Bluetooth 5 Low Power SoC with Integrated Microphone Interface

Dialog Semiconductor recently announced the next generation in its SmartBond family. The DA14586 SoC is the company’s first standalone device qualified to support the latest Bluetooth 5.0 specification. It delivers the lowest power consumption and unrivaled functionality for advanced use cases.DialogDA14586

The DA14586’s features, specs, and benefits:

  • Bluetooth 5 qualified
  • An integrated microphone interface allows manufacturers to add intuitive intelligent voice control to any cloud connected product that has a microphone and speaker
  • Enhancements include an advanced power management setup with both buck and boost converters, which enable support of most primary cell battery types.
  • Double the memory of its predecessor for user applications, making it ideal for adding Bluetooth low energy to proximity tags, beacons, connected medical devices, and smart home applications.
  • Advanced features allow for mesh-based networked applications to be simply supported.
  • Supported by a complete development environment and Dialog’s SmartSnippets software to help engineers optimize software for power consumption.

Source: Dialog Semiconductor

New Development Tool for Bluetooth 5

Nordic Semiconductor’s Bluetooth 5 developer solution for its nRF52840 SoC comprises the Nordic S140 v5.0 multi-role, concurrent protocol stack that brings Bluetooth 5’s long range and high throughput modes for immediate use to developers on the Nordic nRF52840 SoC. The Nordic nRF5 SDK offers application examples that implement this new long-range, high-throughput functionality. The existing Nordic nRF52832 SoC is also complemented with a Bluetooth 5 protocol stack.NordicBluetooth5Board

Bluetooth 5’s high throughput mode offers not only new use cases for wearables and other applications, but also significantly improves user experience with Bluetooth products. Time on air is reduced and thus leads to faster more robust communication as well as reduced overall power consumption. In addition, with 2 Mbps, the prospect of audio over Bluetooth low energy is possible.

The new Preview Development Kit (nRF52840-PDK) is a versatile, single-board development tool for Bluetooth 5, Bluetooth low energy, ANT, 802.15.4m, and 2.4-GHz proprietary applications using the nRF52840 SoC. The kit is hardware compatible with the Arduino Uno Revision 3 standard, making it possible to use third-party-compatible shields. An NFC antenna can be connected to enable NFC tag functionality. The kit gives access to all I/O and interfaces via connectors and has four LEDs and four buttons which are user-programmable.

Source: Nordic Semiconductor

Aurora Software for Evaluation of ArcticPro eFPGA IP

QuickLogic Corp. recently announced the release of its new Aurora software, which enables SoC developers to evaluate the integration of embedded FPGA (eFPGA) IP into devices designed for different Global Foundries process nodes. The Aurora eFPGA development tool supports design implementation from RTL through place and route. It enables SoC developers to determine the amount of eFPGA resources needed to support a design (including logic cell count, clock network requirements, and routing utilization) and also provide the estimated eFPGA die area associated with those resources. The current version of the tool supports GF’s 40-nm node. Support for the 65-nm node and 22FDX (FD-SOI) platform will be released in the future.

Source: QuickLogic Corp.

Smart Home Reference Designs for IoT Device Development

Silicon Labs recently launched two new wireless occupancy sensor and smart outlet reference designs for the home automation. FCC and UL-precertified, the reference designs comprise hardware, firmware, and software tools that enable you to develop Internet of Things (IoT) systems based on Silicon Labs’s ZigBee “Golden Unit” Home Automation (HA 1.2) software stack and multiprotocol Wireless Gecko SoC portfolio. Both reference designs include Silicon Labs’s EFR32MG Mighty Gecko SoC.SiliconLabs Ref Design

 

The occupancy sensor reference design is a precertified ZigBee HA 1.2 solution featuring a wirelessly connected passive IR sensor along with ambient light and temperature/relative humidity sensors from Silicon Labs. The compact occupancy sensor’s battery-powered design provides up to five years of operation. The sensor’s detection range extends up to approximately 40′ with a 90° viewing window.

The smart outlet reference design is a precertified solution for a wirelessly controlled outlet plug. You can use it to power and control a wide variety of home and building automation products. Powered by an AC main-voltage line, the smart outlet communicates wirelessly to ZigBee mesh networks. It features the following: built-in diagnostics and metering with a user-friendly web interface; an AC voltage range of 110 to 240 V for global use along with a robust 15-A load current; and integrated high-accuracy sensors (ambient light and temperature/humidity).

 

Silicon Labs’s occupancy sensor and smart outlet reference designs are currently available. The RD-0078-0201 occupancy sensor reference design costs $49. The RD-0051-0201 smart outlet reference design costs $119. (All prices USD MSRP.)

Source: Silicon Labs

New Bluetooth 5-Ready SoC Offers Increased Range, Bandwidth, & Security

Nordic Semiconductor’s new Bluetooth 5-ready nRF52840 SoC is well suited for smart home, advanced wearables, and industrial IoT applications. In addition to supporting 802.15.4, it’s capable of delivering Bluetooth low energy (BLE) wireless connectivity with up to 4× the range or 2× the raw data bandwidth (2 Mbps) compared with the BLE implementation of Bluetooth 4.2Nordic nRF52840

The nRF52840 SoC’s features, specs, and benefits:

  • Features a 64-MHz, 32-bit ARM Cortex M4F processor employed on Nordic’s nRF52832 SoC
  • A new radio architecture with on-chip PA boosting output power considerably, and extending the link budget for “whole house” applications, a doubling of flash memory to 1 MB, and a quadrupling of RAM memory to 256 KB
  • Support for Bluetooth 5, 802.15.4, ANT, and proprietary 2.4-GHz wireless technologies
  • A full-speed USB 2.0 controller
  • A host of new peripherals (many with EasyDMA) including a quad-SPI
  • Operates from power supplies above 5 V  (e.g., rechargeable battery power sources)
  • Incorporates the ARM CryptoCell-310 cryptographic accelerator offering best-in-class security for Cortex-M based SoCs. Extensive crypto ciphers and key generation and storage options are also available.

