3-D Printing with Liquid Metals

by Collin Ladd and Michael Dickey

Our research group at North Carolina State University has been studying new ways to use simple processes to print liquid metals into 3-D shapes at room temperature. 3-D printing is gaining popularity because of the ability to quickly go from concept to reality to design, replicate, or create objects. For example, it is now possible to draw an object on a computer or scan a physical object into software and have a highly detailed replica within a few hours.

3-D printing with liquid metals: a line of dollsMost 3-D printers currently pattern plastics, but printing metal objects is of particular interest because of metal’s physical strength and electrical conductivity. Because of the difficulty involved with metal printing, it is considered one of the “frontiers” of 3-D printing.
There are several approaches for 3-D printing of metals, but they all have limitations, including high temperatures (making it harder to co-print with other materials) and prohibitively expensive equipment. The most popular approach to printing metals is to use lasers or electron beams to sinter fine metal powders together at elevated temperatures, one layer at a time, to form solid metal parts.

Our approach uses a simple method to enable direct printing of liquid metals at room temperature. We print liquid metal alloys primarily composed of gallium. These alloys have metallic conductivity and a viscosity similar to water. Unlike mercury, gallium is not considered toxic nor does it evaporate. We extrude this metal from a nozzle to create droplets that can be stacked to form 3-D structures. Normally, two droplets of liquid (e.g., water) merge together into a single drop if stacked on each other. However, these metal droplets do not succumb to surface-tension effects because the metal rapidly forms a solid oxide “skin” on its surface that mechanically stabilizes the printed structures. This skin also makes it possible to extrude wires or metal fibers.

This printing process is important for two reasons. First, it enables the printing of metallic structures at room temperature using a process that is compatible with other printed materials (e.g., plastics). Second, it results in metal structures that can be used for flexible and stretchable electronics.

 

Stretchable electronics are motivated by the new applications that emerge by building electronic functionality on deformable substrates. It may enable new wearable sensors and textiles that deform naturally with the human body, or even an elastic array of embedded sensors that could serve as a substitute for skin on a prosthetic or robot-controlled fingertip. Unlike the bendable polyimide-based circuits commonly seen on a ribbon cable or inside a digital camera, stretchable electronics require more mechanical robustness, which may involve the ability to deform like a rubber band. However, a stretchable device need not be 100% elastic. Solid components embedded in a substrate (e.g., silicone) can be incorporated into a stretchable device if the connections between them can adequately deform.

Using our approach, we can direct print freestanding wire bonds or circuit traces to directly connect components—without etching or solder—at room temperature. Encasing these structures in polymer enables these interconnects to be stretched tenfold without losing electrical conductivity. Liquid metal wires also have been shown to be self-healing, even after being completely severed. Our group has demonstrated several applications of the liquid metal in soft, stretchable components including deformable antennas, soft-memory devices, ultra-stretchable wires, and soft optical components.

Although our approach is promising, there are some notable limitations. Gallium alloys are expensive and the price is expected to rise due to gallium’s expanding industrial use. Nevertheless, it is possible to print microscale structures without using much volume, which helps keep the cost down per component. Liquid metal structures must also be encased in a polymer substrate because they are not strong enough to stand by themselves for rugged applications.

Our current work is focused on optimizing this process and exploring new material possibilities for 3-D printing. We hope advancements will enable users to print new embedded electronic components that were previously challenging or impossible to construct using a 3-D printer.

Collin Ladd (claddc4@gmail.com)  is pursuing a career in medicine at the Medical University of South Carolina in Charleston, SC. Since 2009, he has been the primary researcher for the 3-D printed liquid metals project at The Dickey Group, which is headed by Michael Dickey. Collin’s interests include circuit board design and robotics. He has been an avid electronics hobbyist since high school.

Collin Ladd (claddc4@gmail.com) is pursuing a career in medicine at the Medical University of South Carolina in Charleston, SC. Since 2009, he has been the primary researcher for the 3-D printed liquid metals project at The Dickey Group, which is headed by Michael Dickey. Collin’s interests include circuit board design and robotics. He has been an avid electronics hobbyist since high school.

