Build a Three-in-One Measurement System

No home electronics lab is complete without a signal generator, logic analyzer, and digital oscilloscope. But why purchase the measurement devices separately, when you can build one system that houses all three? The process is easier than you’d expect.

Hand-soldering a package this size is tough work. The signal-generator filter has bulky coils. In contrast, the MSP430F149’s PQFP64 is tiny.

Photo 1: Hand-soldering a package this size is tough work. The signal-generator filter has bulky coils. In contrast, the Texas Instruments MSP430F149’s PQFP64 is tiny.

Salvador Perdomo writes:

I’ve built an inexpensive and versatile measurement system that contains a signal generator, logical analyzer, and digital oscilloscope. If you build your own, you’ll be able to address many of the problems typically encountered on test benches.

The system is not PC-bus connected. Instead, it’s external to the computer, making use of the RS-232 serial port shown in Figure 1. Also, it doesn’t have a power supply input, so the same serial cable feeds it. Because the computer’s serial connection provides limited power, low power consumption is a fundamental requirement.

It is of interest to have your test benches as clear as possible to search for the faulty part of your design. So, a small measurement system is highly recommended. It’s better if it isn’t connected to the mains.

Figure 1: It is of interest to have your test benches as clear as possible to search for the faulty part of your design. So,a small measurement system is highly recommended. It’s better if it isn’t connected to the mains.

The low-power goal is achieved with a small number of components—the fewer the better. So, I quickly became interested in the Texas Instruments MSP430F149, which is a highly integrated device with low power consumption. Note that everything is integrated except the oscilloscope analog chain (coupling and programmable amplifier), part of the trigger circuit, and the input buffer for the logic analyzer. The microcontroller works with an 8-MHz crystal oscillator.

This application uses the register bank, the entire RAM (2 KB), and nearly all of the peripherals. The peripherals used include the 16-bit TimerA and B, ADC, analog comparator, multiply accumulate, and one USART with modulation capability. Only the second USART is spared.

The system has several main features. You can control and display on the PC by running software implemented on LabWindows/CVI. In addition, it has a signal generator based on the direct digital synthesis method and a frequency of up to 6 kHz with 0.3-Hz resolution. The output voltage reaches a peak of 1.3-V (±2 dB) fixed amplitude. The signal generator works simultaneously with the oscilloscope and logic analyzer (but not these two).

I included a digital oscilloscope with two channels that have 1-MHz bandwidth, 8 bits of resolution, and 401 words of memory per channel. There are 10 amplitude scales from 5 mV to 5 V per division and 18 timescales from 5 μs to 2.5 s per division. Note that there are four working modes: Auto, Normal, Single, and Roll.The logic analyzer has eight channels, 1920 words of memory per channel, and sampling from 1 to 100 kS/s. It is trigger-delay selectable between 0, 50, and 100% of memory length.

Looking at Photo 1, you see that the system’s hardware consists of two separate boards that are attached to each other. Photo 2a shows the tops of the boards, and Photo 2b shows the bottoms.

a—You can replace the relays in the coupling section and the driver circuit with solid-state relays if you can find ones with low leakage current. b—The op-amp’s SMD packages are best viewed from the bottom. The larger board is populated on both sides. Note the importance of the parasitic coupling of the PWM D/A outputs to the input of the amplifiers.

Photo 2: a—You can replace the relays in the coupling section and the driver circuit with solid-state relays if you can find ones with low leakage current. b—The op-amp’s SMD packages are best viewed from the bottom. The larger board is populated on both sides. Note the importance of the parasitic coupling of the PWM D/A outputs to the input of the amplifiers.

The larger board contains the oscilloscope analog chain: BNC connectors, relays (and circuit controller) for DC-GND-AC in the coupling section, and the digital programmable attenuator/amplifier. The top board contains the DC/DC converter power supply, charge-pump inverter, serial communication driver, low-pass filter, trigger (real and equivalent time sampling) circuit, channel-trigger selector, and the microcontroller.

Download the entire article.

