USB-230 Series: New Low-Cost 16-Bit DAQ

Measurement Computing Corporation recently announced the release of two, 16-bit, multifunction USB DAQ devices with sample rates up to 100 ksps.

Source: Measurement Computing

Source: Measurement Computing

The USB-230 Series are the lowest priced 16-bit multifunction USB devices available from MCC. They feature eight single-ended/four differential analog inputs, eight digital I/O, one counter input, and two, 16-bit analog outputs. Removable screw-terminal connectors make signal connections easy.

The USB-231 costs $249 and has a 50 ksps sample rate.  The USB-234 offers a 100 ksps sample rate and is available for $424.

Included software options for the USB-230 Series include out-of-the-box TracerDAQ for quick-and-easy logging and displaying of data, along with comprehensive support for C, C++, C#, Visual Basic, and Visual Basic .NET. Drivers are also included for DASYLab and NI LabVIEW.

Source: Measurement Computing

Arduino USB Host Shield

The Arduino USB Host Shield allows you to connect a USB device to your Arduino board. The Arduino USB Host Shield is based on the MAX3421E, which is a USB peripheral/host controller containing the digital logic and analog circuitry necessary to implement a full-speed USB peripheral or a full-/low-speed host compliant to USB specification rev 2.0.ArduinoHostshield

The shield is TinkerKit compatible, which means you can quickly create projects by plugging TinkerKit modules onto the board. The following device classes are supported by the shield:

  • HID devices: keyboards, mice, joysticks, etc.
  • Game controllers: Sony PS3, Nintendo Wii, Xbox360
  • USB to serial converters: FTDI, PL-2303, ACM, as well as certain cell phones and GPS receivers
  • ADK-capable Android phones and tables
  • Digital cameras: Canon EOS, Powershot, Nikon DSLRs and P&S, as well as generic PTP
  • Mass storage devices: USB sticks, memory card readers, external hard drives, etc.
  • Bluetooth dongles

For information on using the shield with the Android OS, refer to Google’s ADK documentation. Arduino communicates with the MAX3421E using the SPI bus (through the ICSP header). This is on digital pins 10, 11, 12, and 13 on the Uno and pins 10, 50, 51, and 52 on the Mega. On both boards, pin 10 is used to select the MAX3421E.

[Source: Arduino website via Elektor]

July Issue Offers Data-Gathering Designs and More

The concept of the wireless body-area network (WBAN), a network of wireless wearable computing devices, holds great promise in health-care applications.

Such a network could integrate implanted or wearable sensors that provide continuous mobile health (mHealth) monitoring of a person’s most important “vitals”—from calorie intake to step count, insulin to oxygen levels, and heart rate to blood pressure. It could also provide real-time updates to medical records through the Internet and alert rescue or health-care workers to emergencies such as heart failures or seizures.

Data Gathering DesignsConceivably, the WBAN would need some sort of controller, a wearable computational “hub” that would track the data being collected by all the sensors, limit and authorize access to that information, and securely transmit it to other devices or medical providers.

Circuit Cellar’s July issue (now available online for membership download or single-issue purchase)  features an essay by Clemson University researcher Vivian Genaro Motti, who discusses her participation in the federally funded Amulet project.

Amulet’s Clemson and Dartmouth College research team is prototyping pieces of “computational jewelry” that can serve as a body-area network’s mHealth hub while being discreetly worn as a bracelet or pendant. Motti’s essay elaborates on Amulet’s hardware and software architecture.

Motti isn’t the only one aware of the keen interest in WBANs and mHealth. In an interview in the July issue, Shiyan Hu, a professor whose expertise includes very-large-scale integration (VLSI), says that many of his students are exploring “portable or wearable electronics targeting health-care applications.”

This bracelet-style Amulet developer prototype has an easily accessible board.

This bracelet-style Amulet developer prototype has an easily accessible board.

Today’s mHealth market is evident in the variety of health and fitness apps available for your smartphone. But the most sophisticated mHealth technologies are not yet accessible to embedded electronics enthusiasts. (However, Amulet has created a developer prototype with an easily accessible board for tests.)

