SOMs based on RK3399 and PX30 SoCs target IoT

Arbor Technology has introduced a pair of System-on-Module (SOM) products both based on Rockchip SoCs, the RK3399-based SOM-RK391 and the Rockchip PX30-based SOM-RP301. Both modules run Ubuntu, Buildroot, or Android 9.0. Along with the pair of modules, the company has also released the PBA-9000-A, its SOM-Series, single pin-out design carrier board.

The Rockchip RK3399 SoC has been a favorite among high-end community backed Arm-based boards over the last couple years, and we’ve covered at least one every month over that period. Recent examples include Arbor’s own EmQ-RK390 Qsevenmodule, Geniatech’s DB9 SBC and Vamr’s 96Boards CE-compatible Rock960 Model C. In contrast, the SOM-RP301 appears to be the first module we’ve seen based on Rockchip’s low-power PX30 SoC.

SOM-RK391

Built around the Rockchip RK3399 hexa-core (2x Cortex-A72 + 4x Cortex-A53) SoC, the SOM-RK391 is designed for high-performance applications such as AI computing, edge computing and machine vision, according to Arbor.


SOM-RK391
For memory, the RK391 provides 2GB to 4GB of LPDDR4 DRAM and mass storage via 16GB eMMC flash plus support SD Card boot up. The Mali-T860MP4 GPU supports OpenGL ES1.1/2.0/3.0/3.1, OpenVG1.1, OpenCL and DX11. Display support includes eDP, MIPI DSI and HDMI. The compact 69.6 x 70 mm SOM supports extended operating temperatures from 10 to 70ºC.

The RK391 also provides WiFi /Bluetooth support including 2T2R 802.11 a/b/g/n/ac for WiFi and Bluetooth 5.0 with real simultaneous dual-band (RSDB). You also get 2x MIPI CSI RX camera interfaces with 13MP ISP. For I/O you get 4x USB 2.0, 2x USB 3.0 2 (Type C), 2x 2-wire UART ports and 2x 4-wire UART ports. There’s also support for RTC, 10-bit 1MS/s ADC, SDIO, DIO, GPIO, SPI and I2C.

SOM-RP301

The SOM-RP301 meanwhile is based on the Rockchip PX30 Quad-Core Cortex-A35 processor and measures a compact 70 x 50 mm. Arbor touts the board for its low power consumption, flexible thermal management, cost-efficiency and its suitability for IIoT applications. The combination of its hardware media decoder and processing power makes it a fit to implement in retail kiosks such as electronic restaurant menus, automated currency exchange machines, ticketing kiosks and so on, according to Arbor.



SOM-RP301
The SOM-RP301 offers provides 1GB to 4GB of LPDDR4DRAM and mass storage via 16GB eMMC flash plus support SD Card boot up. The Mali-T860MP4 GPU supports OpenGL ES1.1/2.0/3.0/3.1, OpenVG1.1, OpenCL and DX11. Display support includes LVDS and MIPI DSI, and those interfaces share the same pinout. Like the RK391, this modules also supports extended operating temperatures from 10 to 70ºC.

The RK391 also provides WiFi /Bluetooth support including 1x 802.11 a/b/g/n/ac for WiFi and Bluetooth 4.0. You also get 1x MIPI CSI RX camera interface with 8MP ISP. For I/O the RP301 provides the all the same ports as the RK391 as described above. Despite the fact that Arbor touts the RP301 as a low power solution, its datasheet currently says “TBD” for the board’s power consumption.

PBA-9000-A SOM Carrier Board

Arbor’s PBA-9000-A Carrier Board for its SOM-series features a single pin-out design that enables it to easily support future boards in the Arbor SOM-series CPU Board family. The PBA-9000-A’s I/O configuration supports all of the interfaces on the SOM-series boards.



PBA-9000-A SOM carrier board detail
(click image to enlarge)

Further information

More information on the three boards can be found on the announcement page. No pricing was provided. Links to datasheets for the SOM-RK391, SOM-RP301 and PBA-9000-A boards can be found on Arbor’s ARM-computing product page.

This article originally appeared on LinuxGizmos.com on April 8.

Arbor Technology | www.arbor-technology.com

IoT Smart Water Care System Leverages Nordic’s BLE SoC

Nordic Semiconductor has announced that ConnectedYard has selected Nordic’s nRF51822 Bluetooth Low Energy (BLE) SoC to provide the wireless connectivity for pHin, a smart water care solution designed to simplify the care and maintenance of backyard swimming pools and hot tubs. pHin combines an nRF51822 SoC- and Wi-Fi-enabled smart monitor and smartphone app that monitors water chemistry and temperature around the clock and notifies customers when they need to take action.
The pHin Smart Monitor floats in the pool or hot tub and continuously monitors water temperature and water chemistry—including pH and oxidation reduction potential (ORP)—and then wirelessly sends the water chemistry data over the Nordic SoC-enabled Bluetooth LE connection to the pool owner’s Bluetooth 4.0 (or later) smartphone and the ‘pHin WiFi bridge’. The data is also available via the pHin Partner Portal, which allows retailers, service technicians, and pool builders to remotely monitor water conditions and provides features that help drive consumers back to their local retailer for chemicals and other products. pHin uses a coin cell battery to achieve over two years of battery life between replacement, thanks in part to the ultra low power consumption of the nRF51822 SoC.

Nordic’s nRF51822 is ideally suited for Bluetooth LE and 2.4GHz ultra low power wireless applications. The nRF51822 is built around a 32-bit Arm® Cortex M0 CPU, 2.4GHz multiprotocol radio, and 256kB/128kB Flash and 32kB/16kB RAM. The SoC is supplied with Nordic’s S130 SoftDevice, a Bluetooth 4.2 qualified concurrent multi-link protocol stack. Nordic’s software architecture includes a clear separation between the RF protocol software and the application code, simplifying development for ConnectedYard’s engineers and ensuring the SoftDevice doesn’t become corrupted when developing, compiling, testing and verifying application code.

Nordic Semiconductor | www.nordicsemi.com

Infineon, Xilinx and Xylon Team Up for Safety-Critical MCU Effort

Infineon Technologies has announced an effort with Xilinx and Xylon to produce a new Xylon IP core called logiHSSL. It enables high-speed communication between Infineon’s AURIX TC2xx and TC3xx microcontrollers and Xilinx’ SoC, MPSoC and FPGA devices via the Infineon High Speed Serial Link (HSSL). This serial link supports baudrates of up to 320 Mbaud at a net payload data-rate of up to 84%. The HSSL is an Infineon native interface, low-cost in regards to pin-count because it requires only five pins-–-two LVDS with two pins each and one CLK pin. So far, the HSSL interface is used to exchange data between AURIX devices and customer ASICs for performance or functional extension.

Now, the new IP core will allow system developers to combine safety and security provided by AURIX with the wide range of functional possibilities brought to the table by the Xilinx devices. Linked devices can access and control each other’s internal and connected resources through the HSSL.

To support development activities the partners are offering a starter kit. It includes a Xilinx evaluation kit, an Infineon AURIX evaluation board and a Xylon FMC board. Kit deliverables include the reference design with the test software application, Xylon’s logicBRICKS evaluation licenses, documentation and technical support.

The new IP core and the development kit will be available this month (March 2019).

Infineon Technologies | www.infineon.com
Xilinx | www.xilinx.com
Xylon | www.logicbricks.com

Tailored Solutions Tackle Design Needs for Wearables

Low Power Priorities

For wearable devices, every drop of power is precious. That’s driving designers of these embedded systems to attack the power challenge from multiple angles. Fortunately, a slew of analog, power and system ICs have emerged that address the wearable market’s particular needs.

