January Circuit Cellar: Sneak Preview

Happy New Years! The January issue of Circuit Cellar magazine is coming soon. Don’t miss this first issue of Circuit Cellar’s 2019 year. Enjoy pages and pages of great, in-depth embedded electronics articles produced and collected for you to enjoy.

Not a Circuit Cellar subscriber?  Don’t be left out! Sign up today:

 

Here’s a sneak preview of January 2019 Circuit Cellar:

TRENDS & CHOICES IN EMBEDDED COMPUTING

Comms and Control for Drones
Consumer and commercial drones represent one of the most dynamic areas of embedded design today. Chip, board and system suppliers are offering improved ways for drones to do more processing on board the drone, while also providing solutions for implementing the control and communication subsystems in drones. This article by Circuit Cellar’s Editor-in-Chief Jeff Child looks at the technology and products available today that are advancing the capabilities of today’s drones.

Choosing an MPU/MCU for Industrial Design
As MCU performance and functionality improve, the traditional boundaries between MCUs and microprocessor units (MPUs) have become less clear. In this article, Microchip Technology’s Jacko Wilbrink examines the changing landscape in MPU vs. MCU capabilities, OS implications and the specifics of new SiP and SOM approaches for simplifying higher-performance computing requirements in industrial applications.

Product Focus: COM Express Boards
The COM Express architecture has found a solid and growing foothold in embedded systems. COM Express boards provide a complete computing core that can be upgraded when needed, leaving the application-specific I/O on the baseboard. This Product Focus section updates readers on this technology and provides a product album of representative COM Express products.

MICROCONTROLLERS ARE DOING EVERYTHING

Connecting USB to Simple MCUs
Sometimes you want to connect a USB device such as a flash drive to a simple microcontroller. Problem is most MCUs cannot function as a USB host. In this article, Stuart Ball steps through the technology and device choices that solve this challenge. He also puts the idea into action via a project that provides this functionality.

Vision System Enables Overlaid Images
In this project article, learn how these Cornell students Daniel Edens and Elise Weir designed a system to overlay images from a visible light camera and an infrared camera. They use software running on a PIC32 MCU to interface the two types of cameras. The MCU does the computation to create the overlaid images, and displays them on an LCD screen.

DATA ACQUISITION AND MEASUREMENT

Data Acquisition Alternatives
While the fundamentals of data acquisition remain the same, its interfacing technology keeps evolving and changing. USB and PCI Express brought data acquisition off the rack, and onto the lab bench top. Today solutions are emerging that leverage Mini PCIe, Thunderbolt and remote web interfacing. Circuit Cellar’s Editor-in-Chief, Jeff Child, dives into the latest technology trends and product developments in data acquisition.

High-Side Current Sensing
Jeff Bachiochi says he likes being able to measure things—for example, being able to measure load current so he can predict how long a battery will last. With that in mind, he recently found a high-side current sensing device, Microchip’s EMC1701. In his article, Jeff takes you through the details of the device and how to make use of it in a battery-based system.

Power Analysis Capture with an MCU
Low-cost microcontrollers integrate many powerful peripherals in them. You can even perform data capture directly to internal memory. In his article, Colin O’Flynn uses the ChipWhisperer-Nano as a case study in how you might use such features which would otherwise require external programmable logic.

TOOLS AND TECHNIQUES FOR EMBEDDED SYSTEM DESIGN

Easing into the IoT Cloud (Part 2)
In Part 1 of this article series Brian Millier examined some of the technologies and services available today enabling you to ease into the IoT cloud. Now, in Part 2, he discusses the hardware features of the Particle IoT modules, as well as the circuitry and program code for the project. He also explores the integration of a Raspberry Pi solution with the Particle cloud infrastructure.

Hierarchical Menus for Touchscreens
In his December article, Aubrey Kagan discussed his efforts to build a display subsystem and GUI for embedded use based on a Noritake touchscreen display. This time he shares how he created a menu system within the constraints of the Noritake graphical display system. He explains how he made good use of Microsoft Excel worksheets as a tool for developing the menu system.

Real Schematics (Part 2)
The first part of this article series on the world of real schematics ended last month with wiring. At high frequencies PCBs suffer from the same parasitic effects as any other type of wiring. You can describe a transmission line as consisting of an infinite number of infinitesimal resistors, inductors and capacitors spread along its entire length. In this article George Novacek looks at real schematics from a transmission line perspective.

December Circuit Cellar: Sneak Preview

The December issue of Circuit Cellar magazine is coming soon. Don’t miss this last issue of Circuit Cellar in 2018. Pages and pages of great, in-depth embedded electronics articles prepared for you to enjoy.

Not a Circuit Cellar subscriber?  Don’t be left out! Sign up today:

 

Here’s a sneak preview of December 2018 Circuit Cellar:

AI, FPGAs and EMBEDDED SUPERCOMPUTING

Embedded Supercomputing
Gone are the days when supercomputing levels of processing required a huge, rack-based systems in an air-conditioned room. Today, embedded processors, FPGAs and GPUs are able to do AI and machine learning kinds of operation, enable new types of local decision making in embedded systems. In this article, Circuit Cellar’s Editor-in-Chief, Jeff Child, looks at these technology and trends driving embedded supercomputing.

