High-Resolution Resistive Sensing Signal Conditioner

Texas Instruments recently introduced the PGA900 high-resolution resistive sensing signal conditioner. The PGA900 enables the fast and precise 24-bit measurement of conditions such as pressure, flow, strain, or liquid levels. Its programmable core enables flexible linearization and temperature compensation for numerous resistive bridge sensing applications.TI PGA900

Key features and benefits include:

  • Fast, precise sensor signal and temperature compensation: Integrates two 24-bit ADCs to provide high-resolution signal acquisition. Low-drift voltage reference of 10 ppm/°C, maximum, enables high accuracy across the –40°C to 150°C operating temperature range.
  • Integrated 14-bit DAC: Enables highly linear analog outputs.
  • User-programmable temperature and nonlinearity compensation algorithms: Integrated ARM Cortex-M0 core allows developers to use proprietary temperature and nonlinearity compensation algorithms to differentiate their end products.
  • Simple calibration: One-wire interface allows communication, configuration and calibration through the power supply pin without using additional lines.
  • Wide input voltage allows direct connection to the power supply: Integrated power management circuitry accepts input voltages ranging from 3.3 to 30 V to simplify the design and provide reliability.

With the PGA900 evaluation module (EVM), you can to quickly and easily evaluate the device’s performance and integrated features. The PGA900EVM is available for $249. You can download PGA900 example software and the user’s guide, as well as the PSpice and TINA-TI Spice and TINA-TI models, at www.ti.com.

The PGA900 resistive sensing conditioner comes in a 6 mm × 6 mm very thin quad flat no-lead (VQFN) package. It costs $4.50 in 1,000-unit quantities.

Source: Texas Instruments

SimpleLink Simplifies IoT Prototyping

Texas Instruments recently introduced the next-generation SimpleLink SensorTag development kit, which enables the fast integration of sensor data with wireless cloud connectivity.TI Simplelink

Features of the new SensorTags include:

  • Flexible development with wireless connectivity options including Bluetooth low energy, 6LoWPAN and ZigBee based on the SimpleLink ultra-low power CC2650 wireless microcontroller
  • 10 integrated low-power sensors
  • New DevPack plug-in modules that extend the kits’ functionality and programmability
  • Out of the box capabilities with a free iOS or Android app
  • Connect to the cloud in minutes via TI’s IoT cloud ecosystem including IBM’s Bluemix IoT Foundation
  • Available TI Design reference designs, including 3-D print files of the SensorTag enclosures, that enable you to reuse the SensorTags for new designs

The SensorTag kits come with ready-to-use protocol stacks, a free Code Composer Studio IDE license, online training, and 24/7 online TI E2E community support. In addition, TI’s cloud-based software development tools provide instant access to examples, documentation, software and even an integrated development environment (IDE) all from the convenience of the web.

Expanding the standards supported by the SensorTag, there will be two different development kit versions:

  • The multi-standard SensorTag, based on the SimpleLink ultra-low power CC2650 wireless MCU, supports development for Bluetooth Smart, 6LoWPAN and ZigBee. This SensorTag has a unique feature that enables developers to change between different 2.4-GHz technologies by simply loading new software images directly from the SensorTag app over-the-air. When the SensorTag is used as a ZigBee and 6LoWPAN device, it connects to the cloud via a BeagleBone Black gateway. For Bluetooth Smart development, it connects via a smartphone.
  • The Wi-Fi SensorTag will allow users to demo the SimpleLink CC3200 wireless MCU. Further details and availability information will be coming soon. Start developing today with the CC3200 solution with these development tools.
  • Both SensorTags come with 10 integrated low-power sensors including the TI OPT3001 precision ambient light sensor, TI HDC1000 integrated humidity and temperature sensor and TI TMP007 contactless IR thermopile sensor. Additional sensors include a nine-axis motion sensor (gyroscope, compass and accelerometer), altimeter/ pressure sensor, digital microphone, and magnet sensor.

New to the next-generation CC2650 SensorTag is the ability for developers to customize their kit to fit their design with new DevPack plug-in modules. DevPacks available today include:

  • The $15 Debug DevPack is based on the TM4C1294 microcontroller (MCU) to add debug capabilities to the SensorTag. Plug it into the DevPack expansion header and debug the SensorTag with Code Composer Studio IDE, TI Cloud Tools, or IAR embedded workbench for ARM.
  • The Display (watch) DevPack adds a 1.35 inch ultra-low power graphical display to the SensorTag. The Watch DevPack is designed for development of smartwatches, refrigerator displays and any other application that has a need for a remote display.
  • The LED Audio DevPack consists of four high power multi-color LEDs and a 4W audio amplifier powered by a micro-USB for home automation and smart lighting applications.
  • Create your own! If developers cannot find a specific DevPack to fit their needs, they can create their own by downloading the Build Your Own DevPack guide.