But market demand tends to increase access to new technologies. A BCC Research report predicts the mHealth market, which hit $1.5 billion in 2012, will increase to $21.5 billion by 2018. Evolving smartphones, better wireless coverage, and demands for remote patient monitoring are fueling the growth. So you can anticipate more designers and developers will be exploring this area of wearable electronics.

In addition to giving you a glimpse of technology on the horizon, the July issue provides our staple of interesting projects and DIY tips you can adapt at your own workbench. For example, this issue includes articles about microcontroller-based strobe photography; a thermal monitoring system using ANT+ wireless technology; a home solar-power setup; and reconfiguring and serial backpacking to enhance LCD user interfaces.

We’re also improving on an “old” idea. Some readers may recall contributor Tom Struzik’s 2010 article about his design for a Bluetooth audio adapter for his car (“Wireless Data Exchange: Build a 2,700-lb. Bluetooth Headset,” Circuit Cellar 240).

In the July issue, Struzik writes about how he solved one problem with his design: how to implement a power supply to keep the phone and the Bluetooth adapter charged.

“To run both, I needed a clean, quiet, 5-V USB-compatible power supply,” Struzik says. “It needed to be capable of providing almost 2 A of peak current, most of which would be used for the smartphone. In addition, having an in-car, high-current USB power supply would be good for charging other devices (e.g., an iPhone or iPad).”

Struzik’s July article describes how he built a 5-V/2-A automotive isolated switching power supply. The first step was using a SPICE program to model the power supply before constructing and testing an actual circuit. Struzik provides something extra with his article: a video tutorial explaining how to use Linear Technology’s LTspice simulator program for switching design. It may help you design your own circuit.

This is Tom Struzik's initial test circuit board, post hacking. A Zener diode is shown in the upper right, a multi-turn trimmer for feedback resistor is in the center, a snubber capacitor and “stacked” surface-mount design (SMD) resistors are on the center left, USB D+/D– voltage adjust trimmers are on top center, and a “test point” is shown in the far lower left. If you’re looking for the 5-V low dropout (LDO) regulator, it’s on the underside of the board in this design.

This is Tom Struzik’s initial test circuit board, post hacking. A Zener diode is shown in the upper right, a multi-turn trimmer for feedback resistor is in the center, a snubber capacitor and “stacked” surface-mount design (SMD) resistors are on the center left, USB D+/D– voltage adjust trimmers are on top center, and a “test point” is shown in the far lower left. If you’re looking for the 5-V low dropout (LDO) regulator, it’s on the underside of the board in this design.


Engineering Consultant and Roboticist

Eric Forkosh starting building his first robot when he was a teenager and has been designing ever since. This NYC-based electrical engineer’s projects include everything from dancing robots to remote monitoring devices to cellular module boards to analog signals—Nan Price, Associate Editor

NAN: Tell us about your start-up company, Narobo.


Eric Forkosh

ERIC: Narobo is essentially the company through which I do all my consulting work. I’ve built everything from dancing robots to cellular field equipment. Most recently I’ve been working with some farmers in the Midwest on remote monitoring. We monitor a lot of different things remotely, and I’ve helped develop an online portal and an app. The most interesting feature of our system is that we have a custom tablet rig that can interface directly to the electronics over just the USB connection. We use Google’s Android software development kit to pull that off.

ERIC: The DroneCell was my second official product released, the first being the Roboduino. The Roboduino was relatively simple; it was just a modified Arduino that made building robots easy. We used to sell it online at for a little while, and there was always a trickle of sales, but it was never a huge success. I still get a kick out of seeing Roboduino in projects online, it’s always nice to see people appreciating my work.


The DroneCell is a cellular module board that communicates with devices with TTL UARTs.

The DroneCell is the other product of mine, and my personal favorite. It’s a cellular module board geared toward the hobbyist. A few years ago, if you wanted to add cellular functionality to your system you had to do a custom PCB for it. You had to deal with really low voltage levels, very high peak power draws, and hard-to-read pins. DroneCell solved the problem and made it very easy to interface to hobbyist systems such as the Arduino. Putting on proper power regulation was easy, but my biggest design challenge was how to handle the very low voltage levels. In the end, I put together a very clever voltage shifter that worked with 3V3 and 5 V, with some calculated diodes and resistors.

