Solar Cells Explained (EE Tip #104)

All solar cells are made from at least two different materials, often in the form of two thin, adjacent layers. One of the materials must act as an electron donor under illumination, while the other material must act as an electron acceptor. If there is some sort of electron barrier between the two materials, the result is an electrical potential. If each of these materials is now provided with an electrode made from an electrically conductive material and the two electrodes are connected to an external load, the electrons will follow this path.

Source: Jens Nickels, Elektor, 070798-I, 6/2009

Source: Jens Nickels, Elektor, 070798-I, 6/2009

The most commonly used solar cells are made from thin wafers of polycrystalline silicon (polycrystalline cells have a typical “frosty” appearance after sawing and polishing). The silicon is very pure, but it contains an extremely small amount of boron as a dopant (an intentionally introduced impurity), and it has a thin surface layer doped with phosphorus. This creates a PN junction in the cell, exactly the same as in a diode. When the cell is exposed to light, electrons are released and holes (positive charge carriers) are generated. The holes can recombine with the electrons. The charge carriers are kept apart by the electrical field of the PN junction, which partially prevents the direct recombination of electrons and holes.

The electrical potential between the electrodes on the top and bottom of the cell is approximately 0.6 V. The maximum current (short-circuit current) is proportional to the surface area of the cell, the impinging light energy, and the efficiency. Higher voltages and currents are obtained by connecting cells in series to form strings and connecting these strings of cells in parallel to form modules.

The maximum efficiency achieved by polycrystalline cells is 17%, while monocrystalline cells can achieve up to 22%, although the overall efficiency is lower if the total module area is taken into account. On a sunny day in central Europe, the available solar energy is approximately 1000 W/m2, and around 150 W/m2 of this can be converted into electrical energy with currently available solar cells.

Source: Jens Nickels, Elektor, 070798-I, 6/2009

Source: Jens Nickels, Elektor, 070798-I, 6/2009

Cells made from selenium, gallium arsenide, or other compounds can achieve even higher efficiency, but they are more expensive and are only used in special applications, such as space travel. There are also other approaches that are aimed primarily at reducing costs instead of increasing efficiency. The objective of such approaches is to considerably reduce the amount of pure silicon that has to be used or eliminate its use entirely. One example is thin-film solar cells made from amorphous silicon, which have an efficiency of 8 to 10% and a good price/performance ratio. The silicon can be applied to a glass sheet or plastic film in the form of a thin layer. This thin-film technology is quite suitable for the production of robust, flexible modules, such as the examples described in this article.

Battery Charging

From an electrical viewpoint, an ideal solar cell consists of a pure current source in parallel with a diode (the outlined components in the accompanying schematic diagram). When the solar cell is illuminated, the typical U/I characteristic of the diode shifts downward (see the drawing, which also shows the opencircuit voltage UOC and the short-circuit current ISC). The panel supplies maximum power when the load corresponds to the points marked “MPP” (maximum power point) in the drawing. The power rating of a cell or panel specified by the manufacturer usually refers to operation at the MPP with a light intensity of 100,000 lux and a temperature of 25°C. The power decreases by approximately 0.2 to 0.5 %/°C as the temperature increases.

A battery can be charged directly from a panel without any problems if the open-circuit voltage of the panel is higher than the nominal voltage of the battery. No voltage divider is necessary, even if the battery voltage is only 3 V and the nominal voltage of the solar panel is 12 V. This is because a solar cell always acts as a current source instead of a voltage source.

If the battery is connected directly to the solar panel, a small leakage current will flow through the solar panel when it is not illuminated. The can be prevented by adding a blocking diode to the circuit (see the schematic). Many portable solar modules have a built-in blocking diode (check the manufacturer’s specifications).

This simple arrangement is adequate if the maximum current from the solar panel is less than the maximum allowable overcharging current of the battery. NiMH cells can be overcharged for up to 100 hours if the charging current (in A) is less than one-tenth of their rated capacity in Ah. This means that a panel with a rated current of 2 A can be connected directly to a 20-Ah battery without any problems. However, under these conditions the battery must be fully discharged by a load from time to time.