The new SimpleLink multi-standard CC2650 SensorTag (CC2650STK) is available now for $29 in the TI Store and authorized distributors. Related software for each connectivity standard is also available:

  • Bluetooth Smart software
  • 6LoWPAN software
  • ZigBee software

The SimpleLink SensorTag DevPacks are also available on the TI Store and through TI authorized distributors. The Debug DevPack (CC-DEVPACK-DEBUG) costs $15. The Display DevPack (DEVPACK-WATCH) costs $19. The LED Audio DevPack (DEVPACK-LED-AUDIO) is $19. Pricing and availability for the SimpleLink Wi-Fi CC3200 SensorTag will be coming later in 2015.

Innovative Magnetic Sensing Integrated IC

Texas Instruments recently unveiled the DRV421 magnetic sensing IC with a fully integrated fluxgate sensor and compensation coil driver. It includes all the required signal conditioning circuitry.DRV421_TI

Compared to traditional Hall effect sensors, the DRV421 provides high sensor accuracy and linearity, high dynamic range, and simpler system design. With it, you can easily design magnetic closed-loop current sensors for a variety of applications (e.g., motor control, renewable energy, battery chargers and power monitoring).

The $49 DRV421 evaluation module (DRV421EVM) makes it easy to evaluate the new current sensing IC’s features and performance. The DRV421 comes in a 4 mm- × 4 mm QFN package. Pre-production samples are available now. Production quantities will be available in Q3 2015 for 2.50 in 1,000-unit quantities.

Source: Texas Instruments

Fast 16-bit ADC, Four-Channel 14-bit ADC, & Digital Variable Gain Amp

Texas Instruments launched the ADS54J60, which is the industry’s first 16-bit 1-GSPS ADC and the first to achieve over 70 dBFS signal-to-noise ratio (SNR) at 1-GSPS. Texas instruments also announced the highest-density, four-channel, 14-bit 500-MSPS ADC, the ADS54J54. To optimize the signal chain, TI’s new 4.5-GHz LMH6401 fully differential digital variable gain amplifier (DVGA) offers the widest bandwidth with DC coupling and allows signal acquisition of low and high frequencies without the limitation of baluns used in AC-coupled systems. These ADCs work together with the amplifier to provide the highest performance, lowest power and space savings in defense and aerospace, test and measurement, and communication infrastructure applications.Texas Instruments

All ICs are now sampling. The ADS54J54 costs $500 in 1,000-unit quantities. The ADS54J60 will be available in Q4 2015 for $705 in 1,000-unit quantities. The LMH6401 costs $10.95 in 1,000-unit quantities.

Source: Texas Instruments

Client Profile: LS Research

Since 1980, companies spanning a wide range of industries have trusted LSR to help develop solutions that exceed their customers’ expectations. LSR provides an unmatched suite of both embedded wireless products and integrated services that improve speed to market and return on your development investment.SaBLE-x-Ruler-V2-275x275

LSR’s SaBLE-x Bluetooth Smart module, based on TI’s new SimpleLink CC2640 MCU, offers industry-leading RF and power performance along with LSR’s renowned support and developer tools.

LSR’s TiWi-C-W is a stand-alone WLAN (IEEE 802.11 b/g/n) module that simplifies and accelerates the work of adding Wi-Fi connectivity to your products. The TiWi-C-W module is also a cloud agent for LSR’s end-to-end IoT platform, TiWiConnect.

LSR’s all-new SaBLE-x Bluetooth Smart module, based on TI’s new SimpleLink CC2640 MCU, offers industry-leading RF and power performance along with LSR’s renowned developer support and broad country certifications. The SaBLE-x can be utilized in either stand-alone mode or with an external host, and the SaBLE Tool Suite provides developers with intuitive tools that accelerates development time in integrating BLE into your products.

SPECIAL OFFER FROM LSR
Win a FREE Development Kit for the SaBLE-x Bluetooth Smart module! Register to win and ONE Circuit Cellar reader will receive LSR’s SaBLE-x Development Kit ($199 value). Go to: http://info.lsr.com/sable-x-exclusive-offer

Cost-Effective, Long-Range, Low-Power Internet of Things Connectivity

SIGFOX and Texas Instruments  recently announced that they’re working together to increase Internet of Things (IoT) deployments using the Sub-1 GHz spectrum. Customers can use the SIGFOX network with TI’s Sub-1 GHz RF transceivers to deploy wireless sensor nodes that are lower cost and lower power than 3G/cellular connected nodes, while providing long-range connectivity to the IoT.TI - SIGFOX

Targeting a wide variety of applications ranging from environmental sensors to asset tracking, the SIGFOX and TI collaboration maximizes the benefits of narrowband radio technology. It also reduces barriers to entry for manufacturers interested in connecting their products to the cloud. Using the SIGFOX infrastructure reduces the cost and effort to get sensor data to the cloud and TI’s Sub-1 GHz technology provides years of battery life for less maintenance and up to 100 km range.

SIGFOX’s two-way network is based on an ultra-narrowband (UNB) radio technology for connecting devices, which is key to providing a scalable, high-capacity network with very low energy consumption and unmatched spectral efficiency. That is essential in a network that will handle billions of messages daily.

