Cypress Semi Teams with Arm for Secure IoT MCU Solution

Cypress Semiconductor has expanded its collaboration with Arm to provide management of IoT edge nodes. The solution integrates the Arm Pelion IoT Platform with Cypress’ low power, dual-core PSoC 6 microcontrollers (MCUs) and CYW4343W Wi-Fi and Bluetooth combo radios. PSoC 6 provides Arm v7-M hardware-based security that adheres to the highest level of device protection defined by the Arm Platform Security Architecture (PSA).
Cypress and Arm demonstrated hardware-secured onboarding and communication through the integration of the dual-core PSoC 6 MCU and Pelion IoT Platform in the Arm booth at Arm TechCon last month. In the demo, the PSoC 6 was running Arm’s PSA-defined Secure Partition Manager to be supported in Arm Mbed OS version 5.11 open-source embedded operating system, which will be available this December. Embedded systems developers can leverage the private key storage and hardware-accelerated cryptography in the PSoC 6 MCU for cryptographically-secured lifecycle management functions, such as over-the-air firmware updates, mutual authentication and device attestation and revocation. According to the company, Cypress is making a strategic push to integrate security into its compute, connect and store portfolio for the IoT.

The PSoC 6 architecture is built on ultra-low-power 40-nm process technology, and the MCUs feature low-power design techniques to extend battery life up to a full week for wearables. The dual-core Arm Cortex-M4 and Cortex-M0+ architecture lets designers optimize for power and performance simultaneously. Using its dual cores combined with configurable memory and peripheral protection units, the PSoC 6 MCU delivers the highest level of protection defined by the Platform Security Architecture (PSA) from Arm.

Designers can use the MCU’s software-defined peripherals to create custom analog front-ends (AFEs) or digital interfaces for innovative system components such as electronic-ink displays. The PSoC 6 MCU features the latest generation of Cypress’ industry-leading CapSense capacitive-sensing technology, enabling modern touch and gesture-based interfaces that are robust and reliable.

Cypress Semiconductor | www.cypress.com

Security Takes Center Stage for MCUs

Enabling Secure IoT

Embedded systems face security challenges unlike those in the IT realm. To meet those needs, microcontroller vendors continue to add ever-more sophisticated security features to their devices—both on their own and via partnerships with security specialists.

By Jeff Child, Editor-in-Chief

For embedded systems, there is no one piece of technology that can take on all the security responsibilities of a system on their own. Indeed, everything from application software to firmware to data storage has a role to play in security. That said, microcontollers have been trending toward assuming a central role in embedded security. One driving factor for this is the Internet-of-Things (IoT). As the IoT era moves into full gear, all kinds of devices are getting more connected. And because MCUs are a key component in those connected systems, MCUs have evolved in recent years to include more robust security features on chip.

That trend has continued over the last 12 months, with the leading MCU vendors ramping up those embedded security capabilities in a variety of ways—some on their own and some by teaming up with hardware and software security specialists.

Built for IoT Security

Exemplifying these trends, Microchip Technology in June released its SAM L10 and SAM L11 MCU families (Figure 1). The devices were designed to address the increasing risks of exposing intellectual property (IP) and sensitive information in IoT-based embedded systems. The MCU families are based on the Arm Cortex-M23 core, with the SAM L11 featuring Arm TrustZone for Armv8-M, a programmable environment that provides hardware isolation between certified libraries, IP and application code. Security features on the MCUs include tamper resistance, secure boot and secure key storage. These, combined with TrustZone technology, protect applications from both remote and physical attacks.

Figure 1
The SAM L10 and SAM L11 MCU families provide TrustZone for Armv8-M hardware isolation between certified libraries, IP and application code. The MCUs also feature tamper resistance, secure boot and secure key storage.