Fast 600-V Gate Driver Reduces System-Solution Size for MOSFETs and IGBTs

Texas Instruments recently introduced the UCC27714 half-bridge gate driver for discrete power MOSFETs and IGBTs that operate up to 600 V. With 4-A source and 4-A sink current capability, the UCC27714 reduces component footprint by 50%. In addition, it provides 90-ns propagation delay, 40% lower than existing silicon solutions, tight control of the propagation delay with a maximum of 125 ns across –40°C to 125°C and tight channel-to-channel delay matching of 20 ns across –40°C to 125°C.  The device eliminates the need for bulky gate drive transformers, saving significant board space in high-frequency switch-mode power electronics.TI-gatedriver

Key features and benefits include:

  • Smaller footprint creates highest power-density solutions
  • Advanced noise toleration
  • MOSFETs have the ability to drive over a wide power range
  • Operates across wide temperatures

The UCC27714 is now available. The high-speed 600-V, high-side low-side gate driver costs $1.75 in 1,000-unit quantities.

Source: Texas Instruments

USB Type-C with Texas Instruments TUSB320 CC Logic and Port Controllers from Mouser

Mouser Electronics is now stocking the Texas Instruments TUSB320 family of USB Type-C configuration channel logic and port controllers from Texas Instruments (TI). The TUSB320 family of devices provide USB Type-C configuration channel (CC) logic and port control, making it possible for a system to detect the orientation of the plug, and determine the appropriate USB specification and mode settings for the end equipment.Mouser TUSB320

The TI TUSB320 devices, available from Mouser Electronics, can be configured as a downstream-facing port (DFP), upstream-facing port (UFP), or a dual-role port (DRP). The family of products supports USB 2.0 and USB 3.1, giving designers the flexibility to use these devices in multiple USB-enabled designs. The TUSB320 family also contains several features (such as mode configuration and low standby current), which make this device applicable for source or sinks in USB 2.0 applications. The device operates over a wide supply range (2.7Vbus – 5.5Vbus) and offers low power consumption; its low shutdown power of 8 mW benefits a variety of battery-powered applications.
The TUSB320 family of devices offers I2C or GPIO control, an industrial temperature range of -40 to +85 degrees Celsius, and support for up to 3A advertisement and detection. The devices can be used for host, device, and dual-role port applications in mobile phones, tablets, and USB peripherals.

The TUSB320EVM, also available from Mouser Electronics, provides an evaluation platform for the TUSB320 device. This plug-and-play module is configurable via onboard DIP switches for DFP, UFP, or DRP implementations, operating in I2C or GPIO mode.

Source: Mouser

High-Resolution Resistive Sensing Signal Conditioner

Texas Instruments recently introduced the PGA900 high-resolution resistive sensing signal conditioner. The PGA900 enables the fast and precise 24-bit measurement of conditions such as pressure, flow, strain, or liquid levels. Its programmable core enables flexible linearization and temperature compensation for numerous resistive bridge sensing applications.TI PGA900

Key features and benefits include:

  • Fast, precise sensor signal and temperature compensation: Integrates two 24-bit ADCs to provide high-resolution signal acquisition. Low-drift voltage reference of 10 ppm/°C, maximum, enables high accuracy across the –40°C to 150°C operating temperature range.
  • Integrated 14-bit DAC: Enables highly linear analog outputs.
  • User-programmable temperature and nonlinearity compensation algorithms: Integrated ARM Cortex-M0 core allows developers to use proprietary temperature and nonlinearity compensation algorithms to differentiate their end products.
  • Simple calibration: One-wire interface allows communication, configuration and calibration through the power supply pin without using additional lines.
  • Wide input voltage allows direct connection to the power supply: Integrated power management circuitry accepts input voltages ranging from 3.3 to 30 V to simplify the design and provide reliability.