TI’s CC1120  Sub-1 GHz RF transceiver uses narrowband technology to deliver the longest-range connectivity and superior coexistence to SIGFOX’s network with strong tolerance of interference. Narrowband is the de facto standard for long-range communication due to the high spectral efficiency, which is critical to support the projected high growth of connected IoT applications. The CC1120 RF transceiver also provides years of battery lifetime for a sensor node, which reduces maintenance and lowers the cost of ownership for end users.

Sub-1 GHz networks operate in region-specific industrial scientific and medical (ISM) bands below 1 GHz including 169, 315, 433, 500, 868, 915 and 920 MHz. The networks are proprietary by nature and provide a more robust IoT connection, which is why the technology has been used for smart metering, security and alarm systems and other sensitive industrial systems. Additionally, the technology is low power, enabling years of battery life to reduce service and maintenance requirements.

Availability

SIGFOX-certified modules based on TI’s CC1120 were demonstrated at Mobile World Congress 2015 and are currently available.

Source: Texas Instruments; SIGFOX

 

Highly Integrated DC/DC Converter with PMBus Digital Interface

Texas Instruments recently introduced a four-channel buck DC/DC converter with PMBus/I2C digital interface for applications in space-constrained equipment. The TPS65400 dual- or quad-output configurable DC/DC converter integrates eight power MOSFETs. In addition, it features industry-leading efficiency at up to 95% in the smallest footprint.TPS65400 Press Photo

The TPS65400 includes four high-current synchronous buck switching regulators with integrated MOSFETs. Each switching converter supplies a 2- or 4-A output to efficiently power digital circuits, such as the processor, FPGA, ASIC, memory and digital input/output. Switching frequency for the converter is independently adjustable up to 2.2 MHz. The TPS65400 can be powered from a single-input voltage rail between 4.5 and 18 V. It supports applications running off a 5- or 12-V intermediate power distribution bus.

The TPS65400’s benefits and key features include:

  • Flexible power up/down sequencing control increases system reliability.
  • Parameter configuration and status monitoring via PMBus
  • Dynamic voltage scaling to optimize processor performance
  • Phase interleaving reduces input capacitance and ripple
  • Current sharing supports higher output current and enhances design flexibility
  • Small 48-pin VQFN package measures 7 mm × 7 mm × 0.9 mm.

The TPS65400 costs $3.68 in 1,000-unit quantities. The TPS65400EVM-678 evaluation module costs $199.

Source: Texas Instruments

Online Classroom for Analog Design

Texas Instruments recently launched TI Precision Labs, which is a comprehensive online classroom for analog engineers to take on-demand courses. The free, modular curriculum includes more than 30 training experiences and lab videos covering analog amplifier design considerations with online coursework.TI OnlineClassroomAnalog

TI Precision Labs incorporates a variety of tools to bring the online training experience to life. A $199 TI Precision Labs Op Amp Evaluation Module (TI-PLABS-AMP-EVM) enables engineers to complete each demonstrated learning activity along with the trainer. The curriculum also provides access to free design tools, such as TI Designs reference designs and TI’s TINA-TI SPICE model simulator.

Engineers can evaluate circuits and small-signal AC performance created during the trainings with National Instruments’s VirtualBench all-in-one instrument and TI’s Bode Analyzer Software for VirtualBench, as well as standard engineering bench equipment.

Key features and benefits of TI Precision Labs:

  • Experiential learning applies theory to real-world, hands-on examples with lab demonstration videos.
  • A customized learning environment provides recommended training tracks on topics such as noise, bandwidth and input/output swing, while enabling engineers to pick and choose courses based on individual needs and interests.
  • Accelerated learning for recent graduates eases the transition from undergraduate theoretical-based learning to real-world designing.
  • Robust learning materials include a downloadable presentation workbook and lab manual, as well as TI’s Analog Engineer’s Pocket Reference, which puts commonly used board- and system-level formulas at your fingertips.
  • Expert support: A TI Precision Labs support forum is available on the TI E2E Community to answer questions resulting from the training.

The TI Precision Labs training curriculum is free to anyone with a myTI account. In addition to free training, other benefits of myTI registration include the ability to purchase TI integrated circuits (ICs), evaluation modules, development kits and software; request product samples; get technical assistance through the TI E2E Community; create, simulate and optimize systems in the WEBENCH Design Center; and more.
TI Precision Labs curriculum is housed in the new TI Training Center, which connects engineers with the technical training they need to find solutions to their design challenges anytime, anywhere.

In addition to the on-demand courses, in-person, hands-on trainings covering a variety of precision amplifier topics, such as noise, offset, input bias, slew rate and bandwidth, are scheduled for May in Schaumburg, IL and Pewaukee, WI. Both live trainings require registration and cost $99 to attend. More in-person training dates in the United States will be added.

Source: Texas Instruments

SIMPLE SWITCHER Nano Modules

Texas Instruments has introduced four new SIMPLE SWITCHER nano power modules for space-constrained applications. The compact 17- and 5-V modules expand TI’s SIMPLE SWITCHER module portfolio to address 100-mA to 2-A industrial designs, such as servers, factory automation, test and measurement, and network security cameras.TI-Nano2jpg

TI’s 17-V, 0.65-A LMZ21700 and 1-A LMZ21701—as well as the 5-V, 1-A LMZ20501 and 2-A LMZ20502 DC/DC power modules—achieve an overall solution size of up to 40% smaller than a discrete implementation. The modules combine high efficiency with high density and reduce EMI, even while operating at low power. All four modules enable designers to easily add more features and functionality to their systems in a smaller form factor, while speeding time to market.Watch a demonstration on how to create a high-density, multi-output design.