Michael Dickey (mddickey@ncsu.edu) is an associate professor at the North Carolina State University Department of Chemical and Biomolecular Engineering. His research includes studying soft materials, thin films and interfaces, and unconventional nanofabrication techniques. His research group’s projects include stretchable electronics, patterning gels, and self-folding sheets.

Michael Dickey (mddickey@ncsu.edu) is an associate professor at the North Carolina State University Department of Chemical and Biomolecular Engineering. His research includes studying soft materials, thin films and interfaces, and unconventional nanofabrication techniques. His research group’s projects include stretchable electronics, patterning gels, and self-folding sheets.

 

 

 

Q&A: Jeremy Blum, Electrical Engineer, Entrepreneur, Author

Jeremy Blum

Jeremy Blum

Jeremy Blum, 23, has always been a self-proclaimed tinkerer. From Legos to 3-D printers, he has enjoyed learning about engineering both in and out of the classroom. A recent Cornell University College of Engineering graduate, Jeremy has written a book, started his own company, and traveled far to teach children about engineering and sustainable design. Jeremy, who lives in San Francisco, CA, is now working on Google’s Project Glass.—Nan Price, Associate Editor

NAN: When did you start working with electronics?

JEREMY: I’ve been tinkering, in some form or another, ever since I figured out how to use my opposable thumbs. Admittedly, it wasn’t electronics from the offset. As with most engineers, I started with Legos. I quickly progressed to woodworking and I constructed several pieces of furniture over the course of a few years. It was only around the start of my high school career that I realized the extent to which I could express my creativity with electronics and software. I thrust myself into the (expensive) hobby of computer building and even built an online community around it. I financed my hobby through my two companies, which offered computer repair services and video production services. After working exclusively with computer hardware for a few years, I began to dive deeper into analog circuits, robotics, microcontrollers, and more.

NAN: Tell us about some of your early, pre-college projects.

JEREMY: My most complex early project was the novel prosthetic hand I developed in high school. The project was a finalist in the prestigious Intel Science Talent Search. I also did a variety of robotics and custom-computer builds. The summer before starting college, my friends and I built a robot capable of playing “Guitar Hero” with nearly 100% accuracy. That was my first foray into circuit board design and parallel programming. My most ridiculous computer project was a mineral oil-cooled computer. We submerged an entire computer in a fish tank filled with mineral oil (it was actually a lot of baby oil, but they are basically the same thing).

DeepNote Guitar Hero Robot

DeepNote Guitar Hero Robot

Mineral Oil-Cooled Computer

Mineral Oil-Cooled Computer

NAN: You’re a recent Cornell University College of Engineering graduate. While you were there, you co-founded Cornell’s PopShop. Tell us about the workspace. Can you describe some PopShop projects?

Cornell University's PopShop

Cornell University’s PopShop

JEREMY: I recently received my Master’s degree in Electrical and Computer Engineering from Cornell University, where I previously received my BS in the same field. During my time at Cornell, my peers and I took it upon ourselves to completely retool the entrepreneurial climate at Cornell. The PopShop, a co-working space that we formed a few steps off Cornell’s main campus, was our primary means of doing this. We wanted to create a collaborative space where students could come to explore their own ideas, learn what other entrepreneurial students were working on, and get involved themselves.

The PopShop is open to all Cornell students. I frequently hosted events there designed to get more students inspired about pursuing their own ideas. Common occurrences included peer office hours, hack-a-thons, speed networking sessions, 3-D printing workshops, and guest talks from seasoned venture capitalists.

Student startups that work (or have worked) out of the PopShop co-working space include clothing companies, financing companies, hardware startups, and more. Some specific companies include Rosie, SPLAT, LibeTech (mine), SUNN (also mine), Bora Wear, Yorango, Party Headphones, and CoVenture.

NAN: Give us a little background information about Cornell University Sustainable Design (CUSD). Why did you start the group? What types of CUSD projects were you involved with?

CUSD11JEREMY: When I first arrived at Cornell my freshman year, I knew right away that I wanted to join a research lab, and that I wanted to join a project team (knowing that I learn best in hands-on environments instead of in the classroom). I joined the Cornell Solar Decathlon Team, a very large group of mostly engineers and architects who were building a solar-powered home to enter in the biannual solar decathlon competition orchestrated by the Department of Energy.