With the PGA900 evaluation module (EVM), you can to quickly and easily evaluate the device’s performance and integrated features. The PGA900EVM is available for $249. You can download PGA900 example software and the user’s guide, as well as the PSpice and TINA-TI Spice and TINA-TI models, at

The PGA900 resistive sensing conditioner comes in a 6 mm × 6 mm very thin quad flat no-lead (VQFN) package. It costs $4.50 in 1,000-unit quantities.

Source: Texas Instruments

SimpleLink Simplifies IoT Prototyping

Texas Instruments recently introduced the next-generation SimpleLink SensorTag development kit, which enables the fast integration of sensor data with wireless cloud connectivity.TI Simplelink

Features of the new SensorTags include:

  • Flexible development with wireless connectivity options including Bluetooth low energy, 6LoWPAN and ZigBee based on the SimpleLink ultra-low power CC2650 wireless microcontroller
  • 10 integrated low-power sensors
  • New DevPack plug-in modules that extend the kits’ functionality and programmability
  • Out of the box capabilities with a free iOS or Android app
  • Connect to the cloud in minutes via TI’s IoT cloud ecosystem including IBM’s Bluemix IoT Foundation
  • Available TI Design reference designs, including 3-D print files of the SensorTag enclosures, that enable you to reuse the SensorTags for new designs

The SensorTag kits come with ready-to-use protocol stacks, a free Code Composer Studio IDE license, online training, and 24/7 online TI E2E community support. In addition, TI’s cloud-based software development tools provide instant access to examples, documentation, software and even an integrated development environment (IDE) all from the convenience of the web.

Expanding the standards supported by the SensorTag, there will be two different development kit versions:

  • The multi-standard SensorTag, based on the SimpleLink ultra-low power CC2650 wireless MCU, supports development for Bluetooth Smart, 6LoWPAN and ZigBee. This SensorTag has a unique feature that enables developers to change between different 2.4-GHz technologies by simply loading new software images directly from the SensorTag app over-the-air. When the SensorTag is used as a ZigBee and 6LoWPAN device, it connects to the cloud via a BeagleBone Black gateway. For Bluetooth Smart development, it connects via a smartphone.
  • The Wi-Fi SensorTag will allow users to demo the SimpleLink CC3200 wireless MCU. Further details and availability information will be coming soon. Start developing today with the CC3200 solution with these development tools.
  • Both SensorTags come with 10 integrated low-power sensors including the TI OPT3001 precision ambient light sensor, TI HDC1000 integrated humidity and temperature sensor and TI TMP007 contactless IR thermopile sensor. Additional sensors include a nine-axis motion sensor (gyroscope, compass and accelerometer), altimeter/ pressure sensor, digital microphone, and magnet sensor.

New to the next-generation CC2650 SensorTag is the ability for developers to customize their kit to fit their design with new DevPack plug-in modules. DevPacks available today include:

  • The $15 Debug DevPack is based on the TM4C1294 microcontroller (MCU) to add debug capabilities to the SensorTag. Plug it into the DevPack expansion header and debug the SensorTag with Code Composer Studio IDE, TI Cloud Tools, or IAR embedded workbench for ARM.
  • The Display (watch) DevPack adds a 1.35 inch ultra-low power graphical display to the SensorTag. The Watch DevPack is designed for development of smartwatches, refrigerator displays and any other application that has a need for a remote display.
  • The LED Audio DevPack consists of four high power multi-color LEDs and a 4W audio amplifier powered by a micro-USB for home automation and smart lighting applications.
  • Create your own! If developers cannot find a specific DevPack to fit their needs, they can create their own by downloading the Build Your Own DevPack guide.

The new SimpleLink multi-standard CC2650 SensorTag (CC2650STK) is available now for $29 in the TI Store and authorized distributors. Related software for each connectivity standard is also available:

  • Bluetooth Smart software
  • 6LoWPAN software
  • ZigBee software

The SimpleLink SensorTag DevPacks are also available on the TI Store and through TI authorized distributors. The Debug DevPack (CC-DEVPACK-DEBUG) costs $15. The Display DevPack (DEVPACK-WATCH) costs $19. The LED Audio DevPack (DEVPACK-LED-AUDIO) is $19. Pricing and availability for the SimpleLink Wi-Fi CC3200 SensorTag will be coming later in 2015.