Practical Matters

When positioning a solar panel, you should ensure that no part of the panel is in the shade, as otherwise the voltage will decrease markedly, with a good chance that no current will flow into the connected battery.

Most modules have integrated bypass diodes connected in reverse parallel with the solar cells. These diodes prevent reverse polarization of any cells that are not exposed to sunlight, so the current from the other cells flows through the diodes, which can cause overheating and damage to the cells. To reduce costs, it is common practice to fit only one diode to a group of cells instead of providing a separate diode for each cell.

—Jens Nickels, Elektor, 070798-I, 6/2009

Q&A: Scott Potter (Engineering a Way To Clean Solar Mirrors)

Designer and technology executive Scott Potter won first prize in the 2012 RL78 Green Energy Challenge, presented by Renesas Electronics in partnership with Circuit Cellar and Elektor magazines. The global contest called on participants to develop green energy designs utilizing Renesas’s RL78 microcontrollers. Scott won with his solar-powered electrostatic cleaning robot, which removes dust and debris from the tracking mirrors of large-scale concentrating solar power plants.—Mary Wilson, Managing Editor

Scott Potter

MARY: Where do you live and what is your current occupation?

SCOTT: I live in Los Gatos, CA, and I’m a senior director at Jasper Wireless, a company providing machine-to-machine (M2M) data communications services. I have been with Jasper since the beginning in 2005 when the company started with four people and a plan. Now Jasper is approaching 150 employees and we are a global company. I have served many roles at Jasper, working on location technology, device middleware, back-end reporting, and front-end software.

My other job is as an inventor at Taft Instruments. We are just now forming around the technology I developed for the RL78 design challenge. We are finding there is a big need for this solution in the solar industry, which is poised for tremendous growth in the next few years.

MARY: How did you first become interested in embedded electrical design? What is your educational background?

SCOTT: I started working for my father at his startup in the basement of our home in Long Island when I was a teenager (child labor laws were more lax back then). We were doing embedded electronics design along with mechanical modeling and prototyping. I learned from the best and it has stuck with me all these years. I went on to get a BSEE from Tufts University and I toyed with the idea of business school, but it never gripped me like engineering.

MARY: Why did you enter the 2012 Renesas RL78 Green Energy Challenge? What about its focus appealed to you?

SCOTT: The green energy design challenge came along at the perfect time. I had been working on the cleaning robot for a few months when I saw the challenge. The microcontroller I had originally picked was turning out to be not a great choice, and the challenge made me take a look at the RL78. The part was perfect, and the challenge gave me a goal to work toward.

MARY: How did the idea of designing a robot to clean solar-tracking mirrors (i.e., heliostats) for solar power plants come to you?

SCOTT: I can’t say it came to me all at once. I have participated in solar technology development sporadically throughout my career, and I have always tried to stay abreast of the latest developments. After the lessons learned from the parabolic trough concentrators, the move to high-concentration concentrating solar power (CSP) plants, which more efficiently convert solar power to electrical power, struck me as the right thing to do.

The high-concentration CSP plant utilizes hundreds of thousands of mirrors spread over many acres. The mirrors reflect sunlight onto a centrally located tower, which creates intense heat that drives a steam turbine generator.

The efficiency gains from the higher temperatures will make this the dominant technology for utility scale power generation. But there is a high maintenance cost associated with all of those mirror surfaces, especially in environments where water is scarce. A number of people have realized this and proposed various solutions to keeping the surfaces clean. Unfortunately, none of the proposed solutions will work well at the scale of a large utility plant.

I experimented with quite a few waterless cleaning techniques before coming back to electrostatics. It was my wife, Dia, who reminded me that NASA had been cleaning dust off panels on space missions for years using electrostatic principles. She convinced me to stop working with the forced-air concept I was doing at the time and switch to electrostatics. It was definitely the right choice.

MARY: What does the system do? What problems does it solve for power plants? How is the device different from what is already available for the task of cleaning heliostats?