In addition to TrustZone technology, the SAM L11 security features include an on-board cryptographic module supporting Advanced Encryption Standard (AES), Galois Counter Mode (GCM) and Secure Hash Algorithm (SHA). The secure boot and secure key storage with tamper detection capabilities establish a hardware root of trust. It also offers a secure bootloader for secure firmware upgrades.

Microchip has partnered with Trustonic, a member of Microchip’s Security Design Partner Program, to offer a comprehensive security solution framework that simplifies implementation of security and enables customers to introduce end products faster. Microchip has also partnered with Secure Thingz and Data I/O Corporation to offer secure provisioning services for SAM L11 customers that have a proven security framework.

Wireless MCU

Likewise focusing on IoT security, NXP Semiconductor in February announced its K32W0x wireless MCU platform. According to NXP, it’s the first single-chip device with a dual-core architecture and embedded multi-protocol radio. It provides a solution for miniaturizing sophisticated applications that typically require a larger, more costly two-chip solution. Examples include consumer devices such as wearables, smart door locks, thermostats and other smart home devices.

The K32W0x embeds a dual-core architecture comprised of an Arm Cortex-M4 core for high performance application processing and a Cortex-M0+ core for low-power connectivity and sensor processing. Memory on chip includes 1.25 MB of flash and 384 KB of SRAM. Its multi-protocol radio supports Bluetooth 5 and IEEE 802.15.4 including the Thread IP-based mesh networking stack and the Zigbee 3.0 mesh networking stack.

Figure 2
Security features of the K32W0x MCU include a cryptographic sub-system that has a dedicated core, dedicated instruction and data memory for encryption, signing and hashing algorithms including AES, DES, SHA, RSA and ECC.

Features of the K32W0x’s security system include a cryptographic sub-system that has a dedicated core, dedicated instruction and data memory for encryption, signing and hashing algorithms including AES, DES, SHA, RSA and ECC. Secure key management is provided for storing and protecting sensitive security keys (Figure 2). Support is enabled for erasing the cryptographic sub-system memory, including security keys, upon sensing a security breach or physical tamper event. The device has a Resource Domain Controller for access control, system memory protection and peripheral isolation. Built-in secure boot and secure over-the-air programming is supported to assure only authorized and authenticated code runs in the device.

To extend the on-chip security features of the K32W0x MCU platform, NXP has collaborated with B-Secur, an expert in biometric authentication, to develop a system that uses an individual’s unique heart pattern (electrocardiogram/ECG) to validate identity, making systems more secure than using an individual’s fingerprint or voice.

IP Boosts Security

For its part, Renesas Electronics addressed the IoT security challenge late last year when it expanded its RX65N/RX651 Group MCU lineup.  …

Read the full article in the October 339 issue of Circuit Cellar

Don’t miss out on upcoming issues of Circuit Cellar. Subscribe today!

Note: We’ve made the October 2017 issue of Circuit Cellar available as a free sample issue. In it, you’ll find a rich variety of the kinds of articles and information that exemplify a typical issue of the current magazine.

Compact MCU Offers Enhanced Security Features

Maxim Integrated Products has announced the MAX32558 “DeepCover” family of secure microcontrollers that provide advanced cryptography, secure key storage and tamper detection in a 50% smaller package. As electronic products become smaller and increasingly connected, there is a growing threat to sensitive information and privacy, requiring manufacturers to keep security top of mind when designing their devices. While designers should prevent security breaches at the device level, they often struggle with the tradeoff of enhanced security with minimized board space, as well as the cost of design complexity and meeting time to market goals.
The MAX32558 DeepCover Arm Cortex-M3 flash-based secure microcontroller solves these challenges by delivering strong security in a small footprint while simplifying design integration and speeding time to market. It integrates several security features into a small package, including secure key storage, a secure bootloader, active tamper detection and secure cryptographic engines. It also supports multiple communications channels such as USB, serial peripheral interface (SPI), universal asynchronous receiver-transmitter (UART) and I2C, making it ideal for a wide range of applications. Maxim’s long-standing reputation and experience in payment terminal certifications as well as its established support and technology can help streamline the certification process for customers, reducing the process up to 6 months’ time (rather than the typical 12 to 18 months).

Security:Features:

  • Shields sensitive data by providing the most secure key storage available
  • Offers secure bootloader, active tamper detection and secure cryptographic engines
  • Compliant with Federal Information Processing Standard (FIPS) 140-2 L3&4 certification

Compared to a secure authenticator, the MAX32558 provides 30x more general-purpose input/output (GPIO) in the same PCB footprint (4.34 mm x 4.34 mm) wafer-level package (WLP). The closest competitor, meanwhile, offers a device with similar features but in a much larger package (8 mm x 9 mm ball-grid array 121 (BGA121)). The devices reduces footprint by embedding a number of security features to address point-of-sale Payment Card Industry (PCI) pin transaction security (PTS) requirements, as well as several analog interfaces. It provides 512 KB of internal flash and 96 KB of internal SRAM

Easy design integration is enabled by a complete software framework including real-time operating system (RTOS) integration and code examples in evaluation kit. Code can be easily ported from one device to another as it shares the same API software library as the rest of the product family. A pre-certified Europay, Mastercard and Visa (EMV)-L1 stack for smartcard interface is provided. Extensive documentation and code is provided for managing the device lifecycle, such as secure firmware signing and device personalization. The MAX32558 is available at Maxim’s website for $3.80 (1,000-up).

Maxim Integrated | www.maximintegrated.com

MCUs Bring Enhanced Security to IoT Systems

Microchip has announced its SAM L10 and SAM L11 MCU families addressing the growing need for security in IoT applications. The new MCU families are based on the Arm Cortex-M23 core, with the SAM L11 featuring Arm TrustZone for Armv8-M, a programmable environment that provides hardware isolation between certified libraries, IP and application code. Security features on the MCUs include tamper resistance, secure boot and secure key storage. These, combined with TrustZone technology, protect applications from both remote and physical attacks.

In addition to TrustZone technology, the SAM L11 security features include an on-board cryptographic module supporting Advanced Encryption Standard (AES), Galois Counter Mode (GCM) and Secure Hash Algorithm (SHA). The secure boot and secure key storage with tamper detection capabilities establish a hardware root of trust. It also offers secure bootloader for secure firmware upgrades.

Microchip has partnered with Trustonic, a member of Microchip’s Security Design Partner Program, to offer a comprehensive security solution framework that simplifies implementation of security and enables customers to introduce end products faster. Microchip has also partnered with Secure Thingz and Data I/O Corporation to offer secure provisioning services for SAM L11 customers that have a proven security framework.

Both MCU families offer Microchip’s latest-generation Peripheral Touch Controller (PTC) for capacitive touch capabilities. Designers can easily add touch interfaces that provide an impressively smooth and efficient user experience in the presence of moisture and noise while maintaining low power consumption. The touch interface makes the devices ideal for a myriad of automotive, appliance, medical and consumer Human Machine Interface (HMI) applications.

The SAM L10 and SAM L11 Xplained Pro Evaluation Kits are available to kick-start development. All SAM L10/L11 MCUs are supported by the Atmel Studio 7 Integrated Development Environment (IDE), IAR Embedded Workbench, Arm Keil MDK as well as Atmel START, a free online tool to configure peripherals and software that accelerates development. START also supports TrustZone technology to configure and deploy secure applications. A power debugger and data analyzer tool are available to monitor and analyze power consumption in real time and fine tune the consumption numbers on the fly to meet application needs. Microchip’s QTouch Modular Library, 2D Touch Surface Library and QTouch Configurator are also available to simplify touch development.

Devices in the SAM L10 series are available starting at $1.09 (10,000s). Devices in the SAM L11 series are available starting at $1.22 (10,000s).