Convolutional Neural Networks in FPGAs
Deep learning using convolutional neural networks (CNNs) can offer a robust solution across a wide range of applications and market segments. In this article written for Microsemi, Ted Marena illustrates that, while GPUs can be used to implement CNNs, a better approach, especially in edge applications, is to use FPGAs that are aligned with the application’s specific accuracy and performance requirements as well as the available size, cost and power budget.

NOT-TO-BE-OVERLOOKED ENGINEERING ISSUES AND CHOICES

DC-DC Converters
DC-DC conversion products must juggle a lot of masters to push the limits in power density, voltage range and advanced filtering. Issues like the need to accommodate multi-voltage electronics, operate at wide temperature ranges and serve distributed system requirements all add up to some daunting design challenges. This Product Focus section updates readers on these technology trends and provides a product gallery of representative DC-DC converters.

Real Schematics (Part 1)
Our magazine readers know that each issue of Circuit Cellar has several circuit schematics replete with lots of resistors, capacitors, inductors and wiring. But those passive components don’t behave as expected under all circumstances. In this article, George Novacek takes a deep look at the way these components behave with respect to their operating frequency.

Do you speak JTAG?
While most engineers have heard of JTAG or have even used JTAG, there’s some interesting background and capabilities that are so well know. Robert Lacoste examines the history of JTAG and looks at clever ways to use it, for example, using a cheap JTAG probe to toggle pins on your design, or to read the status of a given I/O without writing a single line of code.

PUTTING THE INTERNET-OF-THINGS TO WORK

Industrial IoT Systems
The Industrial Internet-of-Things (IIoT) is a segment of IoT technology where more severe conditions change the game. Rugged gateways and IIoT edge modules comprise these systems where the extreme temperatures and high vibrations of the factory floor make for a demanding environment. Here, Circuit Cellar’s Editor-in-Chief, Jeff Child, looks at key technology and product drives in the IIoT space.

Internet of Things Security (Part 6)
Continuing on with his article series on IoT security, this time Bob Japenga returns to his efforts to craft a checklist to help us create more secure IoT devices. This time he looks at developing a checklist to evaluate the threats to an IoT device.

Applying WebRTC to the IoT
Web Real-time Communications (WebRTC) is an open-source project created by Google that facilitates peer-to-peer communication directly in the web browser and through mobile applications using application programming interfaces. In her article, Callstats.io’s Allie Mellen shows how IoT device communication can be made easy by using WebRTC. With WebRTC, developers can easily enable devices to communicate securely and reliably through video, audio or data transfer.

WI-FI AND BLUETOOTH IN ACTION

IoT Door Security System Uses Wi-Fi
Learn how three Cornell students, Norman Chen, Ram Vellanki and Giacomo Di Liberto, built an Internet connected door security system that grants the user wireless monitoring and control over the system through a web and mobile application. The article discusses the interfacing of a Microchip PIC32 MCU with the Internet and the application of IoT to a door security system.

Self-Navigating Robots Use BLE
Navigating indoors is a difficult but interesting problem. Learn how these two Cornell students, Jane Du and Jacob Glueck, used Received Signal Strength Indicator (RSSI) of Bluetooth Low Energy (BLE) 4.0 chips to enable wheeled, mobile robots to navigate towards a stationary base station. The robot detects its proximity to the station based on the strength of the signal and moves towards what it believes to be the signal source.

IN-DEPTH PROJECT ARTICLES WITH ALL THE DETAILS

Sun Tracking Project
Most solar panel arrays are either fixed-position, or have a limited field of movement. In this project article, Jeff Bachiochi set out to tackle the challenge of a sun tracking system that can move your solar array to wherever the sun is coming from. Jeff’s project is a closed-loop system using severs, opto encoders and the Microchip PIC18 microcontroller.

Designing a Display System for Embedded Use
In this project article, Aubrey Kagan takes us through the process of developing an embedded system user interface subsystem—including everything from display selection to GUI development to MCU control. For the project he chose a 7” Noritake GT800 LCD color display and a Cypress Semiconductor PSoC5LP MCU.

November Circuit Cellar: Sneak Preview

The November issue of Circuit Cellar magazine is coming soon. Clear your decks for a new stack of in-depth embedded electronics articles prepared for you to enjoy.

Not a Circuit Cellar subscriber?  Don’t be left out! Sign up today:

 

Here’s a sneak preview of November 2018 Circuit Cellar:

SOLUTIONS FOR SYSTEM DESIGNS

3D Printing for Embedded Systems
Although 3D printing for prototyping has existed for decades, it’s only in recent years that it’s become a mainstream tool for embedded systems development. Today the ease of use of these systems has reached new levels and the types of materials that can be used continues to expand. This article by Circuit Cellar’s Editor-in-Chief, Jeff Child looks at the technology and products available today that enable 3D printing for embedded systems.

Add GPS to Your Embedded System
We certainly depend on GPS technology a lot these days, and technology advances have brought fairly powerful GPS functionally into our pockets. Today’s miniaturization of GPS receivers enables you to purchase an inexpensive but capable GPS module that you can add to your embedded system designs. In this article, Stuart Ball shows how to do this and take advantage of the GPS functionality.