NAN: Tell us about your first project. Where were you at the time and what did you learn from the experience?


Eric’s Butler robot was his first electronics project. He started building it when he was still in high school.

ERIC: The Butler robot was my first real electronics project. I started building it in ninth grade, and for a really stupid reason. I just wanted to build a personal robot, like on TV. My first version of the Butler robot was cobbled together using an old laptop, a USB-to-I/O converter called Phidgets, and old wheelchair motors I bought on eBay.

I didn’t use anything fancy for this robot, all the software was written in Visual Basic and ran on Windows XP. For motor controllers, I used some old DPDT automotive relays I had lying around. They did the job but obviously I wasn’t able to PWM them for speed control.

My second version came about two years later, and was built with the intention of winning the Instructables Robot contest. I didn’t win first place, but my tutorial “How to Build a Butler Robot” placed in the top 10 and was mentioned in The Instructables Book in print. This version was a cleaner version of everything I had done before. I built a sleek black robot body (at least it was sleek back then!) and fabricated an upside-down bowl-shaped head that housed the webcam. The electronics were basically the same. The main new features were a basic robot arm that poured you a drink (two servos and a large DC motor) and a built-in mini fridge. I also got voice command to work really well by hooking up my Visual Basic software with Dragon’s speech-to-text converter.

The Butler robot was a great project and I learned a lot about electronics and software from doing it. If I were to build a Butler robot right now, I’d do it completely differently. But I think it was an important to my engineering career and it taught me that anything is possible with some hacking and hard work.

At the same time as I was doing my Butler robot (probably around 2008), I lucked out and was hired by an entertainer in Hong Kong. He saw my Butler robot online and hired me to build him a dancing robot that was synced to music. We solved the issue of syncing to music by putting dual-tone multi-frequency (DTMF) tones on the left channel audio and music on the right channel. The right channel went to speakers and the left channel went to a decoder that translated DTMF tone sequences to robot movement. This was good because all the data and dance moves were part of the same audio file. All we had to do was prepare special audio files and the robot would work with any music player (e.g., iPod, laptop, CD, etc.). The robot is used in shows to this day, and my performer client even hired a professional cartoon voice actor to give the robot a personality.

NAN: You were an adjunct professor at the Cooper Union for the Advancement of Science and Art in New York City. What types of courses did you teach and what did you enjoy most about teaching?

ERIC: I will be entering my senior year at Cooper Union in the Fall 2014. Two years ago, I took a year off from school to pursue my work. This past year I completed my junior year. I taught a semester of “Microcontroller Projects” at Cooper Union during my year off from being a student. We built a lot of really great projects using Arduino. One final project that really impressed me was a small robot car that parallel parked itself. Another project was a family of spider robots that were remotely controlled and could shrink up into a ball.

Cooper Union is filled with really bright students and teaching exposed me to the different thought processes people have when trying to build a solution. I think teaching helped me grow as a person and helped me understand that in engineering—and possibly in life—there is no one right answer. There are different paths to the same destination. I really enjoyed teaching because it made me evaluate my understanding about electronics, software, and robotics. It forced me to make sure I really understood what was going on in intricate detail.

NAN: You have competed in robotics competitions including RoboCup in Austria. Tell us about these experiences—what types of robots did you build for the competitions?


Eric worked with his high school’s robotics team to design this robot for a RoboCup competition.

ERIC: In high school I was the robotics team captain and we built a line-following robot and a soccer robot to compete in RoboCup Junior in the US. We won first place in the RoboCup Junior Northeast Regional and were invited to compete in Austria for the International RoboCup Junior games. So we traveled as a team to Austria to compete and we got to see a lot of interesting projects and many other soccer teams compete. I remember the Iranian RoboCup Junior team had a crazy robot that competed against us; it was built out of steel and looked like a miniature tank.