Microchip Technology | www.microchip.com

Verifying Code Readout Protection Claims

Think Like an Attacker

How do you verify the security of microcontrollers? MCU manufacturers often make big claims, but sometimes it is in your best interest to verify them yourself. In this article, Colin discusses a few threats against code readout and looks at verifying some of those claimed levels.

By Colin O’Flynn

You’ve got your latest and greatest IoT toaster designed, and you’re looking to move forward with production. But one thing concerns you: How do you know this stellar code isn’t going to be cloned as soon as you release it to the market?

You turn to the firmware protection features of your chosen microcontroller, but how good is it? This article can’t hope to answer that question in general, rather it will instead give you a short example of how to help answer that question for any specific microcontroller.

In particular, it will teach you to “think like an attacker” when reading through datasheets. Look for small loopholes that could have big consequences, and you will have a much better time navigating the landscape of potential attacks.

Know What’s Out There

One of the most important things is to keep an eye out for new and interesting attacks against these devices. In my January 2018 article (Circuit Cellar 330) I described how there is a published attack against some of the NXP LPC devices, which makes it very easy to unlock them. You can see the presentation entitled “Breaking Code Read Protection on the NXP LPC-family Microcontrollers” by Chris Gerlinsky which describes this attack. Another recent one is an attack against STMicroelectronics’ STM32F0 devices entitled “Shedding Too Much Light on a Microcontroller’s Firmware Protection” by Johannes Obermaier and Stefan Tatschner. That one is a little more limited, but still has some interesting information regarding potential security attacks.

I’m hoping to distill some of these attacks down into common problems, which will help you close a few loopholes before someone rips off your IoT toaster design. At least now if it fails in the marketplace you have no one to blame but yourself.
To give you something concrete to read (and for me to reference), I’ve chosen to use the ST STM32F303 series because it’s a device I’ve been using myself lately. I’m not going to be revealing any unknown vulnerabilities—so if you’re reading this from your office at  STMicroelectronics, no need to sweat. It also has some pretty common configuration options, so makes for a nice reference you can apply to a range of other devices.

ST Read Protection (RDP)

The first step when you are looking at a new device should be to very carefully inspect the security or debug lock protection portion of the datasheet. They will typically go into a fair amount of detail around how the protection mechanism works.
The STM32F3 Reference Manual (RM0316) has this split into two sections. Section 5, entitled “Option byte description” provides information about how the flags are stored in flash. Section 4.3 entitled “Memory Protection” details how this is actually used to protect the code in your device.

Table 1
This excerpt from the datasheet shows how the flash memory read protection levels are defined for the STM32F3 device.

The two important pieces of information for us are replicated in Table 1 and
Table 2. They are the flash memory protection levels, and the associated access allowed at each level. The RDP byte is a special “option byte”, which is the value of a specific location in flash memory. Note the scheme they have chosen uses two bytes, where one is always programmed to be the complement of the other byte. This is presumably used for error checking, and if a byte is not matched with a complement, an error flag is set.

Table 2
Code protection levels 1 and 2 have differing protection abilities. This excerpt from the datasheet shows where flash memory can be read/written/executed from.

Right away you should notice that this scheme does not fall victim to the same problem as the LPC attack I talked about before. In particular the LPC attack exploited the fact a fault or glitch could corrupt the flag value, which caused the CPU to disable the protection.

With the STM32F303, these invalid levels will all map to Protection Level 1. This protection level does not allow external flash access, which “should” be a good sign. The highest protection level also claims to be impossible to remove, but if we could corrupt the value of the option bytes in memory we could downgrade from Protection Level 2 to Protection Level 1. In fact, this “downgrade” is exactly what was presented by Obermaier & Tatschner. The downgrade used a chip decapsulation and light to flip the bits, which is relatively invasive. Other fault attacks (such as voltage or EM) might work but would require investigation before assuming that. Such temporary fault attacks would require the value is read and latched.