Key features and benefits:

  • Small solution sizes reduces board space by 40% when compared to discrete solutions.
  • Low component count simplifies design and increases system reliability.
  • Modules provide effective power management over the entire operating range.
  • Low output ripple at less than 10 mVPP for noise sensitive rails.
  • Low EMI complies with the CISPR 22 (Class B) radiated and conducted electromagnetic interference standard.
  • Modules enable easy implementation of multiple power rail sequencing using Power Good pin.

The four nano modules are available now in volume production. The LMZ21700 and LMZ21701 cost $1.55 and $1.75, respectively, in 1,000-unit quantities. The LMZ20501 and LMZ20502 cost $1.55 and $1.90, respectively, in 1,000-unit quantities.

Source: Texas Instruments

NexFET N-Channel Power MOSFETs Achieve Industry’s Lowest Resistance

Texas Instruments recently introduced 11 new N-channel power MOSFETs to its NexFET product line, including the 25-V CSD16570Q5B and 30-V CSD17570Q5B for hot swap and ORing applications with the industry’s lowest on-resistance (Rdson) in a QFN package. In addition, TI’s new 12-V FemtoFET CSD13383F4 for low-voltage battery-powered applications achieves the lowest resistance at 84% below competitive devices in a tiny 0.6 mm × 1 mm package. TI CSD16570Q5B

The CSD16570Q5B and CSD17570Q5B NexFET MOSFETs deliver higher power conversion efficiencies at higher currents, while ensuring safe operation in computer server and telecom applications. For instance, the 25-V CSD16570Q5B supports a maximum of 0.59 mΩ of Rdson, while the 30-V CSD17570Q5B achieves a maximum of 0.69 mΩ of Rdson.

TI’s new CSD17573Q5B and CSD17577Q5A can be paired with the LM27403 for DC/DC controller applications to form a complete synchronous buck converter solution. The CSD16570Q5B and CSD17570Q5B NexFET power MOSFETs can be paired with a TI hot swap controller such as the TPS24720.

The currently available products range in price from $0.10 for the FemtoFET CSD13383F4 to $1.08 for the CSD17670Q5B and CSD17570Q5B in 1,000-unit quantities.

Source: Texas Instruments

WiLink 8 Range of Wi-Fi and Bluetooth Modules

Texas Instruments has announced the WiLink 8 combo connectivity modules to support Wi-Fi in the 2.4- and 5-GHz bands. The new highly integrated module family offers high throughput and extended industrial temperature range with integrated Wi-Fi and Bluetooth. The modules complement TI’s PurePath Wireless audio ICs and TI’s SimpleLink Wireless Network Processors.WiLink8TexasInstruments

WiLink 8 modules are well-suited for power-optimized designs for home and building automation, smart energy applications, wearables, and a variety of other IoT applications. The WiLink 8 modules and software are compatible and preintegrated with many processors, including TI’s Sitara processors.

The WiLink8 family offers 2.4 and 5 GHz versions that are pin-to-pin compatible. With integrated Wi-Fi and Bluetooth, the WiLink 8 modules could be used for a variety of applications.

Features:

  • An extended temperature range of –40° to 85°C required for industrial applications
  • 5-GHz modules for high-performance solutions
  • Smart energy and home gateways, which offer Wi-Fi, Bluetooth and ZigBee coexistence, can manage multiple devices through Wi-Fi multi-channel multi-role (MCMR) capabilities
  • 1.4× the range and up to 100 Mbps throughput with TI’s WiLink 8 maximal ratio combining (MRC) and multiple-input and multiple-output (MIMO) technology
  • Optimization for low-power applications with low idle connect current consumption
  • Audio streaming for home entertainment applications with both Wi-Fi and dual-mode Bluetooth/Bluetooth low energy

The WiLink 8 modules complement several TI platforms to deliver system solutions for manufacturers including WiLink 8 module-based evaluation boards (2.4 GHz-WL1835MODCOM8 and 5 GHz -WL1837MODCOM8) that are compatible with the AM335x EVM and AM437x EVM. Additionally, the WiLink 8 modules, which offer Bluetooth and Bluetooth low energy dual-mode technology, are compatible with TI’s Bluetooth portfolio that allows developers to create a complete end-to-end application.

WiLink 8 evaluation boards (WL1835MODCOM8 and WL1837MODCOM8) are currently available. WiLink 8 modules production units will be available in Q1 2015 through TI authorized distributors starting at $9.99 in 1,000-unit volumes.

Bluetooth Haptic Kit

Texas Instruments recently introduced an innovative wireless haptic development kit. The DRV2605EVM-BT haptic Bluetooth kit comprises a 32-mm square PCB containing a DRV2605 haptic driver chip that controls an eccentric rotating mass motor (ERM) and a linear resonant actuator (LRA) to produce vibrations. The DRV2605 has an integrated library with more than 100 effects licensed from Immersion Corp.

