solid state relay modules. Up to two isolated analog outputs are available on some models. Signal conditioning modules are sold separately.

Microsoft Windows software options for the SC-1608 include DAQami and TracerDAQ to display and log data, along with comprehensive support for C, C++, C#, Visual Basic, and Visual Basic .NET. Support is also included for DASYLab and NI LabVIEW. UL for Android provides programming support for Android devices. Open-source Linux drivers are also available.

The SC-1608 Series costs $999.

Source: Measurement Computing Corp.

USB-to-FPGA Communications: A Case Study of the ChipWhisperer-Lite

Sending data from a computer to an FPGA is often required. This might be FPGA configuration data, register settings, or streaming data. An easy solution is to use a USB-connected microcontroller instead of a dedicated interface chip, which allows you to offload certain tasks into the microcontroller.

In Circuit Cellar 299 (June 2015), Colin O’Flynn writes:

Often your FPGA-based project will require computer communication and some housekeeping tasks. A popular solution is the use of a dedicated USB interface chip, and a soft-core processor in the FPGA for housekeeping tasks.

For an open-source hardware project I recently launched, I decided to use an external USB microcontroller instead of a dedicated interface chip. I suspect you’ll find a lot of useful design tidbits you can use for yourself—and, because it’s open source, getting details of my designs doesn’t involve industrial espionage!

The design is called the ChipWhisperer-Lite (see Photo 1). This device is a training aid for learning about side-channel power analysis of cryptographic implementations. Side-channel power analysis uses measurements of small power variations during execution of the cryptographic algorithms to break the implementation of the algorithm.

Photo 1: This shows the ChipWhisperer-Lite, which contains a Xilinx Spartan 6 LX9 FPGA and Atmel SAM3U2C microcontroller. The remaining circuitry involves the power supplies, ADC, analog processing, and a development device which the user programs with some cryptographic algorithm they are analyzing.

Photo 1: This shows the ChipWhisperer-Lite, which contains a Xilinx Spartan 6 LX9 FPGA and Atmel SAM3U2C microcontroller. The remaining circuitry involves the power supplies, ADC, analog processing, and a development device which the user programs with some cryptographic algorithm they are analyzing.

In a previous article, “Build a SoC Over Lunch” (Circuit Cellar 289, 2014), I made the case for using a soft-core processing in an FPGA. In this article I’ll play the devil’s advocate by arguing that using an external microcontroller is a better choice. Of course the truth lies somewhere in between: in this example, the requirement of having a high-speed USB interface makes an external microcontroller more cost-effective, but this won’t always be the case.

This article assumes you require computer communication as part of your design. There are many options for this. The easiest from a hardware perspective is to use a USB-Serial converter, and many projects use such a system. The downside is a fairly slow interface, and the requirement of designing a serial protocol.

A more advanced option is to use a USB adapter with a parallel interface, such as the FTDI FT2232H. These can achieve very high-speed data rates—basically up to the limit of the USB 2.0 interface. The downside of these options is that it still requires some protocol implemented on your FPGA for many applications, and it has limited extra features (such as if you need housekeeping tasks).

The solution I came to is the use of a USB microcontroller. They are widely available from most vendors with USB 2.0 high-speed (full 480 Mbps data rate) interfaces, and allow you to perform not only the USB interface, but the various housekeeping tasks that your system will require. The USB microcontroller will also likely be around the same price (or possibly cheaper) than the equivalent specialized interface chip.

When selecting a microcontroller, I recommend finding one with an external memory bus interface. This external memory bus is normally designed to allow you to map devices such as SRAM or DRAM into the memory space of the microcontroller. In our case we’ll actually be mapping FPGA registers into the microcontroller memory space, which means we don’t need any protocol for communication with the FPGA.

OflynnFig1fpga

Figure 1: This figure shows the basic connections used for memory-mapping the FPGA into the microcontroller memory space. Depending on your requirements, you can add some additional custom lines, such as a flag to indicate different FPGA register banks to use, as only a 9-bit address bus is used in this example.

I selected an Atmel SAM3U2C microcontroller, which has a USB 2.0 high-speed interface. This microcontroller is low-cost and available in TQFP package, which is convenient if you plan on hand assembling prototype boards. The connections between the FPGA and microcontroller are shown in Figure 1.

On the FPGA, it is easy to map this data bus into registers. This means that to configure some feature in the FPGA, you can just directly write into a register. Or if you are transferring data, you can read from or write to a block-RAM (BRAM) implemented in the FPGA.

Check out Colin’s ChipWhisperer-Lite KickStarter Video: