A Quiet Place for Soldering and Software Design

Senior software engineer Carlo Tauraso, of Trieste, Italy, has designed his home workspace to be “a distraction-free area where tools, manuals, and computer are at your fingertips.”

Tauraso, who wrote his first Assembler code in the 1980s for the Sinclair Research ZX Spectrum PC, now works on developing firmware for network devices and microinterfaces for a variety of European companies. Several of his articles and programming courses have been published in Italy, France, Spain, and the US. Three of his articles have appeared in Circuit Cellar since 2008.

Photo 1: This workstation is neatly divided into a soldering/assembling area on the left and developing/programming area on the right.

Photo 1: This workstation is neatly divided into a soldering/assembling area on the left and a developing/programming area on the right.

Tauraso keeps an orderly and, most importantly, quiet work area that helps him stay focused on his designs.

This is my “magic” designer workspace. It’s not simple to make an environment that’s perfectly suited to you. When I work and study I need silence.

I am a software engineer, so during designing I always divide the work into two main parts: the analysis and the implementation. I decided, therefore, to separate my workspace into two areas: the developing/programming area on the right and the soldering/assembling area on the left (see Photo 1). When I do one or the other activity, I move physically in one of the two areas of the table. Assembling and soldering are manual activities that relax me. On the other hand, programming often is a rather complex activity that requires a lot more concentration.

Photo 2: The marble slab at the right of Tauraso’s assembling/soldering area protects the table surface and the optical inspection camera nearby helps him work with tiny ICs.

Photo 2: The marble slab at the right of Tauraso’s assembling/soldering area protects the table surface. The optical inspection camera nearby helps him work with tiny ICs.

The assembling/soldering area is carefully set up to keep all of Tauraso’s tools within easy reach.

I fixed a marble slab square on the table to solder without fear of ruining the wood surface (see Photo 2). As you can see, I use a hot-air solder station and the usual iron welder. Today’s ICs are very small, so I also installed a camera for optical inspection (the black cylinder with the blue stripe). On the right, there are 12 outlets, each with its own switch. Everything is ready and at your fingertips!

Photo 3: This developing and programming space, with its three small computers, is called “the little Hydra.”

Photo 3: This developing and programming space, with its three small computers, is called “the little Hydra.”

The workspace’s developing and programming area makes it easy to multitask (see Photo 3).

In the foreground you can see a network of three small computers that I call “the little Hydra” in honor of the object-based OS developed at Carnegie Mellon University in Pittsburgh, PA, during the ’70s. The HYDRA project sought to demonstrate the cost-performance advantages of multiprocessors based on an inexpensive minicomputer. I used the same philosophy, so I have connected three Mini-ITX motherboards. Here I can test network programming with real hardware—one as a server, one as a client, one as a network sniffer or an attacker—while, on the other hand, I can front-end develop Windows and the [Microchip Technology] PIC firmware while chatting with my girlfriend.

This senior software designer has created a quiet work area with all his tools close at hand.

Senior software engineer Tauraso has created a quiet work area with all his tools close at hand.

Circuit Cellar will be publishing Tauraso’s article about a wireless thermal monitoring system based on the ANT+ protocol in an upcoming issue. In the meantime, you can follow Tauraso on Twitter @CarloTauraso.

An Engineer Who Retires to the Garage

Jerry Brown, of Camarillo, CA, retired from the aerospace industry five years ago but continues to consult and work on numerous projects at home. For example, he plans to submit an article to Circuit Cellar about a Microchip Technology PIC-based computer display component (CDC) he designed and built for a traffic-monitoring system developed by a colleague.

Jerry Brown sits at his workbench. The black box atop the workbench is an embedded controller and is part of a traffic monitoring system he has been working on.

Jerry Brown sits at his workbench. The black box atop the workbench is an embedded controller and part of  his traffic monitoring system project.

“The traffic monitoring system is composed of a beam emitter component (BEC), a beam sensor component (BSC), and the CDC, and is intended for unmanned use on city streets, boulevards, and roadways to monitor and record the accumulative count, direction of travel, speed, and time of day for vehicles that pass by a specific location during a set time period,” he says.