Innovative Magnetic Sensing Integrated IC

Texas Instruments recently unveiled the DRV421 magnetic sensing IC with a fully integrated fluxgate sensor and compensation coil driver. It includes all the required signal conditioning circuitry.DRV421_TI

Compared to traditional Hall effect sensors, the DRV421 provides high sensor accuracy and linearity, high dynamic range, and simpler system design. With it, you can easily design magnetic closed-loop current sensors for a variety of applications (e.g., motor control, renewable energy, battery chargers and power monitoring).

The $49 DRV421 evaluation module (DRV421EVM) makes it easy to evaluate the new current sensing IC’s features and performance. The DRV421 comes in a 4 mm- × 4 mm QFN package. Pre-production samples are available now. Production quantities will be available in Q3 2015 for 2.50 in 1,000-unit quantities.

Source: Texas Instruments

Fast 16-bit ADC, Four-Channel 14-bit ADC, & Digital Variable Gain Amp

Texas Instruments launched the ADS54J60, which is the industry’s first 16-bit 1-GSPS ADC and the first to achieve over 70 dBFS signal-to-noise ratio (SNR) at 1-GSPS. Texas instruments also announced the highest-density, four-channel, 14-bit 500-MSPS ADC, the ADS54J54. To optimize the signal chain, TI’s new 4.5-GHz LMH6401 fully differential digital variable gain amplifier (DVGA) offers the widest bandwidth with DC coupling and allows signal acquisition of low and high frequencies without the limitation of baluns used in AC-coupled systems. These ADCs work together with the amplifier to provide the highest performance, lowest power and space savings in defense and aerospace, test and measurement, and communication infrastructure applications.Texas Instruments

All ICs are now sampling. The ADS54J54 costs $500 in 1,000-unit quantities. The ADS54J60 will be available in Q4 2015 for $705 in 1,000-unit quantities. The LMH6401 costs $10.95 in 1,000-unit quantities.

Source: Texas Instruments

Client Profile: LS Research

Since 1980, companies spanning a wide range of industries have trusted LSR to help develop solutions that exceed their customers’ expectations. LSR provides an unmatched suite of both embedded wireless products and integrated services that improve speed to market and return on your development investment.SaBLE-x-Ruler-V2-275x275

LSR’s SaBLE-x Bluetooth Smart module, based on TI’s new SimpleLink CC2640 MCU, offers industry-leading RF and power performance along with LSR’s renowned support and developer tools.

LSR’s TiWi-C-W is a stand-alone WLAN (IEEE 802.11 b/g/n) module that simplifies and accelerates the work of adding Wi-Fi connectivity to your products. The TiWi-C-W module is also a cloud agent for LSR’s end-to-end IoT platform, TiWiConnect.

LSR’s all-new SaBLE-x Bluetooth Smart module, based on TI’s new SimpleLink CC2640 MCU, offers industry-leading RF and power performance along with LSR’s renowned developer support and broad country certifications. The SaBLE-x can be utilized in either stand-alone mode or with an external host, and the SaBLE Tool Suite provides developers with intuitive tools that accelerates development time in integrating BLE into your products.

Win a FREE Development Kit for the SaBLE-x Bluetooth Smart module! Register to win and ONE Circuit Cellar reader will receive LSR’s SaBLE-x Development Kit ($199 value). Go to:

Cost-Effective, Long-Range, Low-Power Internet of Things Connectivity

SIGFOX and Texas Instruments  recently announced that they’re working together to increase Internet of Things (IoT) deployments using the Sub-1 GHz spectrum. Customers can use the SIGFOX network with TI’s Sub-1 GHz RF transceivers to deploy wireless sensor nodes that are lower cost and lower power than 3G/cellular connected nodes, while providing long-range connectivity to the IoT.TI - SIGFOX

Targeting a wide variety of applications ranging from environmental sensors to asset tracking, the SIGFOX and TI collaboration maximizes the benefits of narrowband radio technology. It also reduces barriers to entry for manufacturers interested in connecting their products to the cloud. Using the SIGFOX infrastructure reduces the cost and effort to get sensor data to the cloud and TI’s Sub-1 GHz technology provides years of battery life for less maintenance and up to 100 km range.