By the end of my freshman year, I was the youngest team leader in the organization.  After competing in the 2009 decathlon, I took over as chief director of the team and worked with my peers to re-form the organization into Cornell University Sustainable Design (CUSD), with the goal of building a more interdisciplinary team, with far-reaching impacts.

CUSD3

Under my leadership, CUSD built a passive schoolhouse in South Africa (which has received numerous international awards), constructed a sustainable community in Nicaragua, has been the only student group tasked with consulting on sustainable design constraints for Cornell’s new Tech Campus in New York City, partnered with nonprofits to build affordable homes in upstate New York, has taught workshops in museums and school, contributed to the design of new sustainable buildings on Cornell’s Ithaca campus, and led a cross-country bus tour to teach engineering and sustainability concepts at K–12 schools across America. The group is now comprised of students from more than 25 different majors with dozens of advisors and several simultaneous projects. The new team leaders are making it better every day. My current startup, SUNN, spun out of an EPA grant that CUSD won.

CUSD7NAN: You spent two years working at MakerBot Industries, where you designed electronics for a 3-D printer and a 3-D scanner. Any highlights from working on those projects?

JEREMY: I had a tremendous opportunity to learn and grow while at MakerBot. When I joined, I was one of about two dozen total employees. Though I switched back and forth between consulting and full-time/part-time roles while class was in session, by the time I stopped working with MakerBot (in January 2013), the company had grown to more than 200 people. It was very exciting to be a part of that.

I designed all of the electronics for the original MakerBot Replicator. This constituted a complete redesign from the previous electronics that had been used on the second generation MakerBot 3-D printer. The knowledge I gained from doing this (e.g., PCB design, part sourcing, DFM, etc.) drastically outweighed much of what I had learned in school up to that point. I can’t say much about the 3-D scanner (the MakerBot Digitizer), as it has been announced, but not released (yet).

The last project I worked on before leaving MakerBot was designing the first working prototype of the Digitizer electronics and firmware. These components comprised the demo that was unveiled at SXSW this past April. This was a great opportunity to apply lessons learned from working on the Replicator electronics and find ways in which my personal design process and testing techniques could be improved. I frequently use my MakerBot printers to produce custom mechanical enclosures that complement the open-source electronics projects I’ve released.

NAN: Tell us about your company, Blum Idea Labs. What types of projects are you working on?

JEREMY: Blum Idea Labs is the entity I use to brand all my content and consulting services. I primarily use it as an outlet to facilitate working with educational organizations. For example, the St. Louis Hacker Scouts, the African TAHMO Sensor Workshop, and several other international organizations use a “Blum Idea Labs Arduino curriculum.” Most of my open-source projects, including my tutorials, are licensed via Blum Idea Labs. You can find all of them on my blog (www.jeremyblum.com/blog). I occasionally offer private design consulting through Blum Idea Labs, though I obviously can’t discuss work I do for clients.

NAN: Tell us about the blog you write for element14.

JEREMY: I generally use my personal blog to write about projects that I’ve personally been working on.  However, when I want to talk about more general engineering topics (e.g., sustainability, engineering education, etc.), I post them on my element14 blog. I have a great working relationship with element14. It has sponsored the production of all my Arduino Tutorials and also provided complete parts kits for my book. We cross-promote each-other’s content in a mutually beneficial fashion that also ensures that the community gets better access to useful engineering content.

NAN: You recently wrote Exploring Arduino: Tools and Techniques for Engineering Wizardry. Do you consider this book introductory or is it written for the more experienced engineer?

JEREMY: As with all the video and written content that I produce on my website and on YouTube, I tried really hard to make this book useful and accessible to both engineering veterans and newbies. The book builds on itself and provides tons of optional excerpts that dive into greater technical detail for those who truly want to grasp the physics and programming concepts behind what I teach in the book. I’ve already had readers ranging from teenagers to senior citizens comment on the applicability of the book to their varying degrees of expertise. The Amazon reviews tell a similar story. I supplemented the book with a lot of free digital content including videos, part descriptions, and open-source code on the book website.

NAN: What can readers expect to learn from the book?