But as a good designer, you should assume such faults could be made possible. In this case it would be possible to “downgrade” the device from Protection Level 2 to Protection Level 1. So, what happens if an attacker performed this downgrade? That takes us into the second part of this article. …

Read the full article in the July 336 issue of Circuit Cellar

Don’t miss out on upcoming issues of Circuit Cellar. Subscribe today!

Note: We’ve made the October 2017 issue of Circuit Cellar available as a free sample issue. In it, you’ll find a rich variety of the kinds of articles and information that exemplify a typical issue of the current magazine.

July Circuit Cellar: Sneak Preview

The July issue of Circuit Cellar magazine is coming soon. And we’ve rustled up a great herd of embedded electronics articles for you to enjoy.

Not a Circuit Cellar subscriber?  Don’t be left out! Sign up today:

 

Here’s a sneak preview of July 2018 Circuit Cellar:

TECHNOLOGIES FOR THE INTERNET-OF-THINGS

Wireless Standards and Solutions for IoT  
One of the critical enabling technologies making the Internet-of-Things possible is the set of well-established wireless standards that allow movement of data to and from low-power edge devices. Here, Circuit Cellar’s Editor-in-Chief, Jeff Child, looks at key wireless standards and solutions playing a role in IoT.

Product Focus: IoT Device Modules
The rapidly growing IoT phenomenon is driving demand for highly integrated modules designed to interface with IoT devices. This Product Focus section updates readers on this technology trend and provides a product album of representative IoT interface modules.

TOOLS AND TECHNIQUES AT THE DESIGN PHASE

EMC Analysis During PCB Layout
If your electronic product design fails EMC compliance testing for its target market, that product can’t be sold. That’s why EMC analysis is such an important step. In his article, Mentor Graphics’ Craig Armenti shows how implementing EMC analysis during the design phase provides an opportunity to avoid failing EMC compliance testing after fabrication.

Extreme Low-Power Design
Wearable consumer devices, IoT sensors and handheld systems are just a few of the applications that strive for extreme low-power consumption. Beyond just battery-driven designs, today’s system developers want no-battery solutions and even energy harvesting. Circuit Cellar’s Editor-in-Chief, Jeff Child, dives into the latest technology trends and product developments in extreme low power.

Op Amp Design Techniques
Op amps can play useful roles in circuit designs linking the real analog world to microcontrollers. Stuart Ball shares techniques for using op amps and related devices like comparators to optimize your designs and improve precision.

Wire Wrapping Revisited
Wire wrapping may seem old fashioned, but this tried and true technology can solve some tricky problems that arise when you try to interconnect different kinds of modules like Arduino, Raspberry Pi and so on. Wolfgang Matthes steps through how to best employ wire wrapping for this purpose and provides application examples.

DEEP DIVES ON MOTOR CONTROL AND MONITORING

BLDC Fan Current
Today’s small fans and blowers depend on brushless DC (BLDC) motor technology for their operation. In this article, Ed Nisley explains how these seemingly simple devices are actually quite complex when you measure them in action. He makes some measurements on the motor inside a tangential blower and explores how the data relates to the basic physics of moving air.

Electronic Speed Control (Part 1)
An Electronic Speed Controller (ESC) is an important device in motor control designs, especially in the world of radio-controlled (RC) model vehicles. In Part 1, Jeff Bachiochi lays the groundwork by discussing the evolution of brushed motors to brushless motors. He then explores in detail the role ESC devices play in RC vehicle motors.

MCU-Based Motor Condition Monitoring
Thanks to advances in microcontrollers and sensors, it’s now possible to electronically monitor aspects of a motor’s condition, like current consumption, pressure and vibration. In this article, Texas Instrument’s Amit Ashara steps through how to best use the resources on an MCU to preform condition monitoring on motors. He looks at the signal chain, connectivity issues and A-D conversion.