SIGFOX’s two-way network is based on an ultra-narrowband (UNB) radio technology for connecting devices, which is key to providing a scalable, high-capacity network with very low energy consumption and unmatched spectral efficiency. That is essential in a network that will handle billions of messages daily.

TI’s CC1120  Sub-1 GHz RF transceiver uses narrowband technology to deliver the longest-range connectivity and superior coexistence to SIGFOX’s network with strong tolerance of interference. Narrowband is the de facto standard for long-range communication due to the high spectral efficiency, which is critical to support the projected high growth of connected IoT applications. The CC1120 RF transceiver also provides years of battery lifetime for a sensor node, which reduces maintenance and lowers the cost of ownership for end users.

Sub-1 GHz networks operate in region-specific industrial scientific and medical (ISM) bands below 1 GHz including 169, 315, 433, 500, 868, 915 and 920 MHz. The networks are proprietary by nature and provide a more robust IoT connection, which is why the technology has been used for smart metering, security and alarm systems and other sensitive industrial systems. Additionally, the technology is low power, enabling years of battery life to reduce service and maintenance requirements.


SIGFOX-certified modules based on TI’s CC1120 were demonstrated at Mobile World Congress 2015 and are currently available.

Source: Texas Instruments; SIGFOX


Highly Integrated DC/DC Converter with PMBus Digital Interface

Texas Instruments recently introduced a four-channel buck DC/DC converter with PMBus/I2C digital interface for applications in space-constrained equipment. The TPS65400 dual- or quad-output configurable DC/DC converter integrates eight power MOSFETs. In addition, it features industry-leading efficiency at up to 95% in the smallest footprint.TPS65400 Press Photo

The TPS65400 includes four high-current synchronous buck switching regulators with integrated MOSFETs. Each switching converter supplies a 2- or 4-A output to efficiently power digital circuits, such as the processor, FPGA, ASIC, memory and digital input/output. Switching frequency for the converter is independently adjustable up to 2.2 MHz. The TPS65400 can be powered from a single-input voltage rail between 4.5 and 18 V. It supports applications running off a 5- or 12-V intermediate power distribution bus.

The TPS65400’s benefits and key features include:

  • Flexible power up/down sequencing control increases system reliability.
  • Parameter configuration and status monitoring via PMBus
  • Dynamic voltage scaling to optimize processor performance
  • Phase interleaving reduces input capacitance and ripple
  • Current sharing supports higher output current and enhances design flexibility
  • Small 48-pin VQFN package measures 7 mm × 7 mm × 0.9 mm.

The TPS65400 costs $3.68 in 1,000-unit quantities. The TPS65400EVM-678 evaluation module costs $199.

Source: Texas Instruments

Online Classroom for Analog Design

Texas Instruments recently launched TI Precision Labs, which is a comprehensive online classroom for analog engineers to take on-demand courses. The free, modular curriculum includes more than 30 training experiences and lab videos covering analog amplifier design considerations with online coursework.TI OnlineClassroomAnalog

TI Precision Labs incorporates a variety of tools to bring the online training experience to life. A $199 TI Precision Labs Op Amp Evaluation Module (TI-PLABS-AMP-EVM) enables engineers to complete each demonstrated learning activity along with the trainer. The curriculum also provides access to free design tools, such as TI Designs reference designs and TI’s TINA-TI SPICE model simulator.

Engineers can evaluate circuits and small-signal AC performance created during the trainings with National Instruments’s VirtualBench all-in-one instrument and TI’s Bode Analyzer Software for VirtualBench, as well as standard engineering bench equipment.