SCOTT: Our patent-pending device is unique in many ways. It is completely autonomous, requiring no external power or water. The installation time is less than 10 s per heliostat, after which the device will remain attached and operating maintenance free for the life of the plant. We borrowed a marketing term from the military for this: “Set it and forget it.”

Most of the competing products have a long installation time and require some external wiring and maintenance. These can be logistical problems in a field of hundreds of thousands of mirrors.

Our device is also unique in that it cleans continuously. This prevents accumulation of organic materials on the surface, which can mix with dew and make a bio-film on the surface. That film bakes on and requires vigorous scrubbing to remove. We also have a feature to handle the dew, or frost, if it’s present.

MARY: What were some of your design challenges along the way and how did you address them?

SCOTT: They were numerous. The first challenge was the power source. It is important that this device be entirely self-powered to avoid having to install any wiring. I had to find a solar-panel configuration that provided enough power at the right voltage levels. I started with lower voltages and had a lot of trouble with the boost converters.

I also couldn’t use any battery storage because of the life requirement. This means that everything has to operate intermittently, gracefully shutting down when the sun fades and then coming up where it left off when the sun returns.

The next challenge was the mechanical drive. This had to grip the mirror tightly enough to resist a stream of water from a cleaning hose (infrequent cleaning with water will probably still be performed). And it had to do this with no power applied.

Another big challenge was the high-voltage electronics. It turns out there is little off-the-shelf technology available for the kind of high-voltage circuitry I needed. Large line output power transformers (LOPTs) for old cathode ray tubes (CRTs) are too large and expensive.

Some of the resonant high-voltage circuits used for cold cathode fluorescent lighting (CCFL) can be used as building blocks, but I had to come up with quite a few innovations to be able to control this voltage to perform the cleaning task. I had more than a few scorched breadboards before arriving at the current design, which is very small, light, and powerful.

MARY: You recently formed Taft Instruments (click here for Taft website). Who are the players in the company and what services does it provide?

SCOTT: We formed Taft instruments to commercialize this cleaning technology. We have been very fortunate to attract a very talented team that has made tremendous progress promoting the company in industry and attracting investment.

We have Steve Gluck and Gary Valinoti, both highly respected Wall Street executives who have galvanized the company and provided opportunities I could never have imagined. They are now recruiting the rest of the team and we are talking to some extremely qualified people. And of course my wife, Dia, is making numerous contributions that she will probably never get credit for.

MARY: How’s business? How would you describe the market for your product and the potential for growth and reach (both domestically and globally)?

SCOTT: We are not at the commercial deployment stage just yet. Our immediate focus is on the field trials we are starting with a number of industry players and the US Department of Energy National Laboratories. We fully expect the trials to be successful and for our large-scale rollouts to begin in about a year.

The market potential for this is tremendous. I’m not sure anyone fully realizes yet the global transformation that is about to take place. Now that the “grid parity” point is near (the point where the cost of solar power is competitive with fossil fuels), solar will become one of the fastest-growing markets we have seen in a century.

Entire national energy pictures will change from single-digit percentages to being dominated by solar. It is a very exciting time in the solar industry, and we are very happy to be part of it.

MARY: Are you individually—or is your company—developing any new designs? If so, can you tell us something about them?

SCOTT: Yes. I can’t say much, but we are working on some very interesting new technologies that will improve on the electrostatic cleaning principles. This technology will vastly expand the base that we can work with.

MARY: You describe yourself as a “serial entrepreneur” with a strong technical background in electronics, software, hardware, and systems design. That combination of skills comes in handy when establishing a new business. But it also helped you land your day job eight years ago as Director of Location Technology at Jasper Wireless. What do you see as future key trends in M2M communications?

SCOTT: M2M has really taken off since we began in 2005. Back then, there were only a few applications people had envisioned taking wireless. That list has exploded, and some analysts are predicting volumes of M2M endpoints that exceed the human population by tenfold!

We have seen large growth in a number of different verticals over the years, the most apparent one right now being automotive, with all the car companies providing connected services. Jasper is uniquely positioned to offer a global solution to these companies through our carrier partners.

MARY: Over the years, you have gained expertise in areas ranging from embedded electronics and wireless, to applications of the global positioning and geographic information systems (GPS and GIS). What do you enjoy most and what are some career highlights? Is one your involvement in the development of a GPS for the New York fire department’s recovery operations after the collapse of the World Trade Center?

SCOTT: What I enjoy most is working with motivated teams to create compelling products and services. One of my proudest moments was when our team at Links Point rose to the 9/11 challenge. At the time, I was a founder and the chief technology officer of Links Point, which provided GPS and location mapping.

When the request came from the New York fire department for a solution to locating remains at the recovery site, the team dedicated themselves to providing a solution no first responder had ever had access to previously. And we did that in record time. We had to come up with a proposal in a half-day and implement it within three days. You have to realize that GPS and PDAs were very new at the time and there were a lot of technical challenges. We also had to compete with some other companies that were proposing more accurate surveying equipment, such as laser ranging.

Our product, a PDA with a GPS attachment, won out in the end. The advantages of our handheld devices were that they were rugged and that firefighters could easily carry them into Ground Zero. We got the opportunity and honor of serving the  FDNY because of the extreme talent, dedication, and professionalism of my team. I would like to mention them: Jerry Kochman, Bill Campbell, Murray Levine, Dave Mooney, and Lucas Hjelle.

MARY: What is the most important piece of advice you would give to someone trying to make a marketable product of his or her design for an electrical device?

SCOTT: Whatever the device, make sure you are passionate about it and committed to seeing it come through. There is a quote that Dia framed for me hanging in my lab—this is attributed to Goethe, but there is some question about that. Anyway, the quote is very inspirational:

“Until one is committed, there is hesitancy, the chance to draw back. Concerning all acts of initiative (and creation), there is one elementary truth that ignorance of which kills countless ideas and splendid plans: that the moment one definitely commits oneself, then Providence moves too. All sorts of things occur to help one that would never otherwise have occurred. A whole stream of events issues from the decision, raising in one’s favor all manner of unforeseen incidents and meetings and material assistance, which no man could have dreamed would have come his way. Whatever you can do, or dream you can do, begin it. Boldness has genius, power, and magic in it. Begin it now.” I

Editor’s note: For more details, schematics, and a video of Scott Potter’s solar-powered electrostatic cleaning robot, click here.

Electrostatic Cleaning Robot Project

How do you clean a clean-energy generating system? With a microcontroller (and a few other parts, of course). An excellent example is US designer Scott Potter’s award-winning, Renesas RL78 microcontroller-based Electrostatic Cleaning Robot system that cleans heliostats (i.e., solar-tracking mirrors) used in solar energy-harvesting systems. Renesas and Circuit Cellar magazine announced this week at DevCon 2012 in Garden Grove, CA, that Potter’s design won First Prize in the RL78 Green Energy Challenge.

This image depicts two Electrostatic Cleaning Robots set up on two heliostats. (Source: S. Potter)

The nearby image depicts two Electrostatic Cleaning Robots set up vertically in order to clean the two heliostats in a horizontal left-to-right (and vice versa) fashion.

The Electrostatic Cleaning Robot in place to clean

Potter’s design can quickly clean heliostats in Concentrating Solar Power (CSP) plants. The heliostats must be clean in order to maximize steam production, which generates power.

The robot cleaner prototype

Built around an RL78 microcontroller, the Electrostatic Cleaning Robot provides a reliable cleaning solution that’s powered entirely by photovoltaic cells. The robot traverses the surface of the mirror and uses a high-voltage AC electric field to sweep away dust and debris.

Parts and circuitry inside the robot cleaner

Object oriented C++ software, developed with the IAR Embedded Workbench and the RL78 Demonstration Kit, controls the device.

IAR Embedded Workbench IDE

The RL78 microcontroller uses the following for system control:

• 20 Digital I/Os used as system control lines

• 1 ADC monitors solar cell voltage

• 1 Interval timer provides controller time tick

• Timer array unit: 4 timers capture the width of sensor pulses

• Watchdog timer for system reliability

• Low voltage detection for reliable operation in intermittent solar conditions

• RTC used in diagnostic logs

• 1 UART used for diagnostics

• Flash memory for storing diagnostic logs

The complete project (description, schematics, diagrams, and code) is now available on the Challenge website.