JEREMY: I wrote the book to serve as an engineering introduction and as an idea toolbox for those wanting to dive into concepts in electrical engineering, computer science, and human-computer interaction design. Though Exploring Arduino uses the Arduino as a platform to experiment with these concepts, readers can expect to come away from the book with new skills that can be applied to a variety of platforms, projects, and ideas. This is not a recipe book. The projects readers will undertake throughout the book are designed to teach important concepts in addition to traditional programming syntax and engineering theories.

NAN: I see you’ve spent some time introducing engineering concepts to children and teaching them about sustainable engineering and renewable energy. Tell us about those experiences. Any highlights?

JEREMY: The way I see it, there are two ways in which engineers can make the world a better place: they can design new products and technologies that solve global problems or they can teach others the skills they need to assist in the development of solutions to global problems. I try hard to do both, though the latter enables me to have a greater impact, because I am able to multiply my impact by the number of students I teach. I’ve taught workshops, written curriculums, produced videos, written books, and corresponded directly with thousands of students all around the world with the goal of transferring sufficient knowledge for these students to go out and make a difference.

Here are some highlights from my teaching work:

bluestamp

I taught BlueStamp Engineering, a summer program for high school students in NYC in the summer of 2012. I also guest-lectured at the program in 2011 and 2013.

I co-organized a cross-country bus tour where we taught sustainability concepts to school children across the country.

indiaI was invited to speak at Techkriti 2013 in Kanpur, India. I had the opportunity to meet many students from IIT Kanpur who already followed my videos and used my tutorials to build their own projects.

Blum Idea Labs partnered with the St. Louis Hacker Scouts to construct a curriculum for teaching electronics to the students. Though I wasn’t there in person, I did welcome them all to the program with a personalized video.

brooklyn_childrens_zoneThrough CUSD, I organized multiple visits to the Brooklyn Children’s Zone, where my team and I taught students about sustainable architecture and engineering.

Again with CUSD, we visited the Intrepid museum to teach sustainable energy concepts using potato batteries.

intrepid

NAN: Speaking of promoting engineering to children, what types of technologies do you think will be important in the near future?

JEREMY: I think technologies that make invention more widely accessible are going to be extremely important in the coming years. Cheaper tools, prototyping platforms such as the Arduino and the Raspberry Pi, 3-D printers, laser cutters, and open developer platforms (e.g., Android) are making it easier than ever for any person to become an inventor or an engineer.  Every year, I see younger and younger students learning to use these technologies, which makes me very optimistic about the things we’ll be able to do as a society.

Using Socially Assistive Robots to Address the Caregiver Gap

David Feil-Seifer

Editor’s Note: David Feil-Seifer, a Postdoctoral Fellow in the Computer Science Department at Yale University, wrote this  essay for Circuit Cellar. Feil-Seifer focuses his research on socially assistive robotics (SAR), particularly the study of human-robot interaction for children with autism spectrum disorders (ASD). His dissertation work addressed autonomous robot behavior so that socially assistive robots can recognize and respond to a child’s behavior in unstructured play. He recently was hired as Assistant Professor of Computer Science at the University of Nevada, Reno.

There are looming health care and education crises on the horizon. Baby boomers are getting older and requiring more care, which puts pressure on caregivers. The US nursing shortage is projected to worsen. Similarly, the rapid growth of diagnoses of developmental disorders suggests a greater need for educators, one that the education system is struggling to meet. These great and growing shortfalls in the number of caregivers and educators may be addressed (in part) through the use of socially assistive robotics.

In health care, non-contact repetitive tasks make up a large part of a caregiver’s day. Tasks such as monitoring instruments only require a check to verify that readings are within norms. By offloading these tasks to an automated system, a nurse or doctor could spend more time doing work that better leverages their medical training. A robot can effectively perform simple repetitive tasks (e.g., monitoring breath spirometry exercises or post-stroke rehabilitation compliance).

I coined the term “socially assistive robotics” (SAR) to describe robots that provide such assistance through social rather than physical interaction. My research is the development of SAR algorithms and complete systems relevant to domains such as post-stroke rehabilitation, elder care, and therapeutic interaction for children with autism spectrum disorders (ASD). A key challenge for such autonomous SAR systems is the ability to sense, interpret, and properly respond to human social behavior.