Texas Instruments DRV2605EVM-BT haptic Bluetooth kit

Texas Instruments DRV2605EVM-BT haptic Bluetooth kit

You can use a circle of LEDs to display visual alerts. The board might be useful to speed up development times when designing and testing haptic effects in applications such as: watches, fitness trackers, wearables, portable medical equipment, touch screens, displays, and other devices requiring tactile feedback.

A SimpleLink Bluetooth low-energy CC2541 wireless microcontroller communicates with a free iOS app running on an iPhone or iPad. The app allows you to play predefined library waveforms, create new waveform sequences, and assign waveform sequences to in-app notifications. The app can also be used to quickly configure the DRV2605’s internal register settings: select between an ERM or LRA actuator, set the rated and overdrive voltages, configure and run autocalibration, send direct I2C commands, as well as set up the board to respond to a GPIO trigger.

The DRV2605EVM-BT haptic Bluetooth kit costs $99.

Source: Texas Instruments

Battery Charger Design (EE Tip #130)

It’s easy to design a good, inexpensive charger. There is no justification for selling cheap, inadequate contraptions. Many companies (e.g., Linear Technology, Maxim, Semtech, and Texas Instruments) supply inexpensive battery management ICs. With a few external parts, you can build a perfect charger for just about any battery.

Texas Instruments’s UC2906 is an older (Unitrode) IC designed to build an excellent sealed lead-acid battery charger with a sophisticated charging profile. Figure 1 shows the recommended charger circuit.

Figure 1: This lead-acid battery charger uses Texas Instruments’s UC2906 IC.

Figure 1: This lead-acid battery charger uses Texas Instruments’s UC2906 IC.

In addition to the IC, only a handful of resistors and a PNP power transistor Q1 are needed to build it. Q1 must be rated for the maximum charging current and fitted with a heatsink.

An LED with its current-limiting resistor R can be connected to pin 7, which is an open-collector NPN transistor, to indicate the presence of power. Similarly, an LED with a series resistor could be connected to pin 9, which is also an open-collector NPN transistor to indicate overcharge (it is not used in Figure 1). The UC2906 datasheet and the Application Note provide tables and equations for selection of resistors Rs, Rt, RA, RB, RC, and RD and suggestions for adding various features.

Editor’s Note: This is an excerpt from an article written by George Novacek, “Battery Basics (Part 3): Battery Management ICs,” Circuit Cellar 280, 2013.

Q&A: Embedded Systems Consultant

Elecia White is an embedded systems engineer, consultant, author, and innovator. She has worked on a variety of projects: DNA scanners, health-care monitors, learning toys, and fingerprint recognition.—Nan Price, Associate Editor

 

NAN: Tell us about your company Logical Elegance. When and why did you start the company? What types of services do you provide?

ELECIA: Logical Elegance is a small San Jose, CA-based consulting firm specializing in embedded systems. We do system analysis, architecture, and software implementation for a variety of devices.

Elecia White

Elecia White

I started the company in 2004, after leaving a job I liked for a job that turned out to be horrible. Afterward, I wasn’t ready to commit to another full-time job; I wanted to dip my toe in before becoming permanent again.

I did eventually take another full-time job at ShotSpotter, where I made a gunshot location system. Logical Elegance continued when my husband, Chris, took it over. After ShotSpotter, I returned to join him. While we have incorporated and may take on a summer intern, for the most part Logical Elegance is only my husband and me.

I like consulting, it lets me balance my life better with my career. It also gives me time to work on my own projects: writing a book and articles, playing with new devices, learning new technologies. On the other hand, I could not have started consulting without spending some time at traditional companies. Almost all of our work comes from people we’ve worked with in the past, either people we met at companies where we worked full time or people who worked for past clients.

Here is Elecia’s home lab bench. She conveniently provided notes.

Here is Elecia’s home lab bench. She conveniently provided notes.

NAN: Logical Elegance has a diverse portfolio. Your clients have ranged from Cisco Systems to LeapFrog Enterprises. Tell us about some of your more interesting projects.

ELECIA: We are incredibly fortunate that embedded systems are diverse, yet based on similar bedrock. Once you can work with control loops and signal processing, the applications are endless. Understanding methodologies for concepts such as state machines, interrupts, circular buffers, and working with peripherals allows us to put the building blocks together a different way to suit a particular product’s need.

For example, for a while there, it seemed like some of my early work learning how to optimize systems to make big algorithms work on little processors would fall to the depths of unnecessary knowledge. Processors kept getting more and more powerful. However, as I work on wearables, with their need to optimize cycles to extend their battery life, it all is relevant again.

We’ve had many interesting projects. Chris is an expert in optical coherence tomography (OCT). Imagine a camera that can go on the end of a catheter to help a doctor remove plaque from a clogged artery or to aid in eye surgery. Chris is also the networking expert. He works on networking protocols such as Locator/ID Separation Protocol (LISP) and multicast.

I’m currently working for a tiny company that hopes to build an exoskeleton to help stroke patients relearn how to walk. I am incredibly enthusiastic about both the application and the technology.