 

DIY Green Energy Design Projects

Ready to start a low-power or energy-monitoring microcontroller-based design project? You’re in luck. We’re featuring eight award-winning, green energy-related designs that will help get your creative juices flowing.

The projects listed below placed at the top of Renesas’s RL78 Green Energy Challenge.

Electrostatic Cleaning Robot: Solar tracking mirrors, called heliostats, are an integral part of Concentrating Solar Power (CSP) plants. They must be kept clean to help maximize the production of steam, which generates power. Using an RL78, the innovative Electrostatic Cleaning Robot provides a reliable cleaning solution that’s powered entirely by photovoltaic cells. The robot traverses the surface of the mirror and uses a high voltage AC electric field to sweep away dust and debris.

Parts and circuitry inside the robot cleaner

Cloud Electrofusion Machine: Using approximately 400 times less energy than commercial electrofusion machines, the Cloud Electrofusion Machine is designed for welding 0.5″ to 2″ polyethylene fittings. The RL78-controlled machine is designed to read a barcode on the fitting which determines fusion parameters and traceability. Along with the barcode data, the system logs GPS location to an SD card, if present, and transmits the data for each fusion to a cloud database for tracking purposes and quality control.

Inside the electrofusion machine (Source: M. Hamilton)

The Sun Chaser: A GPS Reference Station: The Sun Chaser is a well-designed, solar-based energy harvesting system that automatically recalculates the direction of a solar panel to ensure it is always facing the sun. Mounted on a rotating disc, the solar panel’s orientation is calculated using the registered GPS position. With an external compass, the internal accelerometer, a DC motor and stepper motor, you can determine the solar panel’s exact position. The system uses the Renesas RDKRL78G13 evaluation board running the Micrium µC/OS-III real-time kernel.

[Video: ]

Water Heater by Solar Concentration: This solar water heater is powered by the RL78 evaluation board and designed to deflect concentrated amounts of sunlight onto a water pipe for continual heating. The deflector, armed with a counterweight for easy tilting, automatically adjusts the angle of reflection for maximum solar energy using the lowest power consumption possible.

RL78-based solar water heater (Source: P. Berquin)

Air Quality Mapper: Want to make sure the air along your daily walking path is clean? The Air Quality Mapper is a portable device designed to track levels of CO2 and CO gasses for constructing “Smog Maps” to determine the healthiest routes. Constructed with an RDKRL78G13, the Mapper receives location data from its GPS module, takes readings of the CO2 and CO concentrations along a specific route and stores the data in an SD card. Using a PC, you can parse the SD card data, plot it, and upload it automatically to an online MySQL database that presents the data in a Google map.

Air quality mapper design (Source: R. Alvarez Torrico)

Wireless Remote Solar-Powered “Meteo Sensor”: You can easily measure meteorological parameters with the “Meteo Sensor.” The RL78 MCU-based design takes cyclical measurements of temperature, humidity, atmospheric pressure, and supply voltage, and shares them using digital radio transceivers. Receivers are configured for listening of incoming data on the same radio channel. It simplifies the way weather data is gathered and eases construction of local measurement networks while being optimized for low energy usage and long battery life.

The design takes cyclical measurements of temperature, humidity, atmospheric pressure, and supply voltage, and shares them using digital radio transceivers. (Source: G. Kaczmarek)

Portable Power Quality Meter: Monitoring electrical usage is becoming increasingly popular in modern homes. The Portable Power Quality Meter uses an RL78 MCU to read power factor, total harmonic distortion, line frequency, voltage, and electrical consumption information and stores the data for analysis.