FCL for Servo Drives
Servo drives are a key part of many factory automation systems. Improving their precision and speed requires attention to fast-current loops and related functions. In his article, Texas Instruments’ Ramesh Ramamoorthy gives an overview of the functional behavior of the servo loops using fast current loop algorithms in terms of bandwidth and phase margin.

FOCUS ON ANALOG AND POWER

Analog and Mixed-Signal ICs
Analog and mixed-signal ICs play important roles in a variety of applications. These applications depend heavily on all kinds of interfacing between real-world analog signals and the digital realm of processing and control. Circuit Cellar’s Editor-in-Chief, Jeff Child, dives into the latest technology trends and product developments in analog and mixed-signal chips.

Sleeping Electronics
Many of today’s electronic devices are never truly “off.” Even when a device is in sleep mode, it draws some amount of power—and drains batteries. Could this power drain be reduced? In this project article, Jeff Bachiochi addresses this question by looking at more efficient ways to for a system to “play dead” and regulate power.

BUILDING CONNECTED SYSTEMS FOR THE IoT EDGE

Easing into the IoT Cloud (Part 1)
There’s a lot of advantages for the control/monitoring of devices to communicate indirectly with the user interface for those devices—using some form of “always-on” server. When this server is something beyond one in your home, it’s called the “cloud.” Today it’s not that difficult to use an external cloud service to act as the “middleman” in your system design. In this article, Brian Millier looks at the technologies and services available today enabling you to ease in to the IoT cloud.

Sensors at the Intelligent IoT Edge
A new breed of intelligent sensors has emerged aimed squarely at IoT edge subsystems. In this article, Mentor Graphics’ Greg Lebsack explores what defines a sensor as intelligent and steps through the unique design flow issues that surround these kinds of devices.

FUN AND INTERESTING PROJECT ARTICLES

MCU-Based Project Enhances Dance Game
Microcontrollers are perfect for systems that need to process analog signals such as audio and do real-time digital control in conjunction with those signals. Along just those lines, learn how two Cornell students Michael Solomentsev and Drew Dunne recreated the classic arcade game “Dance Dance Revolution” using a Microchip Technology PIC32 MCU. Their version performs wavelet transforms to detect beats from an audio signal to synthesize dance move instructions in real-time without preprocessing.

Building an Autopilot Robot (Part 2)
In part 1 of this two-part article series, Pedro Bertoleti laid the groundwork for his autopiloted four-wheeled robot project by exploring the concept of speed estimation and speed control. In part 2, he dives into the actual building of the robot. The project provides insight to the control and sensing functions of autonomous electrical vehicles.

… AND MORE FROM OUR EXPERT COLUMNISTS

Embedded System Security: Live from Las Vegas
This month Colin O’Flynn summarizes a few interesting presentations from the Black Hat conference in Las Vegas. He walks you through some attacks on bitcoin wallets, x86 backdoors and side channel analysis work—these and other interesting presentations from Black Hat.

Highly Accelerated Product Testing
It’s a fact of life that every electronic system eventually fails. Manufacturers use various methods to weed out most of the initial failures before shipping their product. In this article, George Novacek discusses engineering attempts to bring some predictability into the reliability and life expectancy of electronic systems. In particular, he focuses on Highly Accelerated Lifetime Testing (HALT) and Highly Accelerated Stress Screening (HASS).

September Circuit Cellar: Sneak Preview

The September issue of Circuit Cellar magazine is coming soon. Clear your decks for a new stack of in-depth embedded electronics articles prepared for you to enjoy.

Not a Circuit Cellar subscriber?  Don’t be left out! Sign up today:

 

Here’s a sneak preview of September 2018 Circuit Cellar:

MOTORS, MOTION CONTROL AND MORE

Motion Control for Robotics
Motion control technology for robotic systems continues to advance, as chip- and board-level solutions evolve to meet new demands. These involve a blending of precise analog technologies to control position, torque and speed with signal processing to enable accurate, real-time motor control. Here, Circuit Cellar’s Editor-in-Chief, Jeff Child, looks the latest technology and product advances in motion control for robotics.

Electronic Speed Control (Part 3)
Radio-controlled drones are one among many applications that depend on the use of an Electronic Speed Controller (ESC) as part of its motor control design. After observing the operation of a number of ESC modules, in this part Jeff Bachiochi focuses in more closely on the interaction of the ESC with the BLDC motor.

BUILDING CONNECTED SYSTEMS

Product Focus: IoT Gateways
IoT gateways are a smart choice to facilitate bidirectional communication between IoT field devices and the cloud. Gateways also provide local processing and storage capabilities for offline services as well as near real-time management and control of edge devices. This Product Focus section updates readers on these technology trends and provides a product gallery of representative IoT gateways.

Wireless Weather Station
Integrating wireless technologies into embedded systems has become much easier these days. In this project article, Raul Alvarez Torrico describes his home-made wireless weather station that monitors ambient temperature, relative humidity, wind speed and wind direction, using Arduino and a pair of cheap Amplitude Shift Keying (ASK) radio modules.