AND MORE FROM OUR EXPERT COLUMNISTS

Verifying Code Readout Protection Claims
How do you verify the security of microcontrollers? MCU manufacturers often make big claims, but sometimes it is in your best interest to verify them yourself. In this article, Colin O’Flynn discusses a few threats against code readout and looks at verifying some of those claimed levels.

Thermoelectric Cooling (Part 1)
When his thermoelectric water color died prematurely, George Novacek was curious whether it was a defective unit or a design problem. With that in mind, he decided to create a test chamber using some electronics combined with components salvaged from the water cooler. His tests provide some interesting insights into thermoelectric cooling.

 

June Circuit Cellar: Sneak Preview

The June issue of Circuit Cellar magazine is coming soon. And we’ve planted a lovely crop of embedded electronics articles for you to enjoy.

Not a Circuit Cellar subscriber?  Don’t be left out! Sign up today:

 

Here’s a sneak preview of June 2018 Circuit Cellar:

PCB DESIGN AND POWER: MAKING SMART CHOICES

PCB Design and Verification
PCB design tools and methods continue to evolve as they race to keep pace with faster, highly integrated electronics. Automated, rules-based chip placement is getting more sophisticated and leveraging AI in interesting ways. And supply chains are linking tighter with PCB design processes. Circuit Cellar Chief Editor Jeff Child looks at the latest PCB design and verification tools and technologies.

PCB Ground Planes
Tricky design decisions crop up when you’re faced with crafting a printed circuit board (PCB) for any complex system—and many of them involve the ground plane. There is dealing with noisy components and deciding between a common ground plane or separate ones—and that’s just the tip of the iceberg. Robert Lacoste shares his insights on the topic, examining the physics, simulation tools and design examples of ground plane implementations.

Product Focus: AC-DC Converters
To their peril, embedded system developers often treat their choice of power supply as an afterthought. But choosing the right AC-DC converter is critical to the ensuring your system delivers power efficiently to all parts of your system. This Product Focus section updates readers on these trends and provides a product album of representative AC-DC converter products.

SENSORS TAKE MANY FORMS AND FUNCTIONS

Sensors and Measurement
While sensors have always played a key role in embedded systems, the exploding Internet of Things (IoT) phenomenon has pushed sensor technology to the forefront. Any IoT implementation depends on an array of sensors that relay input back to the cloud. Circuit Cellar Chief Editor Jeff Child dives into the latest technology trends and product developments in sensors and measurement.

Passive Infrared Sensors
One way to make sure that lights get turned off when you leave a room is to use Passive Infrared (PIR) sensors. Jeff Bachiochi examines the science and technology behind PIR sensors. He then details how to craft effective program code and control electronics to use PIR sensors is a useful way.

Gesture-Recognition in Boxing Glove
Learn how two Boston University graduate students built a gesture-detection wearable that acts as a building block for a larger fitness telemetry system. Using a Linux-based Gumstix Verdex, the wearable couples an inertial measurement unit with a pressure sensor embedded in a boxing glove to recognize the user’s hits and classify them according to predefined, user-recorded gestures.

SECURITY, RELIABILITY AND MORE

Internet of Things Security (Part 3)
In this next part of his article series on IoT security, Bob Japenga looks at the security features of a specific series of microprocessors: Microchip’s SAMA5D2. He examines these security features and discusses what protection they provide.

Aeronautical Communication Protocols
Unlike ground networks, where data throughout is the priority, avionics networks are all about reliability. As a result, the communications protocols used in for aircraft networking seem pretty obscure to the average engineer. In this article, George Novacek reviews some of the most common aircraft comms protocols including ARINC 429, ARINC 629 and MIL-STD-1553B

DEEP DIVES ON PROCESSOR DESIGN AND DIGITAL SIGNAL PROCESSING

Murphy’s Laws in the DSP World (Part 1)
A Pandora’s box of unexpected issues gets opened the moment you move from the real world of analog signals and enter the world of digital signal processing (DSP). In Part 1 of this new article series, Mike Smith defines six “Murphy’s Laws of DSP” and provides you with methods and techniques to navigate around them.