One of my research priorities is developing a socially assistive robotic system for children with ASD. Children with ASD are characterized by social impairments, communication difficulties, and repetitive and stereotyped behaviors. Significant anecdotal evidence indicates that some children with ASD respond socially to robots, which could have therapeutic ramifications. We envision a robot that could act as a catalyst for social interaction, both human-robot and human-human, thus aiding ASD users’ human-human socialization. In such a scenario, the robot is not specifically generating social behavior or participating in social interaction, but instead behaves in a way known to provoke human-human interaction.

David Feil-Seifer developed an autonomous robot that recognizes and appropriately responds to a child’s free-form behavior in play contexts, similar to those seen in some more traditional autism spectrum disorder (ASD) therapies.

Enabling a robot to exhibit and understand social behavior with a child is challenging. Children are highly individual and thus technology used for social interaction needs to be robust to be effective. I developed an autonomous robot that recognizes and appropriately responds to a child’s free-form behavior in play contexts, similar to those seen in some more traditional ASD therapies.

To detect and mitigate child distress, I developed a methodology for learning and then applying a data-driven spatiotemporal model of social behavior based on distance-based features to automatically differentiate between typical vs. aversive child-robot interactions. Using a Gaussian mixture model learned over distance-based feature data, the developed system was able to detect and interpret social behavior with sufficient accuracy to recognize child distress. The robot can use this to change its own behavior to encourage positive social interaction.

To encourage human-human interaction once human-robot interaction was achieved, I developed a navigation planner that used the above spatiotemporal model. This was used to maintain the robot’s spatial relationship with a child to sustain interaction while also guiding the child to a particular location in a room. This could be used to encourage a child to move toward another interaction partner (e.g., a parent). The desired spatial interaction behavior is achieved by modifying an established trajectory planner to weigh candidate trajectories based on conformity to a trained model of the desired behavior.

I also developed a methodology for robot behavior that provides autonomous feedback for a robot-child imitation and turn-taking game. This was accomplished by incorporating an established therapeutic model of feedback along with a trained model of imitation behavior. This is used as part of an autonomous system that can play Simon Says, recognize when the rules have been violated, and provide appropriate feedback.

A growing body of data supports the hypothesis that robots have the potential to aid in addressing the needs of people through non-contact assistance. My research, along with that of many others, has resulted in technical advances for robots providing assistance to people. However, there is a long way to go before these systems can be deployed as a therapeutic platform. Given that the beneficiary populations are growing, and the required therapeutic needs are increasing far more rapidly than the existing resources to address it, SAR could provide lasting benefits to people in need.

David Feil-Seifer, a Postdoctoral Fellow in the Computer Science Department at Yale University, focuses his research on socially assistive robotics (SAR), particularly the study of human-robot interaction for children with autism spectrum disorders (ASD). His dissertation work addressed autonomous robot behavior so that socially assistive robots can recognize and respond to a child’s behavior in unstructured play. David received his MS and PhD in Computer Science from the University of Southern California and a BS in Computer Science from the University of Rochester, NY. He recently was hired as Assistant Professor of Computer Science at the University of Nevada, Reno.

CC275: Shape The Future

In January, Circuit Cellar introduced a new section, Tech the Future, which dedicates page 80 of our magazine to the insights of innovators in groundbreaking technologies.

We’ve reached out to a number of graduate students, professors, researchers, engineers, designers, and entrepreneurs, asking them to write short essays on their fields of expertise, with an emphasis on future trends.

Their topics have included high-speed data acquisition, Linux home automation, research into new materials to replace traditional silicon-based CMOS for circuitry design, control system theory for electronic device DIYers, and how open-source hardware will make world economies more democratic and efficient.

Our contributors have been diverse in more than just their topics. They have been talented

Tech the Future essayist Fergus Dixon designed this DNA sequencer, the subject of an article in the May 2013 issue of Circuit Cellar.

young researchers and seasoned professionals. Male and female. American, Portuguese, Italian, Indian, and Australian.

The one thing they have in common? They keep a close eye on the ever-changing landscape of technological change. And their essays have helped our readers focus on what to watch. We compensate authors for the essays we choose to publish, and we are eager to hear your suggestions on subjects for Tech the Future.