FOCUS ON ANALOG AND POWER TECHNOLOGY

Frequency Modulated DDS
Prompted by a reader’s query, Ed became aware that you can no longer get crystal oscillator modules tuned to specific frequencies. With that in mind, Ed set out to build a “Channel Element” replacement around a Teensy 3.6 board and a DDS module. In this article, Ed Nisley explains how the Teensy’s 32-bit datapath and 180 MHz CPU clock affect the DDS frequency calculations. He then explores some detailed timings.

Power Supplies / Batteries
Sometimes power decisions are left as an afterthought in system designs. But your choice of power supply or battery strategy can have a major impact on your system’s capabilities. Circuit Cellar’s Editor-in-Chief, Jeff Child, dives into the latest technology trends and product developments in power supplies and batteries.

Murphy’s Laws in the DSP World (Part 3)
Unpredictable issues crop up when you move from the real world of analog signals and enter the world of digital signal processing (DSP). In Part 3 of this article series, Mike Smith and Mai Tanaka focuses on strategies for how to—or how to try to—avoid Murphy’s Laws when doing DSP.

SYSTEM DESIGN ISSUES IN VIDEO AND IMAGING

Virtual Emulation for Drones
Drone system designers are integrating high-definition video and other features into their SoCs. Verifying the video capture circuitry, data collection components and UHD-4K streaming video capabilities found in drones is not trivial. In his article, Mentor’s Richard Pugh explains why drone verification is a natural fit for hardware emulation because emulation is very efficient at handling large amounts of streamed data.

LIDAR 3D Imaging on a Budget
Demand is on the rise for 3D image data for use in a variety of applications, from autonomous cars to military base security. That has spurred research into high precision LIDAR systems capable of creating extremely clear 3D images to meet this demand. Learn how Cornell student Chris Graef leveraged inexpensive LIDAR sensors to build a 3D imaging system all within a budget of around $200.

AND MORE FROM OUR EXPERT COLUMNISTS

Velocity and Speed Sensors
Automatic systems require real-life physical attributes to be measured and converted to electrical quantities ready for electronic processing. Velocity is one such attribute. In this article, George Novacek steps through the math, science and technology behind measuring velocity and the sensors used for such measurements.

Recreating the LPC Code Protection Bypass
Microcontroller fuse bits are used to protect code from being read out. How well do they work in practice? Some of them have been recently broken. In this article Colin O’Flynn takes you through the details of such an attack to help you understand the realistic threat model.

August Circuit Cellar: Sneak Preview

The August issue of Circuit Cellar magazine is coming soon. Be on the lookout for a whole shipload of top-notch embedded electronics articles for you to enjoy.

Not a Circuit Cellar subscriber?  Don’t be left out! Sign up today:

 

Here’s a sneak preview of August 2018 Circuit Cellar:

FPGAs REDEFINE THE DEFINITION OF “SYSTEM”

FPGA System Design
Long gone now are the days when FPGAs were thought of as simple programmable circuitry for interfacing and glue logic. Today, FPGAs are powerful system chips with on-chip processors, signal processing functionality and rich offerings or high-speed connectivity. Here, Circuit Cellar’s Editor-in-Chief, Jeff Child, looks at the latest technology and trends in FPGA system design.

Managing FPGA Design Complexity
Modern FPGAs can contain millions of logic gates and thousands of embedded DSP processors allowing FPGA hardware designers to create extremely sophisticated and complex application-specific hardware functions. In this article, Pentek’s Bob Sgandurra explores how today’s FPGA technology has revamped the roles of both hardware and software engineers as well as how dealing with on-chip IP adds new layers of complexity.

HIGH-INTEGRATION AT THE CHIP-
AND BOARD-LEVEL

Product Focus: Small and Tiny Embedded Boards
An amazing amount of computing functionality can be squeezed on to a small form factor board these days. These company—and even tiny—board-level products meet the needs of applications where extremely low SWaP (size, weight and power) beats all other demands. This Product Focus section updates readers on this technology trend and provides a product album of representative small and tiny embedded boards.

Microcontrollers and Processors
Today’s crop of microcontrollers and embedded processors provide a rich continuum of features, functions and capabilities. It’s hard to tell anymore where the dividing line is, especially when a lot of them use the same CPU cores. Circuit Cellar’s Editor-in-Chief, Jeff Child, delves into the technology and product trends of MCUs and embedded processors.

CAN’T STOP THE SIGNAL

Murphy’s Laws in the DSP World (Part 2)
Many unexpected issues come into play when you move from the real world of analog signals and enter the world of digital signal processing (DSP). Part 2 of this article series by Michael Smith, Mai Tanaka and Ehsan Shahrabi Farahani charges forward introducing “Murphy’s Laws of DSP” #7, #8 and #9 and looks at the spectral analysis of DSP signals.

Signature Analyzer Uses NXP MCU
Doing a signature analysis of a signal used to require an oscilloscope to display your results. In this article, Brian Millier shows how you can build a free-standing tester that uses mostly just the internal peripherals of an NXP ARM microcontroller. He described how the tester operates and how he implemented it using a Teensy 3.5 development module and an intelligent 4.3-inch TFT touch-screen display.

