Maxim’s Battery Monitoring IC Selected for New Nissan LEAF

Maxim Integrated Products has announced that its single-chip, ASIL D-rated battery monitoring IC is being integrated into the new Nissan LEAF, the next evolution of its zero-emission electric vehicle. The battery monitoring IC meets the highest safety standards, supporting ISO 26262 and ASIL D requirements (also applicable for ASIL C). Its differential universal asynchronous receiver/transmitter (UART) using capacitive isolation reduces BOM costs and failure in time (FIT) rates. The flexible UART enables robust communications in noisy environments.
Using Maxim’s proprietary daisy-chain architecture and successive-approximation-register (SAR) ADC, the battery monitoring IC captures fast, accurate voltage measurements and delivers high electromagnetic capability (EMC) performance. The chip also offers a comprehensive diagnostic feature that complies with bulk current injection (BCI) requirements that are designed to promote safe and smart future vehicles.

The chip supports ISO 26262 and single-chip ASIL D standards, meets various BCI requirements and offers comprehensive diagnostics. It also provides a reliable distributive and centralized cell-monitoring controller (CMC) architecture with UART. It supports 100 m daisy-chain segments and high noise immunity; supports emission, electrostatic discharge (ESD) and hot plugging requirements. Internal cell balancing and UART reduce BOM costs compared to competitive solutions. Maxim claims it as the only IC proven to enable capacitive or transformer isolation.

Maxim Integrated |

Two Controller Families Add eSPI Bus

Microchip Technology has made available its MEC17XX and MEC14XX families of embedded controllers with enhanced Serial Peripheral Interface (eSPI). The eSPI bus is the host interface supported by the latest PC computing chip sets and is required for new, upcoming computing applications. The MEC17XX family is based on an ARM Cortex-M4F core and has advanced hardware-accelerated cryptography algorithms to efficiently support the secure boot of a computer. The family offers several additional features including two UARTS and an extended industrial operating temperature range that make the family ideal for industrial computing. In addition, Microchip’s popular MIPS-based MEC14XX family has been expanded to include functionality for supporting the new eSPI Slave Attached Flash (SAF) feature, which allows the Microchip embedded controller to be 37288858386_29fa55a67f_kdirectly connected to an SPI Flash memory using an on-board master controller.

These new embedded controllers are part of an expanded family of devices that have been an integral part in the computing industry’s transition from LPC to eSPI.  The MEC17XX adds security through cryptography functionality to advance secure boot, a security feature developed to ensure a system boots only from software that is trusted by the manufacturer. Furthermore, the addition of two UARTS and support for industrial temperature is necessary for industrial computing applications.

The latest members of the MEC14XX family add a new level of design functionality for computing engineers by adding SAF, which is an optimal solution for USB Type-C power delivery. The latest MEC1428 devices are pin and register compatible with the MEC140X and MEC141X families, which allows designers to easily add eSPI and additional features and have more flexibility in their designs. Both families retain eSPI Master Attached Flash (MAF) capability. All of Microchip’s computing embedded controllers are supported by a variety of development and debug tools and evaluation boards, plus datasheets and other documentation.

The eSPI interface has numerous benefits including allowing for multiple input/output signals to be configured to support either 3.3 V or 1.8 V, which reduces the system cost by eliminating the need for external voltage translators.  These features allow for seamless migration of intellectual property (IP) across multiple x86 computing platforms including those based on Intel’s Atom processors, Intel’s iCore processors and Ryzen processors from AMD.

The four-part MEC17XX family is available in a variety of WFBGA package options, starting at $2.59 each in 10,000 unit quantities. The family features industrial-qualified parts as well as the option of additional EEPROM memory. The MEC1428 is available today in a variety of package options, starting at $2.16 each in 10,000 unit quantities.

Microchip Technology |