My best memory from Austria was when our robot broke and I had to fix it. Our robot was omnidirectional with four omni wheels in each corner that let it drive at any angle or orientation it wanted. It could zigzag across the field without a problem. At our first match, I put the robot down on the little soccer field to compete… and it wouldn’t move. During transportation, one of the motors broke. Disappointed, we had to forfeit that match. But I didn’t give up. I removed one of the wheels and rewrote the code to operate with only three motors functional. Again we tried to compete, and again another motor appeared to be broken. I removed yet another wheel and stuck a bottle cap as a caster wheel on the back. I rewrote the code, which was running on a little Microchip Technology PIC microcontroller, and programmed the robot to operate with only two wheels working. The crippled robot put up a good fight, but unfortunately it wasn’t enough. I think we scored one goal total, and that was when the robot had just two wheels working.

After the competition, during an interview with the judges, we had a laugh comparing our disabled robot to the videos we took back home with the robot scoring goal after goal. I learned from that incident to always be prepared for the worst, do your best, and sometimes stuff just happens. I’m happy I tried and did my best to fix it, I have no regrets. I have a some of the gears from that robot at home on display as a reminder to always prepare for emergencies and to always try my best.

NAN: What was the last electronics-design related product you purchased and what type of project did you use it with?

ERIC: The last product would be an op-amp I bought, probably the 411 chip. For a current project, I had to generate a –5-to-5-V analog signal from a microcontroller. My temporary solution was to RC filter the PWM output from the op-amp and then use an amplifier with a
gain of 2 and a 2.5-V “virtual ground.” The result is that 2.5 V is the new “zero” voltage. You can achieve –5 V by giving the op-amp 0 V, a –2.5-V difference that is amplified by 2 to yield 5 V. Similarly, 5 V is a 2.5-V difference from the virtual ground, amplified by 2 it provides a 5-V output.

NAN: What do you consider to be the “next big thing” in the industry?

ERIC: I think the next big thing will be personalized health care via smartphones. There are already some insulin pumps and heart monitors that communicate with special smartphone apps via Bluetooth. I think that’s excellent. We have all this computing power in our pockets, we should put it to good use. It would be nice to see these apps educating smartphone users—the patients themselves— about their current health condition. It might inspire patients/users to live healthier lifestyles and take care of themselves. I don’t think the FDA is completely there yet, but I’m excited to see what the future will bring. Remember, the future is what you build it to be.

Flexible I/O Expansion for Rugged Applications

WynSystemsThe SBC35-CC405 series of multi-core embedded PCs includes on-board USB, gigabit Ethernet, and serial ports. These industrial computers are designed for rugged embedded applications requiring extended temperature operation and long-term availability.

The SBC35-CC405 series features the latest generation Intel Atom E3800 family of processors in an industry-standard 3.5” single-board computer (SBC) format COM Express carrier. A Type 6 COM Express module supporting a quad-, dual-, or single-core processor is used to integrate the computer. For networking and communications, the SBC35-CC405 includes two Intel I210 gigabit Ethernet controllers with IEEE 1588 timestamping and 10-/100-/1,000-Mbps multispeed operation. Four Type-A connectors support three USB 2.0 channels and one high-speed USB 3.0 channel. Two serial ports support RS-232/-422/-485 interface levels with clock options up to 20 Mbps in the RS-422/-485 mode and up to 1 Mbps in the RS-232 mode.

The SBC35-CC405 series also includes two MiniPCIe connectors and one IO60 connector to enable additional I/O expansion. Both MiniPCIe connectors support half-length and full-length cards with screw-down mounting for improved shock and vibration durability. One MiniPCIe connector also supports bootable mSATA solid-state disks while the other connector includes USB. The IO60 connector provides access to the I2C, SPI, PWM, and UART signals enabling a simple interface to sensors, data acquisition, and other low-speed I/O devices.

The SBC35-CC405 runs over a 10-to-50-VDC input power range and operates at temperatures from –40°C to 85°C. Enclosures, power supplies, and configuration services are also available.

Linux, Windows, and other x86 OSes can be booted from the CFast, mSATA, SATA, or USB interfaces, providing flexible data storage options. WinSystems provides drivers for Linux and Windows 7/8 as well as preconfigured embedded OSes.
The single-core SBC35-CC405 costs $499.

Winsystems, Inc.