Pitfalls of Filtering Pulsed Signals
Filtering pulsed signals can be a tricky prospect. Using a recent customer implementation as an example, Robert Lacoste highlights various alternative approaches and describes the key concepts involved. Simulation results are provided to help readers understand what’s going on.

PROJECT-BASED STORIES WITH ALL THE DETAILS

Electronic Speed Control (Part 2)
In Part 1, Jeff Bachiochi discussed the mechanical differences between DC brushed and brushless DC (BLDC) motors. This time he dives into basics of an Electronic Speed Controller’s operations and its circuitry. And all this is illustrated via his ESC-based project that uses a Microchip PIC MCU.

Build an Audio Response Light Display
Light shows have been a part of entertainment situations seemingly forever, but the technology has evolved over time. These light shows have their origin in the primitive “light organs” of the 1960s in which each spectral band had its own color that pulsed in intensity with audio amplitudes within its range of frequencies. In this article, Devlin Gualtieri discusses his circuit design that implements a light organ using today’s IC and LED technologies.

AND MORE FROM OUR EXPERT COLUMNISTS

Internet of Things Security (Part 4)
In this next part of his article series on IoT security, Bob Japenga looks at how checklists and the common criteria framework can help us create more secure IoT devices. He covers how to create a list of security assets and to establish threat checklists that identify all the threats to your security assets.

Thermoelectric Cooling (Part 2)
In Part 1 George Novacek described how he built a test chamber using some electronics combined with components salvaged from his thermoelectric water cooler. To confirm his test results, he purchased another thermoelectric cooler and repeated the tests. In Part 2 he covers the results of these tests along with some theoretical performance calculations.

Component Tolerance

Accuracy Unmasked

We take for granted sometimes that the tolerances of our electronic components fit the needs of our designs. In this article, Robert takes a deep look into the subject of tolerances, using the simple resistor as an example. He goes through the math to help you better understand accuracy and drift along with other factors.

By Robert Lacoste

One of the last projects I worked on with my colleagues was a kind of high-precision current meter. It turned out to be far more difficult than anticipated, even with our combined experience totaling almost 100 years. Maybe this has happened with your projects too: You discover that, even when you’re not looking for top performance out of your electronic components, the accuracy and stability of those components can be pernicious. My topic this month is examining component tolerances. And, for simplicity, I will focus on the simplest possible electronic device: a resistor.

FIGURE 1 A very simple voltage divider. With these values, Uout will be 1 V with Uin=100 V

Let’s start with a basic application. Imagine that you have to design a voltage divider with a ratio of 1/100 (Figure 1). I will assume that the source impedance is very low and that the load connected on the output draws no current at all. With those parameters the calculations are very easy. You just need to know Ohm’s Law. Because the resistors are in series, the current circulating through the two resistors is:

Similarly, the output voltage is:

Given that the current I is the same in both equations, we get:

This circuit is indeed a voltage divider, with a ratio of R2/(R1+R2). We want a ratio of 1/100, so one resistor could be fixed arbitrarily and the second easily calculated. For example: R1=9,900 Ω and R2=100 Ω will do the job as:

Of course, you can easily simulate such a circuit with any SPICE-based circuit simulator if you wish. I personally used Proteus from Labcenter to draw and simulate the small schematic provided on Figure 1, and the output voltage is 1 V with 100 V applied on the input, as expected. As usual, I encourage you to reproduce these small examples with your preferred simulator: for example the free LT-Spice.

Now let’s talk about accuracy. You want your divider to be as precise as possible and therefore you want to buy reasonably accurate resistors. But what if your budget is constrained? Will you use a high accuracy resistor for R1 (9,900 Ω)? Or for R2 (100 Ω)? Or for both? The good answer is both. In that case, a 1% error on either R1 or R2 gives close to a 1% error of the output voltage, as shown in Figure 2. Even if R1 has a stranger value than R2—9,900 Ω vs. 100 Ω—their accuracy is just as critical.

Figure 2
A 1% error either on the top or bottom resistors will induce a roughly 1% error on the output. That would not be the case for other division ratios.

Maybe you think this is too obvious? In that case I will give you another exercise: What happens with a divide-by-2 circuit using two resistors of the same value? Do the calculation or simulate it and you will find that both resistors have still the same impact on accuracy. But now a 1% error on one of the resistors has only a 0.5% impact on the output voltage. That means you could buy slightly less expensive resistors for the same overall precision! In fact, the higher the division ratio, the higher is the impact of each resistor on the overall accuracy.

E Series Resistors

Let’s go back to the 1/100 divider example. If you want to build it and look for a
9,900-Ω resistor, you will have some difficulties because nobody sells them.. …

Read the full article in the April 333 issue of Circuit Cellar

Don’t miss out on upcoming issues of Circuit Cellar. Subscribe today!
Note: We’ve made the October 2017 issue of Circuit Cellar available as a free sample issue. In it, you’ll find a rich variety of the kinds of articles and information that exemplify a typical issue of the current magazine.