Processor Design Techniques and Optimizations
As electronics get smaller and more complex day by day, knowing the basic building blocks of processors is more important than ever. In this article, Nishant Mittal explores processor design from various perspectives—including architecture types, pipelining and ALU varieties.

April Circuit Cellar: Sneak Preview

The April issue of Circuit Cellar magazine is coming soon. And we’ve got a healthy serving of embedded electronics articles for you. Here’s a sneak peak.

Not a Circuit Cellar subscriber?  Don’t be left out! Sign up today:

 

Here’s a sneak preview of April 2018 Circuit Cellar:

NAVIGATING THE INTERNET-OF-THINGS

IoT: From Gateway to Cloud
In this follow on to our March “IoT: Device to Gateway” feature, this time we look at technologies and solutions for the gateway to cloud side of IoT.  Circuit Cellar Chief Editor Jeff Child examines the tools and services available to get a cloud-connected IoT implementation up and running.

Texting and IoT Embedded Devices (Part 2)
In Part 1, Jeff Bachiochi laid the groundwork for describing a project involving texting. He puts that into action this, showing how to create messages on his Espressif System’s ESP8266EX-based device to be sent to an email account and end up with those messages going as texts to a cell phone.

Internet of Things Security (Part 2)
In this next part of his article series on IoT security, Bob Japenga takes a look at side-channel attacks. What are they? How much of a threat are they? And how can we prevent them?

Product Focus: 32-Bit Microcontrollers
As the workhorse of today’s embedded systems, 32-bit microcontrollers serve a wide variety of embedded applications—including the IoT. This Product Focus section updates readers on these trends and provides a product album of representative 32-bit MCU products.

GRAPHICS, VISION AND DISPLAYS

Graphics, Video and Displays
Thanks to advances in displays and innovations in graphics ICs, embedded systems can now routinely feature sophisticated graphical user interfaces. Circuit Cellar Chief Editor Jeff Child dives into the latest technology trends and product developments in graphics, video and displays.

Color Recognition and Segmentation in Real-time
Vision systems used to require big, multi-board systems—but not anymore. Learn how two Cornell undergraduates designed a hardware/software system that accelerates vision-based object recognition and tracking using an FPGA SoC. They made a min manufacturing line to demonstrate how their system can accurately track and categorize manufactured candies carried along a conveyor belt.

SPECIFICATIONS, QUALIFICATIONS AND MORE

Component tolerance
We perhaps take for granted sometimes that the tolerances of our electronic components fit the needs of our designs. In this article, Robert Lacoste takes a deep look into the subject of tolerances, using the simple resistor as an example. He goes through the math to help you better understand accuracy and drift along with other factors.

Understanding the Temperature Coefficient of Resistance
Temperature coefficient of resistance (TCR) is the calculation of a relative change of resistance per degree of temperature change. Even though it’s an important spec, different resistor manufacturers use different methods for defining TCR. In this article, Molly Bakewell Chamberlin examines TCR and its “best practice” interpretations using Vishay Precision Group’s vast experience in high-precision resistors.

Designing of Complex Systems
While some commercial software gets away without much qualification during development, the situation is very different when safety in involved. For aircraft, vehicles or any complex system where failure unacceptable, this means adhering to established standards throughout the development life cycle. In this article, George Novacek tackles these issues and examines some of these standards namely ARP4754.

AND MORE IN-DEPTH PROJECT ARTICLES

Build a Marginal Oscillator Proximity Switch
A damped or marginal oscillator will switch off when energy is siphoned from its resonant LC tank circuit. In his article, Dev Gualtieri presents a simple marginal oscillator that detects proximity to a small steel screw or steel plate. It lights an LED, and the LED can be part of an optically-isolated solid-state relay.

