CC281: Overcome Fear of Ethernet on an FPGA

As its name suggests, the appeal of an FPGA is that it is fully programmable. Instead of writing software, you design hardware blocks to quickly do what’s required of a digital design. This also enables you to reprogram an FPGA product in the field to fix problems “on the fly.”

But what if “you” are an individual electronics DIYer rather than an industrial designer? DIYers can find FPGAs daunting.

Issue281The December issue of Circuit Cellar issue should offer reassurance, at least on the topic of “UDP Streaming on an FPGA.” That’s the focus of Steffen Mauch’s article for our Programmable Logic issue (p. 20).

Ethernet on an FPGA has several applications. For example, it can be used to stream measured signals to a computer for analysis or to connect a camera (via Camera Link) to an FPGA to transmit images to a computer.

Nonetheless, Mauch says, “most novices who start to develop FPGA solutions are afraid to use Ethernet or DDR-SDRAM on their boards because they fear the resulting complexity.” Also, DIYers don’t have the necessary IP core licenses, which are costly and often carry restrictions.

Mauch’s UDP monitor project avoids such costs and restrictions by using a free implementation of an Ethernet-streaming device based on a Xilinx Spartan-6 LX FPGA. His article explains how to use OpenCores’s open-source tri-mode MAC implementation and stream UDP packets with VHDL over Ethernet.

Mauch is not the only writer offering insights into FPGAs. For more advanced FPGA enthusiasts, columnist Colin O’Flynn discusses hardware co-simulation (HCS), which enables the software simulation of a design to be offloaded to an FPGA. This approach significantly shortens the time needed for adequate simulation of a new product and ensures that a design is actually working in hardware (p. 52).

This Circuit Cellar issue offers a number of interesting topics in addition to programmable logic. For example, you’ll find a comprehensive overview of the latest in memory technologies, advice on choosing a flash file system for your embedded Linux system, a comparison of amplifier classes, and much more.

Mary Wilson
editor@circuitcellar.com

Dual-Channel 3G-SDI Video/Audio Capture Card

ADLINK PCIe-2602

ADLINK PCIe-2602 Video/Audio Capture Card

The PCIe-2602 is an SDI video/audio capture card that supports all SD/HD/3G-SDI signals and operates at six times the resolution of regular VGA connections. The card also provides video quality with lossless full color YUV 4:4:4 images for sharp, clean images.

The PCIe-2602 is well suited for medical imaging and intelligent video surveillance and analytics. With up to 12-bit pixel depth, the card  provides extreme image clarity and smoother transitions from color-to-color enhance image detail to support critical medical imaging applications, including picture archiving and communication system (PACS) endoscopy and broadcasting.

The card’s features include low latency uncompressed video streaming, CPU offloading, and support for high-quality live viewing for video analytics of real-time image acquisition, as required in casino and defense environments. PCIe-2602 signals can be transmitted over 100 m when combined with a 75-Ω coaxial cable.

The PCIe-2602 is equipped with RS-485 and digital I/O. It accommodates external devices (e.g., PTZ cameras and sensors) and supports Windows 7/XP OSes. The card comes with ADLINK’s ViewCreator Pro utility to enable setup, configuration, testing, and system debugging without any software programming. All ADLINK drivers are compatible with Microsoft DirectShow.

Contact ADLINK for pricing.

ADLINK Technology, Inc.
www.adlinktech.com