March Circuit Cellar: Sneak Preview

The March issue of Circuit Cellar magazine is coming soon. And we’ve got a healthy serving of embedded electronics articles for you. Here’s a sneak peak.

Not a Circuit Cellar subscriber?  Don’t be left out! Sign up today:

 

Here’s a sneak preview of March 2018 Circuit Cellar:

TECHNOLOGY FOR THE INTERNET-OF-THINGS

IoT: From Device to Gateway
The Internet of Things (IoT) is one of the most dynamic areas of embedded systems design today. This feature focuses on the technologies and products from edge IoT devices up to IoT gateways. Circuit Cellar Chief Editor Jeff Child examines the wireless technologies, sensors, edge devices and IoT gateway technologies at the center of this phenomenon.

Texting and IoT Embedded Devices
Texting has become a huge part of our daily lives. But can texting be leveraged for use in IoT Wi-Fi devices? Jeff Bachiochi lays the groundwork for describing a project that will involve texting. In this part, he gets into out the details for getting started with a look at Espressif System’s ESP8266EX SoC.

Exploring the ESP32’s Peripheral Blocks
What makes an embedded processor suitable as an IoT or home control device? Wi-Fi support is just part of the picture. Brian Millier has done some Wi-Fi projects using the ESP32, so here he shares his insights about the peripherals on the ESP32 and why they’re so powerful.

MICROCONTROLLERS HERE, THERE & EVERYWHERE

Designing a Home Cleaning Robot (Part 4)
In this final part of his four-part article series about building a home cleaning robot, Nishant Mittal discusses the firmware part of the system and gets into the system’s actual operation. The robot is based on Cypress Semiconductor’s PSoC microcontroller.

Apartment Entry System Uses PIC32
Learn how a Cornell undergraduate built a system that enables an apartment resident to enter when keys are lost or to grant access to a guest when there’s no one home. The system consists of a microphone connected to a Microchip PIC32 MCU that controls a push solenoid to actuate the unlock button.

Posture Corrector Leverages Bluetooth
Learn how these Cornell students built a posture corrector that helps remind you to sit up straight. Using vibration and visual cues, this wearable device is paired with a phone app and makes use of Bluetooth and Microchip PIC32 technology.

INTERACTING WITH THE ANALOG WORLD

Product Focus: ADCs and DACs
Makers of analog ICs are constantly evolving their DAC and ADC chips pushing the barriers of resolution and speeds. This new Product Focus section updates readers on this technology and provides a product album of representative ADC and DAC products.

Stepper Motor Waveforms
Using inexpensive microcontrollers, motor drivers, stepper motors and other hardware, columnist Ed Nisley built himself a Computer Numeric Control (CNC) machines. In this article Ed examines how the CNC’s stepper motors perform, then pushes one well beyond its normal limits.

Measuring Acceleration
Sensors are a fundamental part of what make smart machines smart. And accelerometers are one of the most important of these. In this article, George Novacek examines the principles behind accelerometers and how the technology works.

SOFTWARE TOOLS AND PROTOTYPING

Trace and Code Coverage Tools
Today it’s not uncommon for embedded devices to have millions of lines of software code. Trace and code coverage tools have kept pace with these demands making it easier for embedded developers to analyze, debug and verify complex embedded software. Circuit Cellar Chief Editor Jeff Child explores the latest technology trends and product developments in trace and code coverage tools.

Manual Pick-n-Place Assembly Helper
Prototyping embedded systems is an important part of the development cycle. In this article, Colin O’Flynn presents an open-source tool that helps you assemble prototype devices by making the placement process even easier.

January Circuit Cellar: Sneak Preview

The January issue of Circuit Cellar magazine is coming soon. And it’s got a robust selection of embedded electronics articles for you. Here’s a sneak peak.

Not a Circuit Cellar subscriber?  Don’t be left out! Sign up today:

 

Here’s a sneak preview of January 2018 Circuit Cellar:

 

                                     IMPROVING EMBEDDED SYSTEM DESIGNS

Special Feature: Powering Commercial Drones
The amount of power a commercial drone can draw on has a direct effect on how long it can stay flying as well as on what tasks it can perform. Circuit Cellar Chief Editor Jeff Child examines solar cells, fuel cells and other technology options for powering commercial drones.

CC 330 CoverFPGA Design: A Fresh Take
Although FPGAs are well established technology, many embedded systems developers—particularly those used the microcontroller realm—have never used them before. In this article, Faiz Rahman takes a fresh look a FPGAs for those new to designing them into their embedded systems.

Product Focus: COM Express boards
COM Express boards provide a complete computing core that can be upgraded when needed, leaving the application-specific I/O on the baseboard. This brand new Product Focus section updates readers on this technology and provides a product album of representative COM Express products.

TESTING, TESTING, 1, 2, 3

LF Resonator Filter
In Ed Nisley’s November column he described how an Arduino-based tester automatically measures a resonator’s frequency response to produce data defining its electrical parameters. This time he examines the resultsand explains a tester modification to measure the resonator’s response with a variable series capacitance.