That has been a theme in my career, which is how I’ve got this list of awesome things I’ve worked on: DNA scanners, race cars and airplanes, children’s toys, and a gunshot location system. The things I leave off the list are more difficult to describe but no less interesting to have worked on: a chemical database that used hydrophobicity to model uptake rates, a medical device for the operating room and ICU, and methods for deterring fraud using fingerprint recognition on a credit card.

Elecia says one of the great things about the explosion of boards and kits available is being able to quickly build a system. However, she explains, once the components work together, it is time to spin a board. (This system may be past that point.)

Elecia says one of the great things about the explosion of boards and kits available is being able to quickly build a system. However, she explains, once the components work together, it is time to spin a board. (This system may be past that point.)

In the last few years, Chris and I have both worked for Fitbit on different projects. If you have a One pedometer, you have some of my bits in your pocket.

The feeling of people using my code is wonderful. I get a big kick seeing my products on store shelves. I enjoyed working with Fitbit. When I started, it was a small company expanding its market; definitely the underdog. Now it is a success story for the entire microelectromechanical systems (MEMS) industry.

Not everything is rosy all the time though. For one start-up, the algorithms were neat, the people were great, and the technology was a little clunky but still interesting. However, the client failed and didn’t pay me (and a bunch of other people).

When I started consulting, I asked a more experienced friend about the most important part. I expected to hear that I’d have to make myself more extroverted, that I’d have to be able to find more contracts and do marketing, and that I’d be involved in the drudgery of accounting. The answer I got was the truth: the most important part of consulting is accounts receivable. Working for myself—especially with small companies—is great fun, but there is a risk.

NAN: How did you get from “Point A” to Logical Elegance?

ELECIA: ”Point A” was Harvey Mudd College in Claremont, CA. While there, I worked as a UNIX system administrator, then later worked with a chemistry professor on his computational software. After graduation, I went to Hewlett Packard (HP), doing standard software, then a little management. I was lured to another division to do embedded software (though we called it firmware).

Next, a start-up let me learn how to be a tech lead and architect in the standard start-up sink-or-swim methodology. A mid-size company gave me exposure to consumer products and a taste for seeing my devices on retailer’s shelves.

From there, I tried out consulting, learned to run a small business, and wrote a Circuit Cellar Ink article “Open Source Code Guide” (Issue 175, 2005). I joined another tiny start-up where I did embedded software, architecture, management, and even directorship before burning out. Now, I’m happy to be an embedded software consultant, author, and podcast host.

NAN: You wrote Making Embedded Systems: Design Patterns for Great Software (O’Reilly Media, 2011). What can readers expect to learn from the book?

ELECIA: While having some industry experience in hardware or software will make my book easier to understand, it is also suitable for a computer science or electrical engineering college student.

It is a technical book for software engineers who want to get closer to the hardware or electrical engineers who want to write good software. It covers many types of embedded information: hardware, software design patterns, interview questions, and a lot of real-world wisdom about shipping products.

Elecia White's BookMaking Embedded Systems is intended for engineers who are in transition: the hardware engineer who ends up writing software or the software engineer who suddenly needs to understand how the embedded world is different from pure software.

Unfortunately, most college degrees are either computer science or electrical engineering. Neither truly prepares for the half-and-half world of an embedded software engineer. Computer science teaches algorithms and software design methodology. Electrical engineering misses both of those topics but provides a practical tool kit for doing low-level development on small processors. Whichever collegiate (or early career) path, an embedded software engineer needs to have familiarity with both.

I did a non-traditional major that was a combination of computer science and engineering systems. I was prepared for all sorts of math (e.g., control systems and signal processing) and plenty of programming. All in all, I learned about half of the skills I needed to do firmware. I was never quite sure what was correct and what I was making up as I went along.

As a manager, I found most everyone was in the same boat: solid foundations on one side and shaky stilts on the other. The goal of the book is to take whichever foundation you have and cantilever a good groundwork to the other half. It shouldn’t be 100% new information. In addition to the information presented, I’m hoping most people walk away with more confidence about what they know (and what they don’t know).

Elecia was a judge at the MEMS Elevator Pitch Session at the 2013 MEMS Executive Congress in Napa, CA.

Elecia was a judge at the MEMS Elevator Pitch Session at the 2013 MEMS Executive Congress in Napa, CA.

NAN: How long have you been designing embedded systems? When did you become interested?

ELECIA: I was a software engineer at the NetServer division at HP. I kept doing lower-level software, drivers mostly, but for big OSes: WinNT, OS/2, Novell NetWare, and SCO UNIX (a list that dates my time there).

HP kept trying to put me in management but I wasn’t ready for that path, so I went to HP Labs’s newly spun-out HP BioScience to make DNA scanners, figuring the application would be more interesting. I had no idea.

I lit a board on fire on my very first day as an embedded software engineer. Soon after, a motor moved because my code told it to. I was hooked. That edge of software, where the software touches the physical, captured my imagination and I’ve never looked back.

NAN: Tell us about the first embedded system you designed. Where were you at the time? What did you learn from the project?