By Jeff Child, Editor-in-Chief

While power is an important issue in any embedded system design, it’s especially critical in wearable devices. Today’s generation of wearable electronics require longer battery lives, more functionality and better performance—all in extremely small form factors. Wearables comprise a wide variety of products including smartwatches, physical activity monitors, heart rate monitors, smart headphones and more.
Today’s wearable electronic devices share some common design priorities. First, they have an extremely low budget for power consumption. And because they’re not suited to being powered by replaceable batteries, they usually require a way for the unit to be recharged. Meanwhile, most modern wearables require some kind of wireless connectivity.

Feeding those needs, chip vendors—primarily from the microcontroller (MCU) and analog sectors—over the past 12 months have announced a generous mix of solutions to help keep power consumption low, to aid recharging and to enable new capabilities while maintaining narrow power constraints. Chip and platform solutions aimed at wearables span the range from specialized power management ICs (PMICs), data converters and power regulator chips, to wireless charging solutions and even complete reference design platforms specially for wearables.

Wrist-Worn Health Gear

Wearables have evolved from being more than just fun devices for health and fitness. Using sophisticated sensors and other capabilities, devices are being designed to do virtual care monitoring, assess chronic conditions and evaluate overall well-being. Along just those lines, in September Maxim Integrated announced its Health Sensor Platform 2.0 (HSP 2.0) (Figure 1). This wrist-worn platform can be used for rapid prototyping, evaluation and development. It provides the ability to monitor electrocardiogram (ECG), heart rate and body temperature from a wrist-worn wearable, saving up to six months in development time, according to Maxim.

Figure 1
The Health Sensor Platform 2.0 is a wrist-worn platform that can be used for rapid prototyping, evaluation and development. It provides the ability to monitor electrocardiogram (ECG), heart rate and body temperature from a wrist-worn wearable.

In the past, system developers have found it challenging to derive precise ECG monitoring from the wrist—most alternatives require a wearable chest strap. Getting accurate body temperature typically requires using a thermometer at another location. Maxim has overcome these challenges in the HSP 2.0. by using its proprietary sensor and health monitoring technology.

Enclosed in a watch casing, the wrist-based form factor enables HSP 2.0 to provide basic functionality out of the box, with body-monitoring measurements starting immediately. Data can be stored on the platform for patient evaluation or streamed to a PC for analysis later. Unlike other wearables, the data measurements collected by the HSP 2.0 can be owned by the wearer. This alleviates data privacy concerns and enables users to conduct their own data analysis. Also, because HSP 2.0 is an open platform, designers can evaluate their own algorithms on the board. In addition, the modular format is future proof to quickly accommodate new sensors over time.

HSP 2.0 includes the following Maxim chips: the MAX32630 DARWIN low-power MCU for wearables; the MAX32664 ultra-low-power biometric sensor hub with embedded heart-rate algorithm; the MAX20303 PMIC; the MAX30205 human body temperature sensor with ±0.1°C accuracy; the MAX30001 single-channel integrated biopotential and bioimpedance analog front-end (AFE) solution; and the MAX86141 optical pulse oximeter and heart-rate sensor.

Energy Controller for Wearables

For its part, Renesas Electronics has been working on meeting extreme low power demands by applying innovations in semiconductor process development. In November the company unveiled an innovative energy-harvesting embedded controller that can eliminate the need to use or replace batteries in a device. Developed based on Renesas’ SOTB (silicon-on-thin-buried-oxide) process technology, the new embedded controller achieves extreme reduction in both active and standby current consumption. The extreme low current levels of the SOTB-based embedded controller enables system designers to completely eliminate the need for batteries in some of their products through harvesting ambient energy sources such as light, vibration and flow (Figure 2).

Figure 2
The extreme low current levels of the SOTB-based embedded controller enables system designers to completely eliminate the need for batteries in some of their products through harvesting ambient energy sources such as light, vibration and flow.

Although the solution was developed with IoT devices in mind, the controller is more broadly aimed at what they call the new market of maintenance-free, connected IoT sensing devices with endpoint intelligence. This includes health and fitness apparel, shoes, wearables, smart watches and drones. Renesas’ first commercial product using SOTB technology, the R7F0E embedded controller, is a 32-bit, Arm Cortex-based embedded controller. The device is capable of operating up to 64 MHz for rapid local processing of sensor data and execution of complex analysis and control functions.

The R7F0E consumes just 20 μA/MHz active current, and only 150 nA deep standby current, approximately one-tenth that of conventional low-power MCUs. According to the company, samples of the new R7F0E embedded controller are available now for beta customers, and samples are scheduled to be available for general customers from July 2019. Mass production is scheduled to start from October 2019.

LDO Regulator for Wearables

Achieving longer battery lives is a problem that can be attacked from many angles. Power regulator electronics are among those. With that in mind, Microchip Technology in October introduced a linear Low Dropout (LDO) regulator that extends battery life in portable devices up to four times longer than traditional ultra-low quiescent (IQ) LDOs. With an ultra-low IQ of 250 nA versus the approximately 1 µA operation of traditional devices, the MCP1811 LDO reduces quiescent current to save battery life, enabling end users to recharge or replace batteries less often (Figure 3).

Figure 3
With an ultra-low IQ of 250 nA versus the approximately 1 µA operation of traditional devices, the MCP1811 LDO regulator saves battery life, enabling end users to recharge or replace batteries less often.

Well suited for IoT and battery-operated applications such as wearables, remotes and hearing aids, the LDO reduces power consumption in applications by minimizing standby or shutdown current. Reducing standby power consumption is critical in remote, battery-powered sensor nodes, where battery replacement is difficult and operating life requirements are high. Available in package options as small as 1 mm x 1 mm, the MCP1811 consumes minimal board space to meet the needs of today’s compact portable electronic designs. Depending on the application and number of LDOs, designers can take advantage of the extra board space with a larger battery to further increase battery life.

An additional benefit the MCP1811 offers is faster load line and transient response when compared to other ultra-low IQ LDOs. Faster response times can accelerate wake-up speed in devices such as monitors or sensors that require immediate attention. Faster transient response can help designers avoid undervoltage and overvoltage lockout measures used in sensitive applications where transient spikes can lead to catastrophic results.

Secure Payments with Wearables

An important capability in a certain class of wearables is the ability to support electronic retail transactions directly from the wearable device. While this is arguably a whole separate technology category in itself, we’ll touch on a couple developments here. In November, Infineon Technologies announced an EMV-based payment solution for key chains, rings, wristbands, bracelets and other wearable devices.

The SECORA Pay W for Smart Payment Accessories (SPA) combines an EMV chip with the card operating system, payment applet as well as the antenna directly on the unit. As a turnkey solution it allows card vendors, device manufacturers, financial institutions or event organizers to quickly and cost-efficiently introduce fashion accessories for payment and even access.

Infineon’s SECORA Pay solutions portfolio comprises the SECORA Pay S for standard Visa and MasterCard payment cards, SECORA Pay X for applications with extended features such as multi-application, national debit and white label schemes or access management and SECORA Pay W for payment accessories. All SECORA turn-key solutions are pre-certified by Mastercard and Visa and will accelerate the deployment of contactless payment. The EMV Chip Specifications (www.emvco.com) define globally valid requirements for chip-based payment solutions and acceptance terminals. They enable secure contact- and contactless applications and the use of other emerging payment technologies.

Complete Payment SoC

Likewise a player in the contactless transaction market, STMicroelectronics (ST) back in October announced teaming up with Fidesmo to create a turnkey active solution for secure contactless payments on smart watches and other wearable technology. The complete payment system-on-chip (SoC) is based on ST’s STPay-Boost IC, which combines a hardware secure element to protect transactions and a contactless controller featuring proprietary active-boost technology that maintains reliable NFC connections even in devices made with metallic materials. Its single-chip footprint fits easily within wearable form factors (Figure 4).

Figure 4
The STPay-Boost IC combines a hardware secure element to protect transactions and a contactless controller featuring proprietary active-boost technology that maintains reliable NFC connections even in devices made with metallic materials. Its single-chip footprint fits easily within wearable form factors.

ST’s proprietary NFC-boosting active load modulation technology simplifies RF design and accelerates time to market by ensuring superior performance with little or no circuit optimization needed. A small-size antenna can sustain robust and reliable wireless connection, permitting smaller overall product dimensions and lower power consumption resulting in longer battery life.

Fidesmo’s MasterCard MDES tokenization platform completes the solution by allowing the user to load the personal data needed for payment transactions. Convenient Over-The-Air (OTA) technology makes personalization a simple step for the user without any special equipment. Kronaby, a Sweden-based hybrid smartwatch maker, has embedded the STPay-Boost chip in its portfolio of men’s and women’s smart watches that offer differentiated features such as freedom from charging and filtered notifications. The SoC with Fidesmo tokenization enables Kronaby watches to support a variety of services such as payments, access control, transportation and loyalty rewards.

Data Converters

Data converters also have role to play in efforts to meet the extreme low power needs of wearable devices. Along such lines, in December Texas Instruments (TI) introduced four tiny precision data converters (Figure 5). The new data converters enable designers to add more intelligence and functionality, while shrinking system board space. The DAC80508 and DAC70508 are eight-channel precision digital-to-analog converters (DACs) that provide true 16- and 14-bit resolution, respectively.

Figure 5
The DAC80508 and DAC70508 are eight-channel precision DACs that provide true 16- and 14-bit resolution, respectively. The ADS122C04 and ADS122U04 are 24-bit precision ADCs that feature a two-wire, I2C-compatible interface and a two-wire, UART-compatible interface, respectively.

The ADS122C04 and ADS122U04 are 24-bit precision analog-to-digital converters (ADCs) that feature a two-wire, I2C-compatible interface and a two-wire, UART-compatible interface, respectively. The devices are optimized for a variety of small-size, high-performance or cost-sensitive electronics applications such as wearables.

Both DACs include a 2.5-V, 5-ppm/°C internal reference, eliminating the need for an external precision reference. Available in a 2.4-mm-by-2.4-mm die-size ball-grid array (DSBGA) package or wafer chip-scale package (WCSP) and a 3-mm-by-3-mm quad flat no-lead (QFN)-16 package, these devices are up to 36% smaller than the competition, says TI. Meanwhile, the tiny, 24-bit precision ADCs are available in 3-mm-by-3-mm very thin QFN (WQFN)-16 and 5-mm-by-4.4-mm thin-shrink small-outline package (TSSOP)-16 options. The two-wire interface requires fewer digital isolation channels than a standard serial peripheral interface (SPI), reducing the overall cost of an isolated system. These precision ADCs eliminate the need for external circuitry by integrating a flexible input multiplexer, a low-noise programmable gain amplifier and other circuitry.

Memory Innovations

Among the latest innovations aimed at wearables from Cypress Semiconductor is an FRAM (ferroelectric random access memory)-based data logging solution. In November, Cypress introduced a nonvolatile data-logging solution with ultra-low power consumption. This solution is well suited for portable medical and wearable devices that demand nonvolatile memories to continuously log an increasing amount of user and sensor data while using as little power as possible.

Cypress’ Excelon LP FRAM is an energy-efficient device that provides instant-write capabilities with virtually unlimited endurance (Figure 6). This enables wearable systems to perform mission-critical data logging requirements while maximizing battery life. The Excelon LP series is available in a low-pin-count, small-footprint package that is suited for space-constrained, wearable applications.

Figure 6
The Excelon LP FRAM provides instant-write capabilities with virtually unlimited endurance. This enables wearable systems to perform mission-critical data logging requirements while maximizing battery life.

The Excelon LP series offers 4-Mb and 8-Mb industrial and commercial-grade densities with 50 MHz and 20 MHz Serial Peripheral Interface (SPI) performance. The series reduces power consumption with 100 nA hibernate and 1 µA standby modes that greatly improve a battery-powered product’s user experience by extending system operating time. The device’s inherent instant writes also eliminate power failure “data-at-risk” due to volatile data buffers in legacy memories. The family features wide voltage operation from 1.71 V to 3.6 V and is available in RoHS-compliant industry-standard packages that are pin compatible with EEPROMs and other nonvolatile memories. Excelon LP F-RAMs provide 1,000-trillion (1015) read/write cycle endurance with 10 years of data retention at 85°C or 151 years at 65°C.

Charging Wearables

A common aspect of wearable devices is that they tend not to be suited for replaceable batteries. As a result, they typically need to be recharged. Wireless (cordless) battery charging is beginning to take hold as a solution. Feeding such needs, in October Analog Devices announced its Power by Linear LTC4126 as an expansion of its offerings in wireless battery charging. The LTC4126 combines a wireless powered battery charger for Li-Ion cells with a high efficiency multi-mode charge pump DC-DC converter, providing a regulated 1.2 V output at up to 60 mA (Figure 7).

Figure 7
The LTC4126 combines a wireless powered battery charger for Li-Ion cells with a high efficiency multi-mode charge pump DC-DC converter, providing a regulated 1.2 V output at up to 60 mA.

Charging with the LTC4126 allows for a completely sealed end product without wires or connectors and eliminates the need to constantly replace non-rechargeable (primary) batteries. The efficient 1.2 V charge pump output features pushbutton on/off control and can directly power the end product’s ASIC. This greatly simplifies the system solution and reduces the number of necessary external components. The device is ideal for space-constrained low power Li-Ion cell powered wearables such as hearing aids, medical smart patches, wireless headsets and IoT devices.

The LTC4126, with its input power management circuitry, rectifies AC power from a wireless power receiver coil and generates a 2.7 V to 5.5 V input rail to power a full-featured constant-current/constant-voltage battery charger. Features of the battery charger include a pin selectable charge voltage of 4.2 V or 4.35 V, 7.5 mA charge current, automatic recharge, battery temperature monitoring via an NTC pin, and an onboard 6-hour safety charge termination timer. Low battery protection disconnects the battery from all loads when the battery voltage is below 3.0 V. The LTC4126’s charge pump switching frequency is set to 50 kHz/75 kHz to keep switching noise out of the audible range, ideal for audio related applications such as hearing aids and wireless headsets. The IC is housed in a compact, low profile (0.74 mm) 12-lead 2 mm × 2 mm LQFN package. The device is guaranteed for operation from –20°C to 85°C in E-grade.

Kit for Wireless Charging

Also facilitating building wireless chargers for wearables, ST for its part offers a kit-level solution. The ST plug-and-play wireless battery-charger development kit (STEVAL-ISB045V1) lets users quickly build ultra-compact chargers up to 2.5 W with a space-saving 20 mm-diameter coil, for charging small IoT devices and wearables such as smart watches, sports gear or healthcare equipment (Figure 8).

Figure 8
The ST plug-and-play wireless battery-charger development kit lets users quickly build ultra-compact chargers up to 2.5 W with a space-saving 20 mm-diameter coil, for charging small IoT devices and wearables such as smart watches, sports gear or healthcare equipment.

Built around the STWBC-WA wireless charging-transmitter controller, the kit comprises a charging base unit containing a transmitter board with the 20 mm coil already connected and ready to use. Getting started is easy, using the PC-based STSW-STWBCGUI software to configure the STWBC-WA and monitor runtime information such as power delivered, bridge frequency, demodulation quality and protocol status. The kit includes a dongle for running the GUI. The supporting ecosystem includes certified reference boards, software and detailed documentation to help developers quickly design chargers for wearables.

The STWBC-WA controller chip contains integrated drivers and natively supports full-bridge or half-bridge topologies for powering the antenna. The half-bridge option allows charging up to 1 W with a smaller-diameter coil for an even more compact form factor. The chip supports all standard wireless-charging features, including Foreign Object Detection (FOD) and active presence detection for safe charging, and uses digital feedback to adapt the transmitted power for optimum efficiency at all load conditions. Two firmware options give users the choice of a fast turnkey solution or customizing the application using APIs to access on-chip peripherals including an ADC, a UART and GPIOs.

Clearly there are many facets and angles to address the low power needs of wearables. As demands for more functionality rise, system developers will need to remain ever mindful of keeping battery life at the same lengths or longer. Fortunately, there seems to be no stopping the innovation among chip vendors targeting this growing wearables market.

RESOURCES

Analog Devices | www.analog.com
Cypress Semiconductor | www.cypress.com
Infineon Technologies | www.infineon.com
Maxim Integrated | www.maximintegrated.com
Microchip Technology | www.microchip.com
Renesas Electronics America | www.renesas.com
STMicroelectronics | www.st.com
Texas Instruments | www.ti.com

This article appeared in the March 344 issue of Circuit Cellar

Don’t miss out on upcoming issues of Circuit Cellar. Subscribe today!

Note: We’ve made the October 2017 issue of Circuit Cellar available as a free sample issue. In it, you’ll find a rich variety of the kinds of articles and information that exemplify a typical issue of the current magazine.

i.MX 8M SoC-Based Solution Enables Immersive 3D Audio

NXP Semiconductors has announced its Immersiv3D audio solution for the smart home market. The solution combines NXP software on its i.MX 8M Mini applications processor and will support both Dolby Atmos and DTS:X immersive audio technologies in future devices that integrate the i.MX 8M Mini SoC. The i.MX 8M Mini also brings smart capabilities like voice control to a broader range of consumer devices including soundbars, smart speakers, and AV receivers with the option for adding additional speakers to distribute smart voice control and immersive audio throughout the home.

TVs and audio systems are becoming more advanced thanks in large part to the development of Dolby Atmos and DTS:X. Both technologies are a leap forward from surround sound and transport listeners with moving audio that fills the room and flows all around them. Listeners will feel like they’re inside the action as the sounds of people, places, thing, and music come alive with breathtaking realism. NXP’s Immersiv3D audio solution was designed to enable OEMs to bring to market affordable consumer audio devices capable of supporting Dolby Atmos and DTS:X in their next-generation devices.

Conventional design approaches to audio systems use Digital Signal Processors (DSPs) to deliver complex, controlled and low-latency audio processing to enable audio and video synchronization. But Traditional embedded systems have evolved over time, and today they are capable of processing the latest 3D audio formats, but audio systems need to be designed to take advantage of today’s advanced processor cores. In conjunction with the NXP i.MX 8M family of processors, the Immersiv3D audio solution introduces an advanced approach that features scalable audio processing integration into the SoC Arm cores. This approach eliminates the need for expensive discrete DSPs, and also once-proprietary DSP design foundations, to embrace licensable cores.

The solution delivers high-end audio features such as immersive multi-channel audio playback, natural language processing and voice capabilities to fit today’s digitally savvy connected consumer. The NXP Immersiv3D audio solution gives audio developers, designers and integrators a leap forward to add intelligence and Artificial Intelligence (AI) functionality while reducing cost. This includes development of enhancements like selective noise canceling where only certain sound elements are removed like car traffic or speech processing like changing speaker dialect or languages.

The solution introduces an easy-to-use, low-cost enablement for voice capability expansion. Audio systems built using NXP’s Immersiv3D with the i.MX 8M Mini applications processor will give consumers the flexibility to add different audio speakers, regardless of brand, to stream simultaneous and synchronized audio with voice control from their systems.

NXP showcased its i.MX applications processor family including Immersiv3D at the CES 2019 show.

NXP Semiconductors | www.nxp.com

Mini-ITX SBC Sports AMD Ryzen APU SoC

WIN Enterprises has announced the MB-73480 which supports the AMD Ryzen Embedded V1000 processor family. The AMD processors combine the performance of the AMD “Zen” CPU and “Vega” GPU architectures in an integrated SoC solution. In addition, the AMD Ryzen processors deliver discrete-GPU caliber graphics and multimedia processing. Compute performance clocks to 3.61 TFLOPS with thermal design power (TDP) as low as 12 W and as high as 54 W.

The advanced AMD Ryzen CPUs and its other features make the MB-73480 well suited for applications requiring high performance graphics and advanced processing power. Applications include: gaming machines, digital signage, medical imaging, industrial control/automation, thin client, office automation and communication infrastructure. WIN Enterprises will customize the PL-81280 based on a customer’s more specific market needs.

MB-73480 Features:

  • AMD embedded components ensure long product life
  • AMD V1000 Socket FP5 BGA Type CPU mounted onboard (Zen Core-4/8 cores with 2 MB L2 Cache) drawing up to 54 W
  • Supports 4x Independent Displays with 4x DP++ Output
  • AMD Radeon™ Vega core, up to 11 Compute Units
  • Dual DDR4 SO-DIMM Socket and supports from DDR4 1333~3200 SO-DIMM (ECC or non-ECC)
  • 2x RJ45 Port with 10/100/1000 Mbps Transfer speed (Intel I211AT)
  • 5x USB 3.0, 1x USB 2.0, 5x COM, 1x CFast Card, 1x M.2 2280 Socket (B+M key),1x Audio-Jack
  • 2x SATA III Ports with 5 V Power; supports 2x 8G UMLC SATA DOM
  • TPM 2.0
  • 0°C to +60°C operating temperature

WIN Enterprises | www.win-ent.com

 

Linux-Driven SMARC Module Supports Up to Five Time-Sensitive GbE Ports

By Eric Brown

Kontron invented the ULP-COM standard that formed the basis of the SMARC form factor, and it has delivered numerous SMARC modules over the years, including Arm products such as the Nvidia Tegra K1 based SMC-NTKE1. Now it has unveiled the first module we’ve seen in any form factor with NXP’s dual-core, Cortex-A72 powered QorIQ Layerscape LS1028 SoC.

The 82 mm x 50 mm SMARC-sAL28 module runs a Yocto Project based Linux stack (with U-Boot) on the LS1028. The module exploits the SoC’s Time Sensitive Networking (TSN) support with up 2x or 5x TSN-capable Gigabit Ethernet ports.



SMARC-sAL28
(click image to enlarge)
The SMARC-sAL28 module is compliant with the IEEE 802.1 TSN standard, which offers guaranteed latency and Quality of Service (QoS) with time synchronization to enable “a timely and highly available delivery of data packets,” says Kontron. TSN Ethernet can replace more expensive, proprietary fieldbus technology while also offering the advantage of being able to “simultaneously communicate seamlessly to the IT level.”

No clock rate was listed for the LS1028 SoC, which NXP refers to as the LS1028A. The SoC integrates a four-port TSN switch and two separate TSN Ethernet controllers. Like NXP’s other networking oriented LSx QorIQ Layerscape SoCs, it supports NXP’s EdgeScale suite of secure edge computing device management tools. It’s the only LSx SoC that features a 3D graphics capable GPU.

 
SMARC-sAL28 (left) and NXP LS1028A block diagrams 
(click images to enlarge)
The SMARC-sAL28 ships with 4GB of soldered DDR3L with optional ECC, as well as 2GB to 64GB eMMC 5.1 storage. The 3V-5.25V module supports -40 to 85°C operation.

Two models are available. One has 2x TSN-capable, switched GbE controllers “that can be directly used by the carrier,” says Kontron. The second version supports 4x switched TSN-capable GbE ports via the QSGMII interface with an additional TSN-capable GbE controller. This second option provides a total of 5x TSN-ready GbE ports ports “using a quad-PHY on the carrier.” This 5x GbE model sacrifices one of the 2x PCIe x1 interfaces, which can also be deployed as a single PCIe x4 connection.

The SMARC-sAL28 provides a dual-channel LVDS interface, one of which can be swapped out for eDP as a BOM option. The second LVDS offers a BOM option swap-out for either an HDMI or DisplayPort.

