Zynq SoC SOM Module Enabled With HSR/PRP IP

iWave Systems has partnered with SoC-e for enabling HSR/PRP IP on iWave’s Zynq 7000 SoC SOM Module. iWave has rigorously validated SoC-e’s High-availability Seamless Redundancy (HSR) and Parallel Redundancy Protocol (PRP) IP Protocol on our Zynq 7000 SoC based SOM module. iWave’s Zynq 7000 SoC SOM and SoC-e’s HSR/PRP Switch IP Core reduce the time-to-market and simplifying design complexity. SOC-e develops IP portfolios for leading-edge networking and synchronization technologies for time critical systems.The Zynq-7000 programmable SoC family integrates the software programmability of an Arm-based processor with the hardware programmability of an FPGA, enabling key analytics and hardware acceleration while integrating CPU, DSP, ASSP and mixed signal functionality on a single device. The iW-RainboW-G28M (Zynq 7000 Board) is a featured-full and ready to-operate embedded software and advanced circuit development kit built around the smallest member from the Xilinx Zynq-7000 family, the Z-7010.

The Zynq-7000 SOM / Development Kit is based on the Xilinx All Programmable System-on-Chip architecture, which firmly incorporates a single / Dual Cortex A9 with Xilinx 7-series FPGA logic. At the point when combined with the rich set of media and connectivity peripherals accessible on the Zynq 7000 SOM, the Zynq Z-7007S, Z-7014S, Z-7010, Z-7020, can host an entire design system.

Memories, 512 MB DDR3 (Expandable to 1 GB) or 512 MB NAND Flash (Expandable), that are on-board, video and sound I/O, USB 2.0 OTG, Gigabit Ethernet and SD (4-bit) will have your board up-and-running with no extra hardware required. Moreover, PMIC with RTC bolster connectors is accessible to put any design on a simple development way.

The iW-RainboW-G28M gives an ultra-cost to embedded designers that don’t require the high-thickness I/O of the FMC connector yet at the same time wish to use the enormous preparing force and extensibility of the Zynq AP SoC architecture.

iWave Systems | www.iwavesystems.com

MPU-Based SOM Meets Industrial IoT Linux Needs

Microchip Technology has unveiled a new System on Module (SOM) featuring the SAMA5D2 microprocessor (MPU). The ATSAMA5D27-SOM1 contains the recently released ATSAMA5D27C-D1G-CU System in Package (SiP). The SOM simplifies IoT design by integrating the power management, non-volatile boot memory, Ethernet PHY and high-speed DDR2 memory onto a small, single-sided printed circuit board (PCB). There is a great deal of design effort and complexity associated with creating an industrial-grade MPU-based system running a Linux operating system. Even developers with expertise in the area spend a lot of time on PCB layout to guarantee signal integrity for the high-speed interfaces to DDR memory and PHY while complying with EMC standards.

The SAMA5D2 family of products provides an extremely flexible design experience no matter the level of expertise. For example, the SOM—which integrates multiple external components and eliminates key design challenges around EMI, ESD and signal integrity—can be used to expedite development time. Customers can solder the SOM to their board and take it to production, or it can be used as a reference design along with the free schematics, design and Gerber files and complete bill of materials which are available online. Customers can also transition from the SOM to the SiP or the MPU itself, depending on their design needs. All products are backed by Microchip’s customer-driven obsolescence policy which ensures availability to customers for as long as needed.

The Arm Cortex-A5-based SAMA5D2 SiP, mounted on the SOM PCB or available separately, integrates 1 Gbit of DDR2 memory, further simplifying the design by removing the high- speed memory interface constraints from the PCB. The impedance matching is done in the package, not manually during development, so the system will function properly at normal and low- speed operation. Three DDR2 memory sizes (128 Mb, 512 Mb and 1 Gb) are available for the SAMA5D2 SiP and optimized for bare metal, RTOS and Linux implementations.

Microchip customers developing Linux-based applications have access to the largest set of device drivers, middleware and application layers for the embedded market at no charge. All of Microchip’s Linux development code for the SiP and SOM are mainlined in the Linux communities. This results in solutions where customers can connect external devices, for which drivers are mainlined, to the SOM and SIP with minimal software development.