The portable power quality meter uses an RL78 MCU to read power factor, total harmonic distortion, line frequency, voltage, and electrical consumption information and stores the data for analysis. (Source: A. Barbosa)

High-Altitude Low-Cost Experimental Glider (HALO): The “HALO” experimental glider project consists of three main parts. A weather balloon is the carrier section. A glider (the payload of the balloon) is the return section. A ground base section is used for communication and display telemetry data (not part of the contest project). Using the REFLEX flight simulator for testing, the glider has its own micro-GPS receiver, sensors and low-power MCU unit. It can take off, climb to pre-programmed altitude and return to a given coordinate.

High-altitude low-cost experimental glider (Source: J. Altenburg)

DIY Solar-Powered, Gas-Detecting Mobile Robot

German engineer Jens Altenburg’s solar-powered hidden observing vehicle system (SOPHECLES) is an innovative gas-detecting mobile robot. When the Texas Instruments MSP430-based mobile robot detects noxious gas, it transmits a notification alert to a PC, Altenburg explains in his article, “SOPHOCLES: A Solar-Powered MSP430 Robot.”  The MCU controls an on-board CMOS camera and can wirelessly transmit images to the “Robot Control Center” user interface.

Take a look at the complete SOPHOCLES design. The CMOS camera is located on top of the robot. Radio modem is hidden behind the camera so only the antenna is visible. A flexible cable connects the camera with the MSP430 microcontroller.

Altenburg writes:

The MSP430 microcontroller controls SOPHOCLES. Why did I need an MSP430? There are lots of other micros, some of which have more power than the MSP430, but the word “power” shows you the right way. SOPHOCLES is the first robot (with the exception of space robots like Sojourner and Lunakhod) that I know of that’s powered by a single lithium battery and a solar cell for long missions.

The SOPHOCLES includes a transceiver, sensors, power supply, motor
drivers, and an MSP430. Some block functions (i.e., the motor driver or radio modems) are represented by software modules.

How is this possible? The magic mantra is, “Save power, save power, save power.” In this case, the most important feature of the MSP430 is its low power consumption. It needs less than 1 mA in Operating mode and even less in Sleep mode because the main function of the robot is sleeping (my main function, too). From time to time the robot wakes up, checks the sensor, takes pictures of its surroundings, and then falls back to sleep. Nice job, not only for robots, I think.

The power for the active time comes from the solar cell. High-efficiency cells provide electric energy for a minimum of approximately two minutes of active time per hour. Good lighting conditions (e.g., direct sunlight or a light beam from a lamp) activate the robot permanently. The robot needs only about 25 mA for actions such as driving its wheel, communicating via radio, or takes pictures with its built in camera. Isn’t that impossible? No! …

The robot has two power sources. One source is a 3-V lithium battery with a 600-mAh capacity. The battery supplies the CPU in Sleep mode, during which all other loads are turned off. The other source of power comes from a solar cell. The solar cell charges a special 2.2-F capacitor. A step-up converter changes the unregulated input voltage into 5-V main power. The LTC3401 changes the voltage with an efficiency of about 96% …

Because of the changing light conditions, a step-up voltage converter is needed for generating stabilized VCC voltage. The LTC3401 is a high-efficiency converter that starts up from an input voltage as low as 1 V.

If the input voltage increases to about 3.5 V (at the capacitor), the robot will wake up, changing into Standby mode. Now the robot can work.

The approximate lifetime with a full-charged capacitor depends on its tasks. With maximum activity, the charging is used after one or two minutes and then the robot goes into Sleep mode. Under poor conditions (e.g., low light for a long time), the robot has an Emergency mode, during which the robot charges the capacitor from its lithium cell. Therefore, the robot has a chance to leave the bad area or contact the PC…

The control software runs on a normal PC, and all you need is a small radio box to get the signals from the robot.

The Robot Control Center serves as an interface to control the robot. Its main feature is to display the transmitted pictures and measurement values of the sensors.

Various buttons and throttles give you full control of the robot when power is available or sunlight hits the solar cells. In addition, it’s easy to make short slide shows from the pictures captured by the robot. Each session can be saved on a disk and played in the Robot Control Center…

The entire article appears in Circuit Cellar 147 2002. Type “solarrobot”  to access the password-protected article.