The module is further equipped with a single USB 3.0, 6x USB 2.0, and 4x RX/TX serial interfaces. Other I/O includes 2x I2C, 2x SPI, 12x GPIO, and single SDIO, CAN, and I2S connections. Options include a Wibu security chip with Kontron Approtect security software, as well as an RTC.

Further information

The SMARC-sAL28 is “coming soon” at an undisclosed price. More information may be found in Kontron’s SMARC-sAL28 announcement and product page.

Kontron | www.kontron.com

Nordic’s BLE SoC Selected for IIoT Energy Monitor Device

Nordic Semiconductor has announced that OneMeter, a Lublin, Poland-based Industrial Internet of Things (IIoT) startup, has selected Nordic’s nRF51822 Bluetooth Low Energy (Bluetooth LE) System-on-Chip (SoC) to provide the wireless connectivity for its “OneMeter Beacon”, a device that provides companies with the ability to monitor and manage their energy usage data in real time.

Designed for use in a broad range of industrial and commercial environments—for example production facilities, manufacturing plants, and food service companies—the OneMeter Beacon is simply plugged in to an existing electronic electricity meter via an optical port interface, enabling the beacon to receive energy usage data from the meter using the IEC 62056-21 / IEC 1107 protocol. Once installed, the beacon is paired to a Bluetooth 4.0 (and later) Android smartphone or tablet, where from the OneMeter app the user can initialize and synchronize the beacon.

Once synchronized, the beacon reads data from the meter every 15 minutes, and stores it in the Nordic SoC’s Flash memory, from where the beacon automatically transmits the data to the user’s smartphone or tablet using Bluetooth LE wireless connectivity provided by the nRF51822 SoC. From the app the user can review data from the most recent readout (including active and reactive energy consumption parameters), as well as view daily, weekly and monthly energy usage charts and more.

OneMeter Cloud provides a comprehensive platform from which a company can not only monitor its metering data, but also perform accurate energy usage cost estimation, conduct effective energy audits, avoid penalties for exceeding contracted power by defining power parameter alerts, as well as manage its photovoltaic (PV) infrastructure. Certified measurement data can be shared with energy vendors enabling invoices to be settled based on actual usage instead of forecasts. The OneMeter beacon is powered by a 3V CR2032 coin cell battery, providing up to 12 months battery life before replacement, thanks in part to the ultra-low power characteristics of the nRF51822 SoC which has been engineered to minimize power consumption.

Nordic’s nRF51822 is a multiprotocol SoC ideally suited for Bluetooth LE and 2.4GHz ultra low-power wireless applications. The nRF51822 is built around a 32-bit Arm Cortex M0 CPU, 2.4GHz multiprotocol radio, and 256kB/128kB Flash and 32kB/16kB RAM. The SoC is supplied with Nordic’s S130 SoftDevice, a Bluetooth 4.2 qualified concurrent multi-link protocol stack solution supporting simultaneous Central/Peripheral/Broadcaster/Observer role connections.

Nordic Semiconductor | www.nordicsemi.com

 

SBC Showcases Qualcomm’s 10 nm, Octa-core QCS605 IoT SoC

By Eric Brown

In April, Qualcomm announced its QCS605 SoC, calling it “the first 10nm FinFET fabricated SoC purpose built for the Internet of Things.” The octa-core Arm SoC is available in an Intrinsyc Open-Q 605 SBC with full development kit with a 12V power supply is open for pre-orders at $429. The products will ship in early December.

 
Open-Q 605, front and back
(click images to enlarge)
The fact that Qualcomm is billing the high-end QCS605 as an IoT SoC reveals how demand for vision and AI processing on the edge is broadening the IoT definition to encompass a much higher range of embedded technology. The IoT focus is also reinforced by the lack of the usual Snapdragon branding. The QCS605 is accompanied by the Qualcomm Vision Intelligence Platform, a set of mostly software components that includes the Qualcomm Neural Processing SDK and camera processing software, as well as the company’s 802.11ac WiFi and Bluetooth connectivity and security technologies.

The QCS605 can run Linux or Android, but Intrinsyc supports its Open-Q 605 board only with Android 8.1.

Intrinsyc also recently launched an Open-Q 624A Development Kit based on a new Open-Q 624A SOM (see farther below).

Qualcomm QCS605 and Vision Intelligence Platform

The QCS605 SoC features 8x Kryo 300 CPU cores, two of which are 2.5GHz “gold” cores that are equivalent to Cortex-A75. The other six are 1.7GHz “silver” cores like the Cortex-A55 — Arm’s more powerful follow-on to Cortex-A53.

The QCS605 also integrates an Adreno 615 GPU, a Hexagon 685 DSP with Hexagon vector extensions (“HVX”), and a Spectra 270 ISP that supports dual 16-megapixel image sensors. Qualcomm also sells a QCS603 model that is identical except that it offers only 2x of the 1.7GHz “Silver” cores instead of six.

Qualcomm sells the QCS605 as part of a Vision Intelligence Platform — a combination of software and hardware starting with a Qualcomm AI Engine built around the Qualcomm Snapdragon Neural Processing Engine (NPE) software framework. The NPE provides analysis, optimization, and debugging tools for developing with Tensorflow, Caffe, and Caffe2 frameworks. The AI Engine also includes the Open Neural Network Exchange interchange format, the Android Neural Networks API, and the Qualcomm Hexagon Neural Network library, which together enable the porting of trained networks.

The Vision Intelligence Platform running on the QCS605 delivers up to 2.1 TOPS (trillion operations per second) of compute performance for deep neural network inferences, claims Qualcomm. The platform also supports up to 4K60 resolution or 5.7K at 30fps and supports multiple concurrent video streams at lower resolutions.

Other features include “staggered” HDR to prevent ghost effects in high-dynamic range video. You also get advanced electronic image stabilization, de-warp, de-noise, chromatic aberration correction, and motion compensated temporal filters in hardware.

Inside the Open-Q 605 SBC

Along with the Snapdragon 600 based Open-Q 600, the Open-Q 605 is the only Open-Q development board that Intrinsyc refers to as an SBC. Most Open-Q kits are compute modules or sandwich-style carrier board starter kits based on Intrinsyc modules equipped with Snapdragon SoCs, such as the recent, Snapdragon 670 based Open-Q 670 HDK.


Open-Q 605 
(click image to enlarge)
The 68 x 50mm Open-Q 605 ships with an eMCP package with 4GB LPDDR4x RAM and 32GB eMMC flash, and additional storage is available via a microSD slot. Networking depends on the 802.11ac (WiFi 5) and Bluetooth 5.x radios. There’s also a Qualcomm GNSS receiver for location and 3x U.FL connectors.

The only real-world coastline port is a USB Type-C that supports DisplayPort 1.4 with 4K@30fps support. If you’d rather use the Type-C port for USB or charging a user-supplied Li-Ion battery, you can turn to an HD-ready MIPI DSI interface with touch support. You also get 2x MIPI-CSI for dual cameras, as well as 2x analog audio.

The Open-Q 605 has a 76-pin expansion header for other interfaces, including an I2S/SLIMBus digital audio interface. The board runs on a 5-15V DC input and offers an extended -25 to 60°C operating range.