Technology Spotlight: 5G Technology and Testing
The technologies that are enabling 5G communications are creating new challenges for embedded system developers. Circuit Cellar Chief Editor Jeff Child explores the latest digital and analog ICs aimed at 5G and at the test equipment designed to work with 5G technology.

                                     MICROCONTROLLERS IN EVERYTHING

MCU-based Platform Stabilizer
Using an Inertial Measurement Unit (IMU), two 180-degree rotation servos and a Microchip PCI MCU, three Cornell students implemented a microcontroller-based platform stabilizer. Learn how they used a pre-programmed sensor fusion algorithm and I2C to get the most out of their design.

Designing a Home Cleaning Robot (Part 2)
Continuing on with this four-part article series about building a home cleaning robot, Nishant Mittal this time discusses the mechanical aspect of the design. The robot is based on Cypress Semiconductor’s PSoC microcontroller.

Massage Vest Uses PIC32 MCU
Microcontrollers are being used for all kinds of things these days. Learn how three Cornell graduates designed a low-cost massage vest that pairs seamlessly with a custom iOS app. Using the Microchip PIC32 for its brains, the massage vest has sixteen vibration motors that the user can control to create the best massage possible.

AND MORE FROM OUR EXPERT COLUMNISTS:

Five Fault Injection Attacks
Colin O’Flynn returns to the topic of fault injection security attacks. To kick off 2018, he summarizes information about five different fault injection attack stories from 2017—attacks you should be thinking about as an embedded designer.

Money Sorting Machines (Part 2)
In part 1, Jeff Bachiochi delved into the interesting world of money sort machines and their evolution. In part 2, he discusses more details about his coin sorting project. He then looks at a typical bill validator implementation used in vending systems.

Overstress Protection
Last month George Novacek reviewed the causes and results of electrical overstress (EOS). Picking up where that left off, in this article he looks at how to prevent EOS/ESD induced damage—starting with choosing properly rated components.

December Circuit Cellar: A Sneak Preview

The December issue of Circuit Cellar magazine is coming soon. Want a sneak peak? We’ve got a great selection of excellent embedded electronics articles for you.

Not a Circuit Cellar subscriber?  Don’t be left out! Sign up today:

 Here’s a sneak preview of December Circuit Cellar:

MICROCONTROLLERS IN MOTION

Special Feature: Electronics for Wearable Devices
Circuit Cellar Chief Editor Jeff Child examines how today’s microcontrollers, sensors and power electronics enable today’s wearable products.

329 Cover Screen CapSimulating a Hammond Tonewheel Organ
(Part 2)

Brian Millier continues this two-part series about simulating the Hammond tonewheel organ using a microcontrollers and DACs. This time he examines a Leslie speaker emulation.

Money Sorting Machines (Part 1)
In this new article series, Jeff Bachiochi looks the science, mechanics and electronics that are key to sorting everything from coins to paper money. This month he discusses a project that uses microcontroller technology to sort coins.

Designing a Home Cleaning Robot (Part 1)
This four-part article series about building a home cleaning robot starts with Nishant Mittal discussing his motivations behind to his design concept, some market analysis and the materials needed.

SPECIAL SECTION: GRAPHICS AND VISION

Designing High Performance GUI
It’s critical to understand the types of performance problems a typical end-user might encounter and the performance metrics relevant to user interface (UI) design. Phil Brumby of Mentor’s Embedded Systems Division examines these and other important UI design challenges.

Building a Robotic Candy Sorter
Learn how a pair of Cornell graduates designed and constructed a robotic candy sort. It includes a three degree of freedom robot arm and a vision system using a Microchip PIC32 and Raspberry Pi module.

Raster Laser Projector Uses FPGA
Two Cornell graduates describe a raster laser projector they designed that’s able to project images in 320 x 240 in monochrome red. The laser’s brightness and mirrors positions are controlled by an FPGA and analog circuitry.

ELECTRICITY UNDER CONTROL

Technology Spotlight: Power-over-Ethernet Solutions
Power-over-Ethernet (PoE) enables the delivery of electric power alongside data on twisted pair Ethernet cabling. Chief Editor Jeff Child explores the latest chips, modules and other gear for building PoE systems.

Component Overstress
When an electronic component starts to work improperly, Two likely culprits are electrical overstress (EOS) and electrostatic discharge (ESD). In his article, George Novacek breaks down the important differences between the two and how to avoid their effects.

AND MORE FROM OUR EXPERT COLUMNISTS:

Writing the Proposal
In this conclusion to his “Building an Embedded Systems Consulting Company” article series, Bob Japenga takes a detailed look at how to craft a Statement of Work (SOW) that will lead to success and provide clarity for all stakeholders.

Information Theory in a Nutshell
Claude Shannon is credited as one of the pioneers of computer science thanks to his work on Information Theory, informing how data flows in electronic systems. In this article, Robert Lacoste provides a useful exploration of Information Theory in an easily digestible way.