Obsolescence-Proof Your UI (Part 1)
After years of frustration dealing with graphical interface technologies that go obsolete, Steve Hendrix decided there must be a better way. Knowing that web browser technology is likely to be with us for a long while, he chose to build a web server that could perform common operations that he needed on the IEEE-488 bus. He then built it as a product available for sale to others—and it is basically obsolescence-proof.

 

 

March Circuit Cellar: Sneak Preview

The March issue of Circuit Cellar magazine is coming soon. And we’ve got a healthy serving of embedded electronics articles for you. Here’s a sneak peak.

Not a Circuit Cellar subscriber?  Don’t be left out! Sign up today:

 

Here’s a sneak preview of March 2018 Circuit Cellar:

TECHNOLOGY FOR THE INTERNET-OF-THINGS

IoT: From Device to Gateway
The Internet of Things (IoT) is one of the most dynamic areas of embedded systems design today. This feature focuses on the technologies and products from edge IoT devices up to IoT gateways. Circuit Cellar Chief Editor Jeff Child examines the wireless technologies, sensors, edge devices and IoT gateway technologies at the center of this phenomenon.

Texting and IoT Embedded Devices
Texting has become a huge part of our daily lives. But can texting be leveraged for use in IoT Wi-Fi devices? Jeff Bachiochi lays the groundwork for describing a project that will involve texting. In this part, he gets into out the details for getting started with a look at Espressif System’s ESP8266EX SoC.

Exploring the ESP32’s Peripheral Blocks
What makes an embedded processor suitable as an IoT or home control device? Wi-Fi support is just part of the picture. Brian Millier has done some Wi-Fi projects using the ESP32, so here he shares his insights about the peripherals on the ESP32 and why they’re so powerful.

MICROCONTROLLERS HERE, THERE & EVERYWHERE

Designing a Home Cleaning Robot (Part 4)
In this final part of his four-part article series about building a home cleaning robot, Nishant Mittal discusses the firmware part of the system and gets into the system’s actual operation. The robot is based on Cypress Semiconductor’s PSoC microcontroller.

Apartment Entry System Uses PIC32
Learn how a Cornell undergraduate built a system that enables an apartment resident to enter when keys are lost or to grant access to a guest when there’s no one home. The system consists of a microphone connected to a Microchip PIC32 MCU that controls a push solenoid to actuate the unlock button.

Posture Corrector Leverages Bluetooth
Learn how these Cornell students built a posture corrector that helps remind you to sit up straight. Using vibration and visual cues, this wearable device is paired with a phone app and makes use of Bluetooth and Microchip PIC32 technology.

INTERACTING WITH THE ANALOG WORLD

Product Focus: ADCs and DACs
Makers of analog ICs are constantly evolving their DAC and ADC chips pushing the barriers of resolution and speeds. This new Product Focus section updates readers on this technology and provides a product album of representative ADC and DAC products.

Stepper Motor Waveforms
Using inexpensive microcontrollers, motor drivers, stepper motors and other hardware, columnist Ed Nisley built himself a Computer Numeric Control (CNC) machines. In this article Ed examines how the CNC’s stepper motors perform, then pushes one well beyond its normal limits.

Measuring Acceleration
Sensors are a fundamental part of what make smart machines smart. And accelerometers are one of the most important of these. In this article, George Novacek examines the principles behind accelerometers and how the technology works.

SOFTWARE TOOLS AND PROTOTYPING

Trace and Code Coverage Tools
Today it’s not uncommon for embedded devices to have millions of lines of software code. Trace and code coverage tools have kept pace with these demands making it easier for embedded developers to analyze, debug and verify complex embedded software. Circuit Cellar Chief Editor Jeff Child explores the latest technology trends and product developments in trace and code coverage tools.

Manual Pick-n-Place Assembly Helper
Prototyping embedded systems is an important part of the development cycle. In this article, Colin O’Flynn presents an open-source tool that helps you assemble prototype devices by making the placement process even easier.