If you are an innovator interested in writing an essay for Tech the Future, e-mail me (editor@circuitcellar.com) with the topic you’d like to address and some information about yourself. If you are a reader who wants to hear from someone in particular through Tech the Future or has a suggestion for an essay topic, please contact me.

The work of those we’ve featured so far can be found online at circuitcellar.com/category/tech-the-future. Here are just a few of the innovators you will find there:

Maurizio Di Paolo Emilio, a designer of data acquisition software for physics-related experiments and industrial applications, discussing the future of data acquisition technology.

Saptarshi Das, a nano materials researcher who holds a PhD in Electrical Engineering from Purdue University, focusing on the urgent need for alternatives to silicon-based CMOS. These alternative materials, now the subject of extensive scientific research, will be game changers for the microelectronics and nanoelectronics industries, he says.

Fergus Dixon, an Australian entrepreneur and designer of the popular software program “Simulator for Arduino,” explaining why open-source hardware is a valuable tool in the development of new medical devices. Design opportunities for such devices are countless. Hot technologies developed for 3-D printing and unmanned aerial vehicles (UAVs) have direct medical applications, including 3-D-printed prosthetic ears and nanorobots that utilize UAV technology.

Enjoy these articles and others online. In the meantime, I’ll be checking my e-mail for what you would like to see featured in Tech the Future.

New Products: June 2013

C-Programmable Autonomous Mobile Robot System

The RP6v2 is a C-programmable autonomous mobile robot system designed for hobbyists and educators at universities, trade schools, and high schools. The system includes a CD with software, an extensive manual, plenty of example programs, and a large C function library. All library and example programs are open-source GNU general public license (GPL).

The autonomous mobile robot system has a large payload capacity and expansion boards, which may be stacked as needed. It receives infrared (IR) codes in RC5 format and includes integrated light, collision, speed, and IR-obstacle sensors. Its powerful tank drive train can drive up steep ramps and over obstacles.

The RP6v2’s features include an Atmel ATmega32 8-bit RISC microcontroller, AVR-GCC and RobotLoader open-source software for use with Windows and Linux, six PCB expansion areas, two 7.2-VDC motors, an I2C bus expansion system, and a USB interface for easy programming and communication.
The fully assembled RP6v2 robotic system costs $199.

Global Specialties
www.globalspecialties.com


Smart Panels with Powerful CPU and Multiple OS Support

The SP-7W61 and the SP-1061 smart panels are based on the Texas Instruments 1-GHz Sitara AM3715 Cortex-A8 processor and an Imagination Technologies integrated PowerVR SGX graphics accelerator. The products support multiple OSes—including Linux 2.6.37, Android 2.3.4, and Windows Compact 7—making them well suited for communications, medical and industrial control, human-machine interface (HMI), and transportation applications.

The SP-7W61 (7” and 16:9) and the SP-1061 (10” and 4:3) have a low-power, slim, fanless mechanical design and a high-value cost/performance (C/P) panel PC module that uses powerful and efficient components. Compared with other x86 HMI or open-frame products, the SP-7W61 and the SP-1061 successfully keep power consumption to less than 5.9 W, which is half the typical rate. The smart panels feature multiple display sizes and low power consumption options. They can be implemented into slim and thin chassis types (e.g., for HMI, control panels, or wall-mount controllers).

ADLINK provides full support on software customization based on different platforms. A virtual machine or software development kit (SDK) is provided with related documentation for different platforms, so users can easily set up the software environment.
Contact ADLINK for pricing.

ADLINK Technology, Inc.
www.adlinktech.com


Fast-Switching 0.65-TO-20-GHz Synthesizer

The APSYN420B is a 0.65-to-20-GHz frequency synthesizer with a 0.001-Hz resolution and 0.1° phase resolution. The synthesizer provides a nominal output power of 13 dBm into 50 ?. The module features a high-stability internal reference that can be phase-locked to a user-configurable external reference or used in a master-slave configuration for high phase coherence.