Specifications listed for the Open-Q 605 SBC include:

  • Processor — Qualcomm QCS605 with Vision Intelligence Platform (2x up to 2.5GHz and 6x up to 1.7GHz Krait 300 cores); Adreno 615 GPU; Hexagon 685 DSP; Spectra 270 ISP; Qualcomm AI Engine and other VIP components
  • Memory/storage — 4GB LPDDR4X and 32GB eMMC flash in combo eMCP package; microSD slot.
  • Wireless:
    • 802.11b/g/n/ac 2×2 dual-band WiFi (Qualcomm WCN3990) with planned FCC/IC/CE certification
    • Bluetooth 5.x
    • Qualcomm GNSS (SDR660G) receiver with Qualcomm Location Suite Gen9 VT
    • U.FL antenna connectors for WiFi, BT, GNSS
  • Media I/O:
    • DisplayPort 1.4 via USB Type-C up to 4K@30 with USB data concurrency (USB and power)
    • MIPI DSI (4-lane) with I2C touch interface on flex cable connector for up to 1080p30
    • 2x MIPI-CSI (4-lane) with micro-camera module connectors
    • 2x analog mic I/Ps, speaker O/P, headset I/O
    • I2S/SLIMBus digital audio interface with 2x DMIC ports (via 76-pin expansion header)
  • Expansion — 76-pin header (multiple SPI, I2C, UART, GPIO, and sensor I/O; digital and analog audio I/O, LED flash O/P, haptic O/P, power output rails
  • Other features — 3x LEDs; 4x mounting holes; optional dev kit with quick start guide, docs, SW updates
  • Operating temperature — -25 to 60°C
  • Power — 5-15V DC jack and support for user-supplied Li-Ion battery with USB Type-C charging; PM670 + PM670L PMIC; 12V supply with dev kit
  • Dimensions — 68 x 50 x 13mm
  • Operating system — Android 8.1 Oreo

Open-Q 624A
Development Kit

Open-Q 624A Development Kit

Back in May, Google preannounced the Open-Q 624A Development Kit as an official Android Things 1.0 development board along with Intrinsyc’s Snapdragon 212 based Open-Q 212A, Innocomm’s i.MX8M based WB10-AT, and a MediaTek MT8516 development platform. Now, Intrinsyc is pitching the Open-Q 624A Development Kit, as well as the Open-Q 624A SOM module it’s based on, as an Android 8.0 platform aimed at the home hub market. There is no longer any mention of Android Things.

The Open-Q 624A SOM offers 2GB RAM, 4GB eMMC, WiFi-ac, BT 4.2, and an octa-core -A53 Qualcomm Snapdragon 624 SoC based on the Snapdragon 625. The kit is equipped with a USB 3.0 Type-C port, 2x USB host ports, micro-USB client and debug ports, MIPI-CSI and MIPI-DSI interfaces, sensor expansion and haptic output, and an optional GPS receiver. You also get extensive audio features, including I2S/SLIMBUS headers.

Available for $595, the sandwich style kit will ship in mid-December. For more details, see our earlier Android Things development board report.

Further information

The Open-Q 605 SBC is available for pre-order in the full Development Kit version, which costs $429 and ships in early December. The SBC will also be sold on its own at an undisclosed price. More information may be found in Intrinsyc’s Open-Q 605 announcement, as well as the product page and shopping page.

This article originally appeared on LinuxGizmos.com on November 14.

Intrinsyc | www.intrinsyc.com

Tiny, 4K Signage Player Runs on Cortex-A17 SoC

By Eric Brown

Advantech announced a fanless, USM-110 digital signage player with support for Android 6.0 and its WISE-PaaS/SignageCMS digital signage management software. The compact (156 mm x 110 mm x 27 mm) device follows earlier Advantech signage computers such as the slim-height, Intel Skylake based DS-081.

 
USM-110 (left) and mounting options
(click images to enlarge)
Advantech did not reveal the name of the quad-core, Cortex-A17 SoC, which is clocked to 1.6 GHz and accompanied by a Mali-T764. It sounds very close to the Rockchip RK3288, which is found on SBCs such as the Asus Tinker Board, although that SoC instead has a Mali T760 GPU. Other quad -A17 SoCs include the Zhaoxin ZX-2000 found on VIA Technologies’ ALTA DS 4K signage player.

The USM-110, which is also available in a less feature rich USM-110 Delight model, ships with 2GB DDR3L-1333, as well as a microSD slot. You get 16GB of eMMC on the standard version and 8 GB on the Delight. There’s also a GbE port and an M.2 slot with support for an optional WiFi module with antenna kit.

The USM-110 has two HDMI ports, both with locking ports: an HDMI 2.0 port with H.265-encoded, native 4K@60 (3840 x 2160) and a 1.4 port with 1080p resolution. The system enables dual simultaneous HD displays.


USM-110 and USM-110 Delight detail views
(click image to enlarge)
The Delight version lacks the 4K-ready HDMI port, as well as the standard model’s mini-PCIe slot, which is available with an optional 4G module with antenna kit. The Delight is also missing the standard version’s RS232/485/422 port, and it has only one USB 2.0 host port instead of four.

Otherwise, the two models are the same, with a micro-USB OTG port, audio jack, reset, dual LEDs, and a 12V/3A DC input. The 0.43 kg system has a 0 to 40°C range, and offers VESA, wall, desktop, pole, magnet, and DIN-rail mounting.

Advantech’s WISE-PaaS/SignageCMS digital signage management software, also referred to as UShop+ SignageCMS, supports remote, real-time management. It allows users to layout, schedule, and dispatch signage contents to the player over the Internet, enabling remote delivery of media and media content switching via interactive APIs. A WISE Agent framework for data acquisition supports RESTful API web services for accessing and controlling applications.

Further information

The USM-110 appears to be available now at an undisclosed price. More information may be found in Advantech’s USM-110 announcement and product page.

This article originally appeared on LinuxGizmos.com on September 6.

Advantech | www.advantech.com

IoT Gateway/Dongle Solution Taps Nordic Semi’s BLE SoC

Nordic Semiconductor has announced that Fanstel has selected Nordic’s nRF52840 Bluetooth® 5/Bluetooth Low Energy (Bluetooth LE) advanced multiprotocol System-on-Chip (SoC) for its BWG840F gateway and USB840F dongle. The gateway and the dongle are designed to enable OEMs to rapidly develop solutions for customers—including IoT Cloud service providers and enterprises employing Cloud servers—to monitor IoT devices. Both solutions enable the rapid commissioning and mass deployment of IoT devices in commercial mesh networks via Bluetooth LE and Thread wireless protocols.

Designed to simplify the RF development and certification work required to develop IoT applications, both the gateway and dongle are U.S. FCC and European CE certified and supplied in market-ready enclosures.
The gateway and the dongle employ Fanstel’s Bluenor BT840F module for ultra low power and long range IoT applications. The module is based on the Bluetooth 5- and Thread-compliant nRF52840 SoC-based enabling it support multiprotocol wireless connectivity between the gateway or dongle and Bluetooth LE or Thread nodes in a mesh network. To further support the rapid development of IoT mesh networking solutions based on the gateway, Fanstel provides the DK-BWG840F development kit, allowing users to load firmware into the BT840F module using Nordic’s nRF5 Software Development Kit (SDK) and nRFgo software tools.

The BWG840F gateway’s Wi-Fi module provides Internet connectivity, enabling an IoT mesh network to be monitored and controlled remotely via a Cloud server. Alternatively, the USB840F dongle plugs into a PC’s USB port and relays data between the PC and any node in the mesh network using Bluetooth LE or Thread. For large scale applications, multiple dongles can be deployed in parallel, by being plugged into a wall USB port throughout a facility and then relaying commands and data to any node in the network within range of the ports.

Nordic’s nRF52840 SoC combines a 64 MHz, 32-bit Arm Cortex M4F processor with a 2.4 GHz multiprotocol radio (supporting Bluetooth 5, ANT, Thread, IEEE 802.15.4, and proprietary 2.4 GHz RF protocol software) with 1MB Flash memory and 256 KB RAM. The chip supports all the features of Bluetooth 5 (including 4x the range or 2x the raw data bandwidth (2 Mbps) compared with Bluetooth 4.2). Designed to address the inherent security challenges that are faced in IoT, the nRF52840 SoC incorporates the Arm CryptoCell-310 cryptographic accelerator, offering best-in-class security.

The SoC is supplied with Nordic’s S140 SoftDevice, a Bluetooth 5-certified software protocol stack for building long range and high data Bluetooth LE applications. The S140 SoftDevice offers concurrent Central, Peripheral, Broadcaster, and Observer Bluetooth LE roles, and supports high throughput and long range modes as well as advertising extensions.

