March Circuit Cellar: Sneak Preview

The March issue of Circuit Cellar magazine is coming soon. And we’ve got a healthy serving of embedded electronics articles for you. Here’s a sneak peak.

Not a Circuit Cellar subscriber?  Don’t be left out! Sign up today:

 

Here’s a sneak preview of March 2018 Circuit Cellar:

TECHNOLOGY FOR THE INTERNET-OF-THINGS

IoT: From Device to Gateway
The Internet of Things (IoT) is one of the most dynamic areas of embedded systems design today. This feature focuses on the technologies and products from edge IoT devices up to IoT gateways. Circuit Cellar Chief Editor Jeff Child examines the wireless technologies, sensors, edge devices and IoT gateway technologies at the center of this phenomenon.

Texting and IoT Embedded Devices
Texting has become a huge part of our daily lives. But can texting be leveraged for use in IoT Wi-Fi devices? Jeff Bachiochi lays the groundwork for describing a project that will involve texting. In this part, he gets into out the details for getting started with a look at Espressif System’s ESP8266EX SoC.

Exploring the ESP32’s Peripheral Blocks
What makes an embedded processor suitable as an IoT or home control device? Wi-Fi support is just part of the picture. Brian Millier has done some Wi-Fi projects using the ESP32, so here he shares his insights about the peripherals on the ESP32 and why they’re so powerful.

MICROCONTROLLERS HERE, THERE & EVERYWHERE

Designing a Home Cleaning Robot (Part 4)
In this final part of his four-part article series about building a home cleaning robot, Nishant Mittal discusses the firmware part of the system and gets into the system’s actual operation. The robot is based on Cypress Semiconductor’s PSoC microcontroller.

Apartment Entry System Uses PIC32
Learn how a Cornell undergraduate built a system that enables an apartment resident to enter when keys are lost or to grant access to a guest when there’s no one home. The system consists of a microphone connected to a Microchip PIC32 MCU that controls a push solenoid to actuate the unlock button.

Posture Corrector Leverages Bluetooth
Learn how these Cornell students built a posture corrector that helps remind you to sit up straight. Using vibration and visual cues, this wearable device is paired with a phone app and makes use of Bluetooth and Microchip PIC32 technology.

INTERACTING WITH THE ANALOG WORLD

Product Focus: ADCs and DACs
Makers of analog ICs are constantly evolving their DAC and ADC chips pushing the barriers of resolution and speeds. This new Product Focus section updates readers on this technology and provides a product album of representative ADC and DAC products.

Stepper Motor Waveforms
Using inexpensive microcontrollers, motor drivers, stepper motors and other hardware, columnist Ed Nisley built himself a Computer Numeric Control (CNC) machines. In this article Ed examines how the CNC’s stepper motors perform, then pushes one well beyond its normal limits.

Measuring Acceleration
Sensors are a fundamental part of what make smart machines smart. And accelerometers are one of the most important of these. In this article, George Novacek examines the principles behind accelerometers and how the technology works.

SOFTWARE TOOLS AND PROTOTYPING

Trace and Code Coverage Tools
Today it’s not uncommon for embedded devices to have millions of lines of software code. Trace and code coverage tools have kept pace with these demands making it easier for embedded developers to analyze, debug and verify complex embedded software. Circuit Cellar Chief Editor Jeff Child explores the latest technology trends and product developments in trace and code coverage tools.

Manual Pick-n-Place Assembly Helper
Prototyping embedded systems is an important part of the development cycle. In this article, Colin O’Flynn presents an open-source tool that helps you assemble prototype devices by making the placement process even easier.

January Circuit Cellar: Sneak Preview

The January issue of Circuit Cellar magazine is coming soon. And it’s got a robust selection of embedded electronics articles for you. Here’s a sneak peak.

Not a Circuit Cellar subscriber?  Don’t be left out! Sign up today:

 

Here’s a sneak preview of January 2018 Circuit Cellar:

 

                                     IMPROVING EMBEDDED SYSTEM DESIGNS

Special Feature: Powering Commercial Drones
The amount of power a commercial drone can draw on has a direct effect on how long it can stay flying as well as on what tasks it can perform. Circuit Cellar Chief Editor Jeff Child examines solar cells, fuel cells and other technology options for powering commercial drones.

CC 330 CoverFPGA Design: A Fresh Take
Although FPGAs are well established technology, many embedded systems developers—particularly those used the microcontroller realm—have never used them before. In this article, Faiz Rahman takes a fresh look a FPGAs for those new to designing them into their embedded systems.

Product Focus: COM Express boards
COM Express boards provide a complete computing core that can be upgraded when needed, leaving the application-specific I/O on the baseboard. This brand new Product Focus section updates readers on this technology and provides a product album of representative COM Express products.

TESTING, TESTING, 1, 2, 3

LF Resonator Filter
In Ed Nisley’s November column he described how an Arduino-based tester automatically measures a resonator’s frequency response to produce data defining its electrical parameters. This time he examines the resultsand explains a tester modification to measure the resonator’s response with a variable series capacitance.

Technology Spotlight: 5G Technology and Testing
The technologies that are enabling 5G communications are creating new challenges for embedded system developers. Circuit Cellar Chief Editor Jeff Child explores the latest digital and analog ICs aimed at 5G and at the test equipment designed to work with 5G technology.

                                     MICROCONTROLLERS IN EVERYTHING

MCU-based Platform Stabilizer
Using an Inertial Measurement Unit (IMU), two 180-degree rotation servos and a Microchip PCI MCU, three Cornell students implemented a microcontroller-based platform stabilizer. Learn how they used a pre-programmed sensor fusion algorithm and I2C to get the most out of their design.