The APSYN420B’s key features include low phase noise, fast switching (settling time is typically 20 µs with a 20-µs frequency update), and an internal OCXO reference that can be configured for high phase coherence between multiple sources. The synthesizer offers USB and LAN interfaces and consumes less than 10 W when powered from an external 6-VDC supply.

The APSYN420B’s modulation capabilities include angle, pulse, pulse trains, and pulsed chirps. Linear, logarithmic, or random-frequency sweeps can be performed with combined modulation running. Frequency chirps (linear ramp, up/down) can also be accomplished. The device can accept external reference signals from 1 to 250 MHz.

Applications for the APSYN420B include automatic test equipment, satellite, and other telecommunications needs. The APSYN420B is designed for a 0°C-to-45°C operating temperature range and weighs less than 2 lb in a compact 2.4” × 4.2” × 8.3” enclosure.
Contact Saelig for pricing.

Saelig Co., Inc.
www.saelig.com


SoC for Next-Generation Multimedia and Navigation Systems

The R-Car H2 is the latest member of Renesas’s R-Car series of automotive system-on-a-chip (SoC) offerings. The SoC delivers more than 25,000 Dhrystone million instructions per second (DMIPS) and provides high-performance and state-of-the-art 3-D graphics capabilities for high-end multimedia and automotive navigation systems.
The R-Car H2 is powered by the ARM Cortex A-15 quad-core configuration running an additional ARM Cortex A-7 quad core. The SoC also features Imagination Technologies’s PowerVR Series6 G6400 graphics processing unit (GPU). The GPU supports open technologies (e.g., OpenGL ES 2.0) and the OpenGL ES 3.0 and OpenCL standards.
The R-Car H2’s bus architecture includes dedicated CPU and IP caches, which reduce the double data rate type three (DDR3) memory bandwidth consumption. To ensure adequate memory bandwidth, the R-Car H2 is equipped with two independent DDR3-1600 32-bit interfaces.

The R-Car H2 integrates advanced automotive interfaces including Ethernet audio video bridging (AVB), MOST150, and CAN and mass storage interfaces such as serial advanced technology attachment (SATA), USB 3.0/2.0, secure digital (SD) card, and PCI Express for system expansion. As a device option, the GPS baseband engine handles all modern navigation standards. The R-Car H2’s additional features include 24-bit digital signal processing (DSP) for codec, high-quality audio processing with hardware sample rate converters, and audio mixing. Its multi-core architecture enables you to implement real-time features (e.g., quick-boot, backup camera support, and media processing) parallel to the execution of advanced OSes, such as QNX Neutrino RTOS, Windows Embedded Automotive, or Linux.

The SoC’s media hardware accelerators enable features such as 4× HD 1080p video encoding/decoding including Blu-ray support at 60 frames per second, image/voice recognition, and high-resolution 3-D graphics with almost no CPU load. These implemented hardware modules also execute the display content improvements needed for HMI/navigation data similar to movie/DVD handling.
Contact Renesas for pricing.

Renesas Electronics Corp.
www.renesas.com


KNX Device Control

The KNX Gateway enables HAI by Leviton’s Omni and Lumina Ethernet-based controllers to communicate with and control KNX devices through KNX’s standardized network communications bus protocol. You can use an HAI by Leviton interface or automated controller programming to control KNX devices (e.g., lighting devices, temperature and energy management, motors for window coverings, shades, and shutters) in homes and businesses.

The KNX Gateway maps specific data points of each KNX device to a unit or thermostat number on the HAI by Leviton controller. The interface between the KNX Gateway and the HAI by Leviton controller utilizes a RS-485 serial connection.

Compatible controllers include HAI’s OmniPro II home-control system, Omni IIe, Omni LTe, Lumina Pro, and Lumina. The KNX Gateway is powered by either a power over Ethernet (PoE) connection or a 12-to-24-V AC/DC converter.
Contact Leviton for pricing.

Leviton Manufacturing Co., Inc.
www.leviton.com


DC/DC Controller Uses Only a Single Inductor

The LTC3863 is a high-voltage inverting DC/DC controller that uses a single inductor to produce a negative voltage from a positive-input voltage. All of the controller’s interface signals are positive ground referenced. None of the LTC3863’s pins are connected to a negative voltage, enabling the output voltage to be limited by only the external components selection.