ELECIA: Wow, this one is hard. The first embedded system I designed depends on your definition of “designed.” Going from designing subsystems to the whole system to the whole product was a very gradual shift, coinciding with going to smaller and smaller companies until suddenly I was part of the team not only choosing processors but choosing users as well.

After I left the cushy world of HP Labs with a team of firmware engineers, several electrical engineers, and a large team of software engineers who were willing to help design and debug, I went to a start-up with fewer than 50 people. There was no electrical engineer (except for the EE who followed from HP). There was a brilliant algorithms guy but his software skills were more MATLAB-based than embedded C. I was the only software/firmware engineer. This was the sort of company that didn’t have source version control (until after my first day). It was terrifying being on my own and working without a net.

I recently did a podcast about how to deal with code problems that feel insurmountable. While the examples were all from recent work, the memories of how to push through when there is no one else who can help came from this job.

Elecia is shown recording a Making Embedded Systems episode with the founders of electronics educational start-up Light Up. From left to right: Elecia’s husband and producer Christopher White, host Elecia White, and guests Josh Chan and Tarun Pondicherry.

Elecia is shown recording a Making Embedded Systems episode with the founders of electronics educational start-up Light Up. From left to right: Elecia’s husband and producer Christopher White, host Elecia White, and guests Josh Chan and Tarun Pondicherry.

NAN: Are you currently working on or planning any projects?

ELECIA: I have a few personal projects I’m working on: a T-shirt that monitors my posture and a stuffed animal that sends me a “check on Lois” text if an elderly neighbor doesn’t pat it every day. These don’t get nearly enough of my attention these days as I’ve been very focused on my podcast: Making Embedded Systems on iTunes, Instacast, Stitcher, or direct from http://embedded.fm.

The podcast started as a way to learn something new. I was going to do a half-dozen shows so I could understand how recording worked. It was a replacement for my normal community center classes on stained glass, soldering, clay, hula hooping, laser cutting, woodshop, bookbinding, and so forth.

However, we’re way beyond six shows and I find I quite enjoy it. I like engineering and building things. I want other people to come and play in this lovely sandbox. I do the show because people continue to share their passion, enthusiasm, amusement, happiness, spark of ingenuity, whatever it is, with me.

To sum up why I do a podcast, in order of importance: to talk to people who love their jobs, to share my passion for engineering, to promote the visibility of women in engineering, and to advertise for Logical Elegance (this reason is just in case our accountant reads this since we keep writing off expenses).

NAN: What are your go-to embedded platforms? Do you have favorites, or do you use a variety of different products?

ELECIA: I suppose I do have favorites but I have a lot of favorites. At any given time, my current favorite is the one that is sitting on my desk. (Hint!)

I love Arduino although I don’t use it much except to get other people excited. I appreciate that at the heart of this beginner’s board (and development system) is a wonderful, useful processor that I’m happy to work on.

I like having a few Arduino boards around, figuring that I can always get rid of the bootloader and use the Atmel ATmega328 on its own. In the meantime, I can give them to people who have an idea they want to try out.

For beginners, I think mbed’s boards are the next step after Arduino. I like them but they still have training wheels: nice, whizzy training wheels but still training wheels. I have a few of those around for when friends’ projects grow out of Arduinos. While I’ve used them for my own projects, their price precludes the small-scale production I usually want to do.

Professionally, I spend a lot of time with Cortex-M3s, especially those from STMicroelectronics and NXP Semiconductors. They seem ubiquitous right now. These are processors that are definitely big enough to run an RTOS but small enough that you don’t have to. I keep hearing that Cortex-M0s are coming but the price-to-performance-to-power ratio means my clients keep going to the M3s.

Finally, I suppose I’ll always have a soft spot for Texas Instruments’s C2000 line, which is currently in the Piccolo and Delfino incarnations. The 16-bit byte is horrible (especially if you need to port code to another processor), but somehow everything else about the DSP does just what I want. Although, it may not be about the processor itself: if I’m using a DSP, I must be doing something mathy and I like math.

NAN: Do you have any predictions for upcoming “hot topics?”

ELECIA: I’m most excited about health monitoring. I’m surprised that Star Trek and other science fiction sources got tricorders right but missed the constant health monitoring we are heading toward with the rise of wearables and the interest in quantified self.
I’m most concerned about connectivity. The Internet of Things (IoT) is definitely coming, but many of these devices seem to be more about applying technology to any device that can stand the price hit, whether it makes sense or not.

Worse, the methods for getting devices connected keeps fracturing as the drive toward low-cost and high functionality leads the industry in different directions. And even worse, the ongoing battle between security and ease of use manages to give us things that are neither usable nor secure. There isn’t a good solution (yet). To make progress we need to consider the application, the user, and what they need instead of applying what we have and hoping for the best.

Q&A: Robotics Mentor and Champion

Peter Matteson, a Senior Project Engineer at Pratt & Whitney in East Hartford, CT, has a passion for robotics. We recently discussed how he became involved with mentoring a high school robotics team, the types of robots the team designs, and the team’s success.—Nan Price, Associate Editor

 

NAN: You mentor a FIRST (For Inspiration and Recognition of Science and Technology) robotics team for a local high school. How did you become involved?