Brown particularly enjoys working with PWM LED controllers. Circuit Cellar editors look forward to seeing his project article. In the meantime, he sent us the following description and pictures of the space where he conceives and executes his creative engineering ideas.

Jerry's garage-based lab.

Brown’s garage-based lab.

My workspace, which I call my “lab,” is on one side of my two-car garage and is fairly well equipped. (If you think it looks a bit messy, you should have seen it before I straightened it up for the “photo shoot.”)  

I have a good supply of passive and active electronic components, which are catalogued and, along with other parts and supplies, are stored in the cabinets and shelves alongside and above the workbench. I use the computer to write and compile software programs and to program PIC flash microcontrollers.  

The photos show the workbench and some of the instrumentation I have in the lab, including a waveform generator, a digital storage oscilloscope, a digital multimeter, a couple of power supplies, and a soldering station.  

The black box visible on top of the workbench is an embedded controller and is part of the traffic monitoring system that I have been working on.

Instruments in Jerry's lab include a waveform generator, a digital storage oscilloscope, a digital multimeter, a couple of power supplies, and a soldering station.

Instruments in Brown’s lab include a waveform generator, a digital storage oscilloscope, a digital multimeter, a couple of power supplies, and a soldering station. 

Brown has a BS in Electrical Engineering and a BS in Business Administration from California Polytechnic State University in San Luis Obispo, CA. He worked in the aerospace industry for 30 years and retired as the Principal Engineer/Manager of a Los Angeles-area aerospace company’s electrical and software design group.

CC276: Not a Hockey Fan?

Hockey can be fun, unless you’re building a surface-mount device (SMD) prototype and the “puck” is one of the tiny components getting away from your soldering iron. In an article appearing last month in Circuit Cellar, “DIY?Surface-Mount Circuit Boards: Tips and Tricks for Building SMD Prototypes,” engineer James Lyman inadvertently sparked a bit of debate on the magazine’s website. Readers posted various alternatives to Lyman’s approach to the “SMD hockey” challenge. Here’s how Lyman’s article describes the problem and his solution:

“When I built my first few surface-mount boards, I did what so many amateurs and technicians do. I carefully placed each minute component on the circuit board in its correct position, and then spent several minutes playing ‘SMD hockey.’ With nothing holding the component in place, I’d take my soldering iron and heat the pad component while touching the solder to the junction. Just as the solder was about to melt, that little component would turn into a ‘puck’ and scoot away. Using the soldering iron’s tip as a ‘hockey stick,’ I’d chase the little puck back to its pads and try again, which was maddening…

“It slowly occurred to me that I needed something to hold each part in place while soldering—something that would glue them in place. Commercial houses glue the components down on the boards and then use a wave soldering machine, which does all the soldering at once. That’s exactly what I started doing. I use J-B Weld, a common off-the-shelf epoxy.”

Here is a sampling of alternative solutions readers posted to circuitcellar.com.

  • From Bill: “If you must use epoxy, then the cheapest fast-setting epoxy from Poundland will do the trick.
    “Personally, I’ve always used a tiny spot of cheapo CA superglue, which gives you 20-60 s to position the component. If there are a lot of SMDs on the board, you might want to use an accelerant spray to reduce the CA cure to 5 or 10 s. If you can’t afford proper CA accelerant, then isoprop or a gentle waft above the board with a cloth soaked in a little household ammonia will do the trick.”
  • From Trevor: ”I did a lot of hand soldering of SM parts years ago and agree that it is best to fix the parts before soldering.
    “I used an adhesive made for SM parts from RS Components, which comes in a syringe and is really easy to use. ” (Trevor’s post provides a link to his preferred Electrolube brand.)
  • From Kevin: ”Crikey, epoxying all the components first is a bit brutal. What if you want to change one? Melt the solder and twist, all at the same time?
    “Much easier to tin one pad, then place the part on it with tweezers and touch it with the iron, one end soldered fine, now solder the other end.”

Feel free to visit circuitcellar.com to weigh in or take some of the advice offered there.