Designing a Home Cleaning Robot (Part 2)
Continuing on with this four-part article series about building a home cleaning robot, Nishant Mittal this time discusses the mechanical aspect of the design. The robot is based on Cypress Semiconductor’s PSoC microcontroller.

Massage Vest Uses PIC32 MCU
Microcontrollers are being used for all kinds of things these days. Learn how three Cornell graduates designed a low-cost massage vest that pairs seamlessly with a custom iOS app. Using the Microchip PIC32 for its brains, the massage vest has sixteen vibration motors that the user can control to create the best massage possible.

AND MORE FROM OUR EXPERT COLUMNISTS:

Five Fault Injection Attacks
Colin O’Flynn returns to the topic of fault injection security attacks. To kick off 2018, he summarizes information about five different fault injection attack stories from 2017—attacks you should be thinking about as an embedded designer.

Money Sorting Machines (Part 2)
In part 1, Jeff Bachiochi delved into the interesting world of money sort machines and their evolution. In part 2, he discusses more details about his coin sorting project. He then looks at a typical bill validator implementation used in vending systems.

Overstress Protection
Last month George Novacek reviewed the causes and results of electrical overstress (EOS). Picking up where that left off, in this article he looks at how to prevent EOS/ESD induced damage—starting with choosing properly rated components.

FREE Sample Issue – Oct. 2017

 

We’ve made the October 2017 issue of Circuit Cellar available as a sample issue. In it, you’ll find a rich variety of the kinds of articles and information that exemplify a typical issue of the current magazine.

Don’t miss out on upcoming issues of Circuit Cellar. Subscribe today!

Inside This Issue:
Emulating Legacy Interfaces
Do it with Microcontrollers
By Wolfgang Matthes

OctP18
Building a Retro TV Remote
PIC MCU-Based Design
By Dev Gualtieri
Building a Robot Hand
With Servos and Electromyography
By Michael Haidar, Jason Hwang and Srikrishnaa VadivelLogger Device Tracks Amp Hours (Part 1)
Measuring Home Electricity
By William Wachsmann

OctP38
Commercial Drone Design Solutions Take Flight

Chips, Boards and Platforms
By Jeff Child

Design for Manufacturing: Does It Have to be so Difficult?
An interview with Scott N. Miller and Thos Niles
By Wisse Hettinga

Signal Chain Tech Pushes Bandwidth Barriers
ADCs, FPGAs and DACs
By Jeff Child

Embedded in Thin Slices
Build an Embedded Systems Consulting Company (Part 6)
Trade-Offs of Fixed-Price Contracts
By Bob JapengaThe Consummate Engineer
In the Loop on Positive Feedback
New Value in an Old Concept
By George Novacek

OctP56

The Darker Side
Antenna Performance Measurement Made Easy
Covering the Basics
By Robert Lacoste
From the Bench
Gas Monitoring and Sensing (Part 1)
Fun with Fragrant Analysis
By Jeff BachiochiTECH THE FUTURE
The Future of PCB Design

Racing to Keep Pace With PCB Complexities
By Duane Benson

Don’t miss out on upcoming issues of Circuit Cellar. Subscribe today!

Commercial Drone Design Solutions Take Flight

Chips, Boards and Platforms

The control, camera and communications electronics inside today’s commercial drones have to pack in an ambitious amount of functionality while keeping size, weight and power as low as possible.

By Jeff Child, Editor-in-Chief

There aren’t many areas of embedded systems these days that are as dynamic and fast-growing as commercial drones. Drones represent a vivid example of a technology that wouldn’t have been possible if not for the ever-increasing levels of chip integration driven by Moore’s law. Drones are riding that wave, enabling an amazing rate of change so that 4k HD video capture, image stabilization, new levels of autonomy and even highly integrated supercomputing is now possible on drones.

 

The Intel Aero Ready to Fly Drone is a pre-assembled quadcopter built for professional drone application developers. The platform features a board running an Intel 2.56 GHz quad-core Intel Atom x7-Z8750 processor.

The Intel Aero Ready to Fly Drone is a pre-assembled quadcopter built for professional drone application developers. The platform features a board running an Intel 2.56 GHz quad-core Intel Atom x7-Z8750 processor.

To get a sense of the rapid growth of drone use, just consider drones from the point of view of the Federal Aviation Administration (FAA). Integrating commercial drones into the FAA’s mission has been a huge effort over the past couple years. To paraphrase Michael P. Huerta, Administrator of the FAA, there are over 320,000 registered manned aircraft today and it took 100 years to reach that number. In contrast, only nine months after the FAA put its drone registration process in place, there were more than 550,000 registered users—comprised of both hobbyists and commercial drone users.

Electronics for Drones

Today’s commercial/civilian drone technologies are advancing faster than most people could have imagined only a couple years ago. And drone designs will continue to reap the benefits of advances in processor / chip technologies, sensor innovations and tools that make them easier to create. Feeding those needs, chip and board vendors of all sizes have been rolling out solutions to help drone system developers create new drone products and get to market quickly. Among these vendors are large players like Intel and Qualcomm–along with a whole host of specialized technology suppliers offering video ICs, single-chip cameras and a variety of sensor solutions all aimed at drone platforms. ….

We’ve made the October 2017 issue of Circuit Cellar available as a sample issue. In it, you’ll find a rich variety of the kinds of articles and information that exemplify a typical issue of the current magazine.
Don’t miss out on upcoming issues of Circuit Cellar. Subscribe today!