The SAMA5D2 family features the highest levels of security in the industry, including PCI compliance, providing an excellent platform for customers to create secured designs. With integrated Arm TrustZone and capabilities for tamper detection, secure data and program storage, hardware encryption engine, secure boot and more, customers can work with Microchip’s security experts to evaluate their security needs and implement the level of protection that’s right for their design. The SAMA5D2 SOM also contains Microchip’s QSPI NOR Flash memory, a Power Management Integrated Circuit (PMIC), an Ethernet PHY and serial EEPROM memory with a Media Access Control (MAC) address to expand design options.

The SOM1-EK1 development board provides a convenient evaluation platform for both the SOM and the SiP. A free Board Support Package (BSP) includes the Linux kernel and drivers for the MPU peripherals and integrated circuits on the SOM. Schematics and Gerber files for the SOM are also available.

The ATSAMA5D2 SiP is available in four variants starting with the ATSAMA5D225C-D1M- CU in a 196-lead BGA package for $8.62 each in 10,000 units. The ATSAMA5D27-SOM1 is available now for $39.00 each in 100 units The ATSAMA5D27-SOM1-EK1 development board is available for $245.00.

Microchip Technology | www.microchip.com

Qseven Card Sports Renesas RZ/G1M

iWave has announced a System-On-Module (SOM) based on Renesas RZ/G1M embedded processr. RZ/G1M SOM is Qseven R2.0 compatible industrial grade CPU module. Called the iW-RainboW-G20M, this SOM module supports 1 GB DDR3 RAM, 4 GB eMMC Flash and 2 MB SPI NOR Flash. Expandable memory is optional. The module also includes on SOM Gigabit Ethernet PHY, Micro SD slot and USB HUB.

renesas-rz-g1-mpu-embedded-boardRenesas’s RZG1M processor supports dual cortex A15 core operating at 1.5 GHz core and includes 64-bit DDR3 interface at 800 MHz. These features provide higher performance for applications such as image processing of multiple video streams and video sensing. The high-speed on-chip integrated USB 3.0, PCIe, Gbit Ethernet and SATA peripherals allows easy expansion of functionality without the need for external components. The RZ/G1M processor supports full HD hardware encode and decode processing up to 1,080 at 60 frames/s, dual display and three channel video input ports. The built-in PowerVR SGX544MP2 Graphics core at 520 MHz allows the user to develop highly effective user interfaces.

The RZ/G1M SOM is supported Linux 3.10 LTSI with Android BSP support to come. To enable quick prototyping of RZG1M SOM, iWave systems supports RZ/G1M development kit with comprehensive peripheral support. This will help customers to save up to 60% of new product development cycle using the RZ-G1M MPU.

iWave Systems Technologies | www.iwavesystems.com

Technical Preview of Windows 10 IoT Core on ARM Platform

Toradex recently announced the availability of a technical preview of the Windows 10 IoT Core on an ARM-based System on Module (SOM). The technical preview enables embedded developers to evaluate the new features of Windows 10 IoT Core on an industrial-grade embedded computing platform. According to Toradex, a starter kit—available for a limited time at a promotional price—is available with a Colibri T30 SOM and Iris carrier board with required accessories.

The technical preview is based on Colibri T30 powered by NVIDIA’s Tegra 3 ARM Cortex-A9 Quad Core embedded processor. Part of the Azure IoT Certified Program, the Colibri T30 supports accelerated DirectX graphics and provides low-level hardware access.

Although the technical preview’s has a limited number of features, Toradex announced that it intends to gather customer feedback and later extend features and add Windows 10 IoT Core support for its other ARM-based SOMs.

Source: Toradex

Embedded SOM with Linux-Based RTOS

National Instruments has introduced an embedded system-on-module (SOM) development board with integrated Linux-based real-time operating system (RTOS).NIsom

Processing power in the 2” x 3” SOM comes from a Xilinx Zync-7020 all programmable SOC running a dual core ARM Cortex-A9 at 667 MHz. A built-in, low-power Artix-7 FPGA offers 160 single-ended I/Os and Its dedicated processor I/O include Gigabit Ethernet USB 2.0 host, USB 2.0 host/device, SDHC, RS-232, and Tx/Rx. The SOM’s power requirements are typically 3 to 5 W.

The SOM integrates a validated board support package (BSP) and device drivers together with the National Instruments Linux real-time OS. The SOM board is supplied with a full suite of middleware for developing an embedded OS, custom software drivers, and other common software components.

The LabVIEW FPGA graphical development platform eliminates the need for expertise in the design approach using a hardware description language.

[Via Elektor]