Operating over a 3.5-to-60-V input supply range, the LTC3863 protects against high-voltage transients, operates continuously during automotive cold crank, and covers a broad range of input sources and battery chemistries. The controller helps increase the runtime in battery-powered applications.

It has a low 70-µA quiescent current in Standby mode with the output enabled in Burst Mode operation. The LTC3863’s output voltage can be set from –0.4 to 150 V or lower at up to 3 A typical, making it well suited for 12-or-24-V automotive, heavy equipment, industrial control, telecommunications, and robotic applications.

The LTC3863 drives an external P-channel MOSFET, operates with a selectable fixed frequency between 50 and 850 kHz, and is synchronizable to an external clock from 75 to 750 kHz. Its current-mode architecture provides easy loop compensation, fast transient response, cycle-by-cycle overcurrent protection, and excellent line regulation. Output current sensing is accomplished by measuring the voltage drop across a sense resistor.
The LTC3863’s additional features include programmable soft start or tracking, overvoltage protection, short-circuit protection, and failure mode and effects analysis (FMEA) verification for adjacent pin opens and shorts.

The LTC3863 is offered in 12-pin thermally enhanced MSOP and 3-mm × 4-mm QFN packages. The controllers cost $2.06 in 1,000-unit quantities.

Linear Technology Corp.
www.linear.com


Enhanced Web-Based Monitoring Software

HOBOlink is a web-enabled software platform that provides 24/7 data access and remote management for Onset Computer’s web-based HOBO U30 data logging systems. The software’s enhanced version enables users to schedule automatic delivery of exported data files in CSV or XLSX format, via e-mail or FTP.

HOBOlink can configure exported data export in a customized manner. For example, a user with four HOBO U30 systems measuring multiple parameters may configure HOBOlink to automatically export temperature data only. The time range may also be specified.

HOBOlink also enables users to easily access current and historical data, set alarm notifications and relay activations, and manage and control HOBO U30 systems without going into the field. An application programming interface (API) is available to organizations that want to integrate energy and environmental data from HOBOlink web servers with custom software applications.
Contact Onset for pricing.

Onset Computer Corp.
www.onsetcomp.com


Digitally Tunable Capacitors for LTE Smartphones

Peregrine Semiconductor expanded its DuNE digitally tunable capacitor (DTC) product line with six second-generation devices for antenna tuning in 4G long-term evolution (LTE) smartphones. The PE623060, PE623070, PE623080, and PE623090 (PE6230x0) DTCs have a 0.6-to-7.7-pF capacitance range and support main antenna power handling of up to 34 dBm. The PE621010 and the PE621020 (PE6210x0) DTCs have a 1.38-to-14-pF capacitance range and are optimized for power handling up to 26 dBm, making them well suited for diversity antennas. The highly versatile devices support a variety of tuning circuit topologies, particularly impedance-matching and aperture-tuning applications.
The PE6230x0 DTCs are optimized for key cellular frequency bands from 700 to 2,700 MHz, featuring direct battery voltage operation with consistent performance enabled by on-chip voltage regulation.

The 5-bit, 32-state PE623060/70/80 DTCs have a 0.9-to-4.6-pF capacitance range. The 4-bit, 16-state PE623090 DTC has a 0.6-to-2.35-pF capacitance range. The PE623090 DTC’s lower minimum capacitance solves a critical problem in high-frequency tuning. The 5-bit, 32-state PE6210x0 DTCs support the 100-to-3,000-MHz frequency range. These DTCs extend the range of diversity antennas and improve data rates by optimizing the antenna performance at the operating frequency. The PE621010 DTC has a 1.38-to-5.90-pF capacitance range.

The PE6230x0 and PE6210x0 product families enable designers to develop smaller, higher-performing antennas. The product’s antenna-tuning functions—including bias generation, integrated radio frequency (RF) filtering and bypassing, control interface, and electrostatic discharge (ESD) protection of 2-kV human body model (HBM)—are incorporated into a slim, 0.55-mm × 2-mm × 2-mm package. All decoding and biasing are integrated on-chip, and no external bypassing or filtering components are required.
Contact Peregrine for pricing.

Peregrine Semiconductor Corp.
www.psemi.com