2.5 A Step-Down Regulator Keeps EMC/EMI Emissions Low

Analog Devices, which recently acquired Linear Technology, has announced the LTM8065, a µModule (power module) step-down regulator with up to 40 V input voltage (42 V abs max), which can safely operate from unregulated or fluctuating 12 V to 36 V input supplies in noisy environments such as industrial robotics, test and measurement, medical, factory automation and avionics systems. The Silent Switcher architecture minimizes EMC/EMI emissions enabling the LTM8065 to pass CISPR 22 class B for use in noise-sensitive signal processing applications, including imaging and RF systems. The LTM8065’s small 6.25 mm x 6.25 mm x 2.32 mm BGA package includes a switching regulator controller, power switches, inductor and other supporting components. With only two 0805 sized capacitors and two 0603 sized resistors, the LTM8065’s solution occupies approximately 100mm², about half the size of equivalent power level module solutions.

LTM8065The LTM8065 can deliver 2.5 A of continuous (3.5 A peak) output current to a 5 V load from a 12 V input at up to 85°C ambient without a heat sink or airflow. The output voltage is adjustable with one resistor from 0.97 V to 18 V. This wide output voltage range provides versatility, using one product to generate common system bus voltage of 3.3 V, 5 V, 12 V and 15 V. The switching frequency is adjustable by an external single resistor or can be synchronized to an external clock from 200 kHz to 3 MHz. It enables customer operation of the device in or out of the specific frequency. The LTM8065 has four modes: Burst Mode® operation, pulse-skipping mode, pulse-skip mode with spread spectrum modulation and external synchronization mode. The quiescent current at burst mode is 8 µA, making it ideal for battery operating systems.

The LTM8065 operating temperature range is –40°C to 125°C. 1,000-piece pricing starts at $7.75 each.

Analog Devices – Linear Technology | www.linear.com

November Circuit Cellar: A Sneak Preview

The November issue of Circuit Cellar magazine is coming soon. Want a sneak peak? We’ve got a great section of excellent embedded electronics articles for you.

Not a Circuit Cellar subscriber?  Don’t be left out! Sign up today:

Here’s a sneak preview of November Circuit Cellar:

TECHNOLOGY IN A CONNECTED WORLD

IoT Gateway Advances Take Diverse Paths: Flexible Networked Solutions
The Internet-of-Things (IoT) phenomenon offers huge opportunities. Circuit Cellar Chief Editor Jeff Child explores how IoT gateways play a vital role in those systems by providing Nov 328 coverbidirectional communication between the devices in the field and the cloud.

Power Analysis Attack on RSA: Asymmetric Adventures
Colin O’Flynn has done a number of great columns about cryptography—in particular symmetric cryptography. This time he’s tackling an asymmetric algorithm: a RSA implementation. Colin describes what’s unique about an RSA cryptosystem and takes us through a power analysis attack.

FOCUS ON ANALOG

Analog Solutions Fuel Industrial System Needs: Connectivity, Control and IIoT
Whether it’s connecting with analog sensors or driving actuators, analog ICs play many critical roles in industrial applications. Here, Circuit Cellar Chief Editor Jeff Child examines the latest analog technologies and products serving the needs of today’s industrial systems.

Using Power Audio Amplifiers in Untypical Ways (Part 2): More Alternative Uses
In Part 1 Petre Petrov described many interesting ways to use power audio amplifiers (PAAs) as universal building blocks similar to the op amps and comparators. Here, he discusses several more things that can be built from PAAs including wave generators and transformer drivers.

SPOTLIGHT ON MONITORING AND TESTING

Gas Monitoring and Sensing (Part 2): Putting the Sensor to Work
Columnist Jeff Bachiochi continues his exploration of gas monitoring and sensing. This time he discusses some of the inexpensive sensors available that can be applied to this application. Jeff then tackles the factors to consider when calibrating these sensors and how to use them effectively.

Logger Device Tracks Amp Hours (Part 2): Alternative Energy Sources
n this follow on to Part 1 of his story, William Wachsmann describes putting to use the amp-hour logger he built using a microcontroller and a clamp-on ammeter. This time he discusses modifying the amp-hour software so it can be used as an analog input logger to measure solar and wind power.

Negative Feedback in Electronics: A Look at the Opposite Side
Complementing his discussion last month on positive feedback, columnist George Novacek now takes a look at negative feedback. Just like positive feedback, negative feedback can significantly change or modify a circuit’s performance.

LF Quartz Resonator Tester: A Stimulating Discussion
Ed Nisley returns to the rich topic of low-frequency quartz resonators. This time he describes a tester built with an ordinary Arduino Nano and an assortment of inexpensive RF modules.

INTERESTING EMBEDDED PROJECTS

Simulating a Hammond Tonewheel Organ (Part 1) Mimicking a Mechanical Marvel
Hammond tonewheel organs were based upon additive sine-wave synthesis. Because of that, it’s possible to simulate the organ using a microcontroller program that feeds its output waveform to a DAC. Brian Millier takes on this project, making use of an ARM-based Teensy module to do the heavy lifting.

Machine Auto-Sorts Resistors: MCUs, Measurement and Motor Control
Typical electronics lab benches become littered with resistors from past projects. These three Cornell University graduates tackled this problem by building a resistor sorting system. It enables users to input multiple resistors, measure their resistance and sort them. The project integrates motor controllers, resistance measurement and a graphical user interface.