Peter Matteson

Peter Matteson

PETER: I became involved in FIRST in late 2002 when one of my fraternity brothers who I worked with at the time mentioned that FIRST was looking for new mentors to help the team the company sponsored. I was working at what was then known as UTC Power (sold off to ClearEdge Power Systems last year) and the company had sponsored Team 177 Bobcat Robotics since 1995.

After my first year mentoring the kids and experiencing the competition, I got hooked. I loved the competition and strategy of solving a new game each year and designing and building a robot. I enjoyed working with the kids, teaching them how to design and build mechanisms and strategize the games.

The FIRST team’s 2010 robot is shown.

The FIRST team’s 2010 robot is shown.

A robot’s articulating drive train is tested  on an obstacle (bump) at the 2010 competition.

A robot’s articulating drive train is tested on an obstacle (bump) at the 2010 competition.

NAN: What types of robots has your team built?

A temporary control board was used to test the drive base at the 2010 competition.

A temporary control board was used to test the drive base at the 2010 competition.

PETER: Every robot we make is purposely built for a specific game the year we build it. The robots have varied from arm robots with a 15’ reach to catapults that launch a 40” diameter ball, to Frisbee throwers, to Nerf ball shooters.

They have varied in drive train from 4 × 4 to 6 × 6 to articulating 8 × 8. Their speeds have varied from 6 to 16 fps.

NAN: What types of products do you use to build the robots? Do you have any favorites?

PETER: We use a variant of the Texas Instruments (TI) cRIO electronics kit for the controller, as is required per the FIRST competition rules. The motors and motor controllers we use are also mandated to a few choices. We prefer VEX Robotics VEXPro Victors, but we also design with the TI Jaguar motor controllers. For the last few years, we used a SparkFun CMUcam webcam for the vision system. We build with Grayhill encoders, various inexpensive limit switches, and gyro chips.

The team designed a prototype minibot.

The team designed a prototype minibot.

For pneumatics we utilize compressors from Thomas and VIAIR. Our cylinders are primarily from Bimba, but we also use Parker and SMC. For valves we use SMC and Festo. We usually design with clipart plastic or stainless accumulator tanks. Our gears and transmissions come from AndyMark, VEX Robotics’s VEXPro, and BaneBots.

The AndyMark shifter transmissions were a mainstay of ours until last year when we tried the VEXPro transmissions for the first time. Over the years, we have utilized many of the planetary transmissions from AndyMark, VEX Robotics, and BaneBots. We have had good experience with all the manufacturers. BaneBots had a shaky start, but it has vastly improved its products.

We have many other odds and ends we’ve discovered over the years for specific needs of the games. Those are a little harder to describe because they tend to be very specific, but urethane belting is useful in many ways.

NAN: Has your team won any competitions?

Peter’s FIRST team is pictured at the 2009 championship at the Georgia Dome in Atlanta, GA. (Peter is standing fourth from the right.)

Peter’s FIRST team is pictured at the 2009 championship at the Georgia Dome in Atlanta, GA. (Peter is standing fourth from the right.)

PETER: My team is considered one of the most successful in FIRST. We have won four regional-level competitions. We have always shined at the competition’s championship level when the 400 teams from the nine-plus countries that qualify vie for the championship.

In my years on the team, we have won the championship twice (2007 and 2010), been the championship finalist once (2011), won our division, made the final four a total of six times (2006–2011), and were division finalists in 2004.

A FIRST team member works on a robot “in the pits” at the 2011 Hartford, CT, regional competition.

A FIRST team member works on a robot “in the pits” at the 2011 Hartford, CT, regional competition.

Team 177 was the only team to make the final four more than three years in a row, setting the bar at six consecutive trips. It was also the only team to make seven trips to the final four, including in 2001.

NAN: What is your current occupation?

PETER: I am a Senior Project Engineer at Pratt & Whitney. I oversee and direct a team of engineers designing components for commercial aircraft propulsion systems.

NAN: How and when did you become interested in robotics?

PETER: I have been interested in robotics for as long as I can remember. The tipping point was probably when I took an industrial robotics course in college. That was when I really developed a curiosity about what I could do with robots.

The industrial robots course started with basic programming robots for tasks. We had a welding robot we taught the weld path and it determined on its own how to get between points.

We also worked with programming a robot to install light bulbs and then determine if the bulbs were working properly.

In addition to practical labs such as those, we also had to design the optimal robot for painting a car and figure out how to program it. We basically had to come up with a proposal for how to design and build the robot from scratch.

This robot from the 2008 competition holds a 40” diameter ball for size reference.

This robot from the 2008 competition holds a 40” diameter ball for size reference.

NAN: What advice do you have for engineers or students who are designing robots or robotic systems?

PETER: My advice is to clearly set your requirements at the beginning of the project and then do some research into how other people have accomplished them. Use that inspiration as a stepping-off point. From there, you need to build a prototype. I like to use wood, cardboard, and other materials to build prototypes. After this you can iterate to improve your design until it performs exactly as expected.