Key features and benefits of TI Precision Labs:

  • Experiential learning applies theory to real-world, hands-on examples with lab demonstration videos.
  • A customized learning environment provides recommended training tracks on topics such as noise, bandwidth and input/output swing, while enabling engineers to pick and choose courses based on individual needs and interests.
  • Accelerated learning for recent graduates eases the transition from undergraduate theoretical-based learning to real-world designing.
  • Robust learning materials include a downloadable presentation workbook and lab manual, as well as TI’s Analog Engineer’s Pocket Reference, which puts commonly used board- and system-level formulas at your fingertips.
  • Expert support: A TI Precision Labs support forum is available on the TI E2E Community to answer questions resulting from the training.

The TI Precision Labs training curriculum is free to anyone with a myTI account. In addition to free training, other benefits of myTI registration include the ability to purchase TI integrated circuits (ICs), evaluation modules, development kits and software; request product samples; get technical assistance through the TI E2E Community; create, simulate and optimize systems in the WEBENCH Design Center; and more.
TI Precision Labs curriculum is housed in the new TI Training Center, which connects engineers with the technical training they need to find solutions to their design challenges anytime, anywhere.

In addition to the on-demand courses, in-person, hands-on trainings covering a variety of precision amplifier topics, such as noise, offset, input bias, slew rate and bandwidth, are scheduled for May in Schaumburg, IL and Pewaukee, WI. Both live trainings require registration and cost $99 to attend. More in-person training dates in the United States will be added.

Source: Texas Instruments


Texas Instruments has introduced four new SIMPLE SWITCHER nano power modules for space-constrained applications. The compact 17- and 5-V modules expand TI’s SIMPLE SWITCHER module portfolio to address 100-mA to 2-A industrial designs, such as servers, factory automation, test and measurement, and network security cameras.TI-Nano2jpg

TI’s 17-V, 0.65-A LMZ21700 and 1-A LMZ21701—as well as the 5-V, 1-A LMZ20501 and 2-A LMZ20502 DC/DC power modules—achieve an overall solution size of up to 40% smaller than a discrete implementation. The modules combine high efficiency with high density and reduce EMI, even while operating at low power. All four modules enable designers to easily add more features and functionality to their systems in a smaller form factor, while speeding time to market.Watch a demonstration on how to create a high-density, multi-output design.

Key features and benefits:

  • Small solution sizes reduces board space by 40% when compared to discrete solutions.
  • Low component count simplifies design and increases system reliability.
  • Modules provide effective power management over the entire operating range.
  • Low output ripple at less than 10 mVPP for noise sensitive rails.
  • Low EMI complies with the CISPR 22 (Class B) radiated and conducted electromagnetic interference standard.
  • Modules enable easy implementation of multiple power rail sequencing using Power Good pin.

The four nano modules are available now in volume production. The LMZ21700 and LMZ21701 cost $1.55 and $1.75, respectively, in 1,000-unit quantities. The LMZ20501 and LMZ20502 cost $1.55 and $1.90, respectively, in 1,000-unit quantities.

Source: Texas Instruments

NexFET N-Channel Power MOSFETs Achieve Industry’s Lowest Resistance

Texas Instruments recently introduced 11 new N-channel power MOSFETs to its NexFET product line, including the 25-V CSD16570Q5B and 30-V CSD17570Q5B for hot swap and ORing applications with the industry’s lowest on-resistance (Rdson) in a QFN package. In addition, TI’s new 12-V FemtoFET CSD13383F4 for low-voltage battery-powered applications achieves the lowest resistance at 84% below competitive devices in a tiny 0.6 mm × 1 mm package. TI CSD16570Q5B

The CSD16570Q5B and CSD17570Q5B NexFET MOSFETs deliver higher power conversion efficiencies at higher currents, while ensuring safe operation in computer server and telecom applications. For instance, the 25-V CSD16570Q5B supports a maximum of 0.59 mΩ of Rdson, while the 30-V CSD17570Q5B achieves a maximum of 0.69 mΩ of Rdson.