The nRF52840 SoC also supports complex Bluetooth LE and other low-power wireless applications that were previously not possible with a single-chip solution. The nRF52840 is Bluetooth 5- and Thread 1.1-certified and its Dynamic Multiprotocol feature uniquely supports concurrent wireless connectivity of both protocols. Its radio architecture—featuring -96-dBm RX sensitivity and an on-chip power amplifier that boosts maximum output power of 8 dBm for a total link budget of >104 dBm—enables the gateway and dongle to achieve an estimated Bluetooth LE range of 2300 m when used in environments with a clear line of sight, low RF interference, and low multiple path interference, according to Fanstel.

Nordic Semiconductor | www.nordicsemi.com

Rugged, Sandwich-Style SBC is Based on Sitara AM5718 MCU

By Eric Brown

Forlinx Embedded Technology, the Chinese company behind Linux-friendly SBCs such as the Texas Instruments (TI) Sitara AM3354 based OK335xS-II and the Forlinx i.MX6 SBC, has posted details on a new OK5718-C SBC. Like the OK335xS-II, it’s a Sitara based board, in this case tapping TI’s single-core, Cortex-A15 based Sitara AM5718. Like the i.MX6 SBC, it’s a sandwich-style offering, with the separately available FET5718-C module hosting the up to 1.5GHz AM5718.


OK5718-C
The OK5718-C was announced (translated) in China back in May, and the product page was recently spotted by CNXSoft. The FET5718-C module and OK5718-C SBC both support -40 to 85℃ temperatures and feature an optimized Linux distro with Linux 4.9.41, Qt 5.6, and Wayland. The BSP includes PCIe host and slave mode optimizations, a simplified file system for faster boot and flashing, and an image system to allow Weston virtual keyboards and easy Qt image stacking, says Forlinx.

FET5718-C module

The FET5718-C module’s Sitara AM5718 SoC may have a somewhat old-school CPU, but it provides plenty of extras. You get both a PowerVR SGX544 3D GPU and Vivante GC320 2D GPU, as well as a 750MHz TI DSP-C66X digital signal processor and video accelerator. There’s also the same, 200MHz programmable PRU subsystem found on the BeagleBone, as well as dual, 213MHz Cortex-M4 microcontrollers.



FET5718-C 

The combination of the DSP with the real-time MCUs enables robotics, machine vision, medical imaging, automotive, and facial recognition applications. Industrial automation and building automation applications are also supported.

The FET5718-C module adds 1GB DDR3L, 8GB eMMC, a TPS659162RGZR power management unit, and a 3-port Gigabit Ethernet switch subsystem. The 12-layer, 70 x 50mm COM runs on 5V power and has a 320-pin board-to-board connector.

OK5718-C board

The 4-layer, 190 x 130mm OK5718-C baseboard expands upon the FET5718-C features with ports popping out on all sides. The board provides 2x GbE ports, onboard WiFi and Bluetooth, and a mini-PCIe slot with optional 3G/4G. There are single USB 3.0 host and micro-USB 2.0 device ports and a pair of USB 2.0 host ports.

The OK5718-C is further equipped with an HDMI port, an SD slot, a CAN port, and dual audio jacks. Onboard I/O includes SATA 2.0 with power, DVP and 2x MIPI-CSI camera interfaces, and other I/O as detailed below.



OK5718-C detail view
(click image to enlarge)

Specifications listed for the OK5718-C SBC include:

  • Processor (via FET5718-C module) — TI Sitara AM5718 (1x Cortex-A15 core @ up to 1.5GHz; PowerVR SGX544 3D GPU; Vivante GC320 2D GPU; 750MHz TI DSP-C66X; IVA-HD image/video accelerator; 200MHz PRU-ICSS; 2x 213MHz Cortex-M4
  • Memory/storage:
    • 1GB DDR3L (via FET5718-C)
    • 8GB eMMC (via FET5718-C)
    • QSPI flash (via FET5718-C)
    • SD slot (SD, SDHC, SDXC support)
    • SDIO interface
    • SATA 2.0 interface with SATA power
  • Wireless — 802.11b/g/n with Bluetooth
  • Networking — 2x GbE ports
  • Media I/O:
    • HDMI 1.4a port for up to 1080P@60Hz
    • RGB 888 LCD interface
    • Dual display support
    • 2x MIPI-CSI
    • DVP 8-bit 5MP camera interface
    • Mic and headphone jacks; speaker headers
  • Other I/O:
    • USB 3.0 host port
    • 2x USB 2.0 host ports
    • Micro-USB 2.0 device port
    • 3x UART
    • 2x I2C
    • Serial debug port
    • CAN 2.0, SPI, GPMC, HDQ, JTAG
  • Expansion — Mini-PCIe slot with optional Huawei 3G/4G card
  • Other features — 2x LED; 3x user keys; RTC with coin-cell battery; boot config switch
  • Power — 12V DC input; power and reset switches
  • Operating temperature — -40 to 85°C
  • Dimensions — 190 x 130mm
  • Operating system — Custom Linux with Kernel 4.9.41, Qt 5.6, and Wayland

Further information

No pricing or availability information was provided for the OK5718-C SBC or FET5718-C module. More information may be found on the Forlinx OK5718-C and FET5718-C product pages. There’s also a product page at Faststream Technologies.

This article originally appeared on LinuxGizmos.com on August 20.

Texas Instruments | www.ti.com

SoC Provides Neural Network Acceleration

Brainchip has claimed itself as the first company to bring a production spiking neural network architecture to market. Called the Akida Neuromorphic System-on-Chip (NSoC), the device is small, low cost and low power, making it well-suited for edge applications such as advanced driver assistance systems (ADAS), autonomous vehicles, drones, vision-guided robotics, surveillance and machine vision systems. Its scalability allows users to network many Akida devices together to perform complex neural network training and inferencing for many markets including agricultural technology (AgTech), cybersecurity and financial technology (FinTech).
According to Lou DiNardo, BrainChip CEO, Akida, which is Greek for ‘spike,’ represents the first in a new breed of hardware solutions for AI. Artificial intelligence at the edge is going to be as significant and prolific as the microcontroller.

The Akida NSoC uses a pure CMOS logic process, ensuring high yields and low cost. Spiking neural networks (SNNs) are inherently lower power than traditional convolutional neural networks (CNNs), as they replace the math-intensive convolutions and back-propagation training methods with biologically inspired neuron functions and feed-forward training methodologies. BrainChip’s research has determined the optimal neuron model and training methods, bringing unprecedented efficiency and accuracy. Each Akida NSoC has effectively 1.2 million neurons and 10 billion synapses, representing 100 times better efficiency than neuromorphic test chips from Intel and IBM. Comparisons to leading CNN accelerator devices show similar performance gains of an order of magnitude better images/second/watt running industry standard benchmarks such as CIFAR-10 with comparable accuracy.

The Akida NSoC is designed for use as a stand-alone embedded accelerator or as a co-processor. It includes sensor interfaces for traditional pixel-based imaging, dynamic vision sensors (DVS), Lidar, audio, and analog signals. It also has high-speed data interfaces such as PCI-Express, USB, and Ethernet. Embedded in the NSoC are data-to-spike converters designed to optimally convert popular data formats into spikes to train and be processed by the Akida Neuron Fabric.

Spiking neural networks are inherently feed-forward dataflows, for both training and inference. Ingrained within the Akida neuron model are innovative training methodologies for supervised and unsupervised training. In the supervised mode, the initial layers of the network train themselves autonomously, while in the final fully-connected layers, labels can be applied, enabling these networks to function as classification networks. The Akida NSoC is designed to allow off-chip training in the Akida Development Environment, or on-chip training. An on-chip CPU is used to control the configuration of the Akida Neuron Fabric as well as off-chip communication of metadata.