TI’s new CSD17573Q5B and CSD17577Q5A can be paired with the LM27403 for DC/DC controller applications to form a complete synchronous buck converter solution. The CSD16570Q5B and CSD17570Q5B NexFET power MOSFETs can be paired with a TI hot swap controller such as the TPS24720.

The currently available products range in price from $0.10 for the FemtoFET CSD13383F4 to $1.08 for the CSD17670Q5B and CSD17570Q5B in 1,000-unit quantities.

Source: Texas Instruments

WiLink 8 Range of Wi-Fi and Bluetooth Modules

Texas Instruments has announced the WiLink 8 combo connectivity modules to support Wi-Fi in the 2.4- and 5-GHz bands. The new highly integrated module family offers high throughput and extended industrial temperature range with integrated Wi-Fi and Bluetooth. The modules complement TI’s PurePath Wireless audio ICs and TI’s SimpleLink Wireless Network Processors.WiLink8TexasInstruments

WiLink 8 modules are well-suited for power-optimized designs for home and building automation, smart energy applications, wearables, and a variety of other IoT applications. The WiLink 8 modules and software are compatible and preintegrated with many processors, including TI’s Sitara processors.

The WiLink8 family offers 2.4 and 5 GHz versions that are pin-to-pin compatible. With integrated Wi-Fi and Bluetooth, the WiLink 8 modules could be used for a variety of applications.


  • An extended temperature range of –40° to 85°C required for industrial applications
  • 5-GHz modules for high-performance solutions
  • Smart energy and home gateways, which offer Wi-Fi, Bluetooth and ZigBee coexistence, can manage multiple devices through Wi-Fi multi-channel multi-role (MCMR) capabilities
  • 1.4× the range and up to 100 Mbps throughput with TI’s WiLink 8 maximal ratio combining (MRC) and multiple-input and multiple-output (MIMO) technology
  • Optimization for low-power applications with low idle connect current consumption
  • Audio streaming for home entertainment applications with both Wi-Fi and dual-mode Bluetooth/Bluetooth low energy

The WiLink 8 modules complement several TI platforms to deliver system solutions for manufacturers including WiLink 8 module-based evaluation boards (2.4 GHz-WL1835MODCOM8 and 5 GHz -WL1837MODCOM8) that are compatible with the AM335x EVM and AM437x EVM. Additionally, the WiLink 8 modules, which offer Bluetooth and Bluetooth low energy dual-mode technology, are compatible with TI’s Bluetooth portfolio that allows developers to create a complete end-to-end application.

WiLink 8 evaluation boards (WL1835MODCOM8 and WL1837MODCOM8) are currently available. WiLink 8 modules production units will be available in Q1 2015 through TI authorized distributors starting at $9.99 in 1,000-unit volumes.

Bluetooth Haptic Kit

Texas Instruments recently introduced an innovative wireless haptic development kit. The DRV2605EVM-BT haptic Bluetooth kit comprises a 32-mm square PCB containing a DRV2605 haptic driver chip that controls an eccentric rotating mass motor (ERM) and a linear resonant actuator (LRA) to produce vibrations. The DRV2605 has an integrated library with more than 100 effects licensed from Immersion Corp.

Texas Instruments DRV2605EVM-BT haptic Bluetooth kit

Texas Instruments DRV2605EVM-BT haptic Bluetooth kit

You can use a circle of LEDs to display visual alerts. The board might be useful to speed up development times when designing and testing haptic effects in applications such as: watches, fitness trackers, wearables, portable medical equipment, touch screens, displays, and other devices requiring tactile feedback.

A SimpleLink Bluetooth low-energy CC2541 wireless microcontroller communicates with a free iOS app running on an iPhone or iPad. The app allows you to play predefined library waveforms, create new waveform sequences, and assign waveform sequences to in-app notifications. The app can also be used to quickly configure the DRV2605’s internal register settings: select between an ERM or LRA actuator, set the rated and overdrive voltages, configure and run autocalibration, send direct I2C commands, as well as set up the board to respond to a GPIO trigger.

The DRV2605EVM-BT haptic Bluetooth kit costs $99.

Source: Texas Instruments