The Akida Development Environment is available now for early access customers to begin the creation, training, and testing of spiking neural networks targeting the Akida NSoC. The Akida NSoC is expected to begin sampling in Q3 2019.

Brainchip | www.brainchip.com

Connected Retail IoT System Employs Nordic’s BLE SoC

Nordic Semiconductor has announced that Insigma, a U.S.-based Internet of Things (IoT) solutions company, employs Nordic’s nRF52832 Bluetooth Low Energy (Bluetooth LE) System-on-Chip (SoC) in its “Connected Retail” suite of IoT products. Insigma’s Connected Retail solution allows brands to create an intelligent IoT network of smart coolers, shelves, displays, and vending machines with minimal human intervention. The solution employs a proprietary wireless sensor and camera techology to record and report on stock levels, product placement compliance, product consumption trends and consumer engagement.

In operation, the device is equipped with two cameras, which take images of the products in the cooler or on the shelf. This image is then processed via Insigma’s proprietary machine vision technology to detect the products in view. To start collecting data and analytics, Insigma’s customers simply attach the sensor to the inside of an existing cooler, vending machine, or shelf without need for wiring or mains power. The integration of the Nordic SoC establishes ultra low power wireless connectivity, delivering up to seven years battery life thanks in part to the ultra low power characteristics of the Nordic SoC.

The nRF52832 has been engineered to minimize power consumption with features such as the 2.4 GHz radio’s 5.5 mA peak RX/TX currents and a fully-automatic power management system that reduces power consumption by up to 80 percent compared with Nordic’s nRF51 Series SoCs.

The collected data is stored on the device and is then relayed on-site to a sales agent or technician’s Bluetooth 4.0 (and later) smartphone or tablet using Bluetooth LE wireless connectivity. From Insigma’s ‘Virtual Hub’ app, the data can then be uploaded to Insigma’s Cloud servers, or sent directly to an IoT gateway (again via Bluetooth LE), from where it is automatically sent to Insigma’s Cloud servers via a GSM or CDMA cellular network. The secure and scalable Cloud platform features alert and artificial intelligence engines enabling device management and configuration, while providing a reporting dashboard to display complex IoT data with simple visualization.

Nordic’s nRF52832 multiprotocol SoC combines a 64 MHz, 32-bit Arm Cortex M4F processor with a 2.4 GHz multiprotocol radio (supporting Bluetooth 5, ANT and proprietary 2.4 GHz RF protocol software) featuring -96 dBm RX sensitivity, with 512 kB flash memory and 64 kB RAM.

The SoC is supplied with Nordic’s S132 SoftDevice, a Bluetooth 5-certifed RF software protocol stack for building advanced Bluetooth LE applications. The S132 SoftDevice features Central, Peripheral, Broadcaster and Observer Bluetooth LE roles, supports up to twenty connections, and enables concurrent role operation.

Nordic Semiconductor | www.nordicsemi.com

 

MCUs and Processors Vie for Embedded Mindshare

Performance Push

Today’s crop of high-performance microcontrollers and embedded processors provide a rich continuum of features, functions and capabilities. Embedded system designers have many choices in both categories but the dividing line between the two can be blurry.

By Jeff Child, Editor-in-Chief

At one time the world of microcontrollers and the world of microprocessors were clearly separate. That’s slowly changed over the years as the high-performance segment of microcontrollers have become more powerful. And the same time, embedded processors have captured ever more mindshare and market share that used to be exclusively owned by the MCU camp. The lines blurred even further once most all MCUs started using Arm-based processor cores.

All the leading MCU vendors have a high-performance line of products, some in the 200 MHz and up range. Moreover, some application-specific MCU offerings are designed specifically for the performance needs of a particular market segment—automotive being the prime example. In some cases, these high end MCUs are vying for design wins against embedded processors that meet the same size, weight and power requirements as MCUs. In this article, we’ll examine some of the latest and greatest products and technologies on both sides.

High Performance MCU

An example of an MCU vendor’s high-performance line of products is Cypress Semiconductor’s FM4. FM4 is a portfolio of 32-bit, general-purpose, high performance MCUs based on the Arm Cortex-M4 processor with FPU and DSP functionality. FM4 microcontrollers operate at frequencies up to 200 MHz and support a diverse set of on-chip peripherals for motor control, factory automation and home appliance applications. The portfolio delivers low-latency, reliable, machine-to-machine (M2M) communication required for Industry 4.0 using network-computing technologies to advance design and manufacturing.

The FM4 MCU supports an operating voltage range of 2.7 V to 5.5 V. The devices incorporate 256 KB to 2 MB flash and up to 256 KB RAM. The fast flash memory combined with a flash accelerator circuit (pre-fetch buffer plus instruction cache) provides zero-wait-state operation up to 200 MHz. A standard DMA and an additional descriptor-based DMA (DSTC), each with an independent bus for data transfer, can be used to further offload the CPU. Figure 1 shows the FM4-216-ETHERNET, a development platform for developing applications using the Arm Cortex-M4-based FM4 S6E2CC MCU.

Figure 1
The FM4-216-ETHERNET is a development platform for developing applications using the Arm Cortex-M4-based FM4 S6E2CC MCU.

The high-performance line of MCUs from ST Microelectronics is its STM32H7 series. An example product from that series is the STM32H753 MCU with Arm’s highest-performing embedded core (Cortex-M7). According to ST Micro it delivers a record performance of 2020 CoreMark/856 DMIPS running at 400 MHz, executing code from embedded flash memory.

Other innovations and features implemented by ST further boost performance.These include the Chrom-ART Accelerator for fast and efficient graphical user-interfaces, a hardware JPEG codec that allows high-speed image manipulation, highly efficient Direct Memory Access (DMA) controllers, up to 2 MB of on-chip dual-bank flash memory with read-while-write capability, and the L1 cache allowing full-speed interaction with off-chip memory. Multiple power domains allow developers to minimize the energy consumed by their applications, while plentiful I/Os, communication interfaces, and audio and analog peripherals can address a wide range of entertainment, remote-monitoring and control applications.

Last year STMicro announced its STM32H7 high-performing MCUs are designed with the same security concepts as the Platform Security Architecture (PSA) from Arm announced at that time. This PSA framework on the STM32H7 MCUs are combined with STM32-family enhanced security features and services. ST’s STM32H7 MCU devices integrate hardware-based security features including a True Random-Number Generator (TRNG) and advanced cryptographic processor, which will simplify protecting embedded applications and global IoT systems against attacks like eavesdropping, spoofing or man-in-the-middle interception.

MCU Runs Linux OS

One dividing line that remains between MCUs and microprocessors is their ability to run major operating systems. While most embedded processors can run OSes like Linux, most MCUs lack the memory architecture required to do so. Breaking that barrier, in February MCU vendor Microchip Technology unveiled a System on Module (SOM) featuring the SAMA5D2 microprocessor. The ATSAMA5D27-SOM1 contains the recently released ATSAMA5D27C-D1G-CU System in Package (SiP) (Figure 2).

Figure 2
The Arm Cortex-A5-based SAMA5D2 SiP is available in three DDR2 memory sizes (128 Mb, 512 Mb and 1 Gb) and optimized for bare metal, RTOS and Linux implementation

The SOM simplifies design by integrating the power management, non-volatile boot memory, Ethernet PHY and high-speed DDR2 memory onto a small, single-sided PCB. There is a great deal of design effort and complexity associated with creating an industrial-grade MPU-based system running a Linux operating system. The SOM integrates multiple external components and eliminates key design challenges around EMI, ESD and signal integrity. …

Read the full article in the August 337 issue of Circuit Cellar

Don’t miss out on upcoming issues of Circuit Cellar. Subscribe today!

Note: We’ve made the October 2017 issue of Circuit Cellar available as a free sample issue. In it, you’ll find a rich variety of the kinds of articles and information that exemplify a typical issue of the current magazine.