Nordic released the S140 SoftDevice and associated nRF5 SDK with support for Bluetooth 5 longer range and high throughput modes in December 2016. Engineering samples and development kits are now available. Production variants of the nRF52840 will be available in Q4 2017.

Source: Nordic Semiconductor 

Simplified Smart Home Device Creation with New Apple HomeKit Bluetooth Dev Kit

Dialog Semicondcutor’s new offering is the first SoC on the market with dedicated hardware acceleration for HomeKit security operations which ensures end-to-end application encryption, safeguarding personal information in transit. With the recent introduction of iOS 10, Apple HomeKit is now an integral part of iOS, including its dedicated app that creates an enhanced user experience. The Apple Home app is compatible not just with iPhone, but is also optimized for iPad and the Apple Watch running watchOS 3. With the app, an Apple TV or iPad can easily act as a smart home hub, enabling home control from anywhere.DialogSemi HomeKit521211

The SmartBond DA14681 supports Bluetooth 4.2 to provide seamless connectivity, and smartly balances power efficiency and performance, with an integrated ARM Cortex M0 processor and expandable flash memory. A Power Management Unit (PMU) provides three independent power rails, in addition to an on-chip charger and fuel gauge, allowing DA14681 to recharge batteries over a USB interface.

Its integrated topology streamlines development, minimizes BOM cost and enables the kit to consume less than five µA on standby. The development kit maximizes application space and flexibility, using a mere 170 KB of flash memory and provides 64 KB of RAM for apps to utilize, even allowing user defined profiles to further customize applications on top of pre-configured HomeKit profiles.

To give developers all of the tools they need to create next-generation IoT applications, the DA14681 development kit consists of the HomeKit SDK, Basic and Pro versions of the kit, and a flexible add-on board to interface with the separately available MFi chip. The new HomeKit development kit and add-on board are now available from Avnet, Digi-Key and Mouser.

Source: Dialog Semiconductor 

Battery-Free, Energy-Harvesting BLE Module Features nRF51822 SoC

EnOcean recently selected Nordic Semiconductor’s nRF51822 Bluetooth low energy SoC for its Dolphin PTM 215B pushbutton transmitter module, which is well suited for use in smart lighting applications. Using a miniaturize electro-dynamic energy transducer to convert motion, light, or temperature differences into electrical energy, the module is an excellent option for engineers designing flexible, energy-efficiency in smart building and IoT lighting applications.nordic nRF51822 EnOcean Dolphin

The nRF51822 was selected because harvested energy is sufficient to power wireless control of Bluetooth low energy peripherals such as smart light bulbs. A powerful multiprotocol SoC, nRF51822 is  built around a 32-bit ARM Cortex M0 CPU with 256/128 KB flash and 32/16 KB RAM. The embedded 2.4-GHz transceiver is fully compliant with Bluetooth 4.2.

Source: Nordic Semiconductor

Open-Source Bluetooth Low Energy Beacon

Nordic Semiconductor recently announced the availability on Kickstarter of a Nordic nRF52832 SoC-based Bluetooth low energy (BLE) beacon intended for Internet of Things (IoT) applications. You can program the Puck.js wirelessly from a website using a graphical editor or JavaScript instead of C or C++, which are traditionally used by Bluetooth low energy beacon developers.NS_PUCK Nordic

The open-source Puck.js supports both the iBeacon and Eddystone beacon formats and comes with firmware updates for the upcoming Bluetooth v5.0 specification. The circular 35-mm Puck.js has a silicone rubber cover and plastic base. Powered from a CR2032 coin cell battery, the Puck.js includes a magnetometer (digital compass), user-assignable tactile button, and four LEDs (red, green, blue, and infrared).

The Puck.js features an nRF52832 SoC, which means it benefits from a powerful ARM Cortex-M4F processor, 64-MHz clock speed, 64 KB of RAM, 512 KB of flash memory, built-in NFC, over-the-air firmware updates, a 12-bit ADC, timers, an SPI, a temperature sensor, and more.

Source: Nordic Semiconductor

Industry’s First Open-Source SoC Platforms

SiFive recently introduced the Freedom family of system on a chip (SoC) platforms that are built around the open-source RISC-V instruction set architecture, which was developed by the company’s founders at the University of California, Berkeley.

Features and specs:

  • Freedom U500 Series: The Freedom Unleashed (U) family features a fully Linux-capable embedded application processor featuring the world’s most advanced, multi-core RISC-V CPUs, running at a speed of 1.6 GHz or higher with support for accelerators and cache coherency. Designed in TSMC 28 nm, the Freedom U500 platform is well suited for machine learning, storage, and networking applications. The platform also supports standard high-speed peripherals including PCIe 3.0, USB 3.0, Gigabit Ethernet, and DDR3/DDR4.
  • Freedom E300 Series: The Freedom Everywhere (E) family is designed for embedded microcontroller, IoT, and wearables markets. Designed in TSMC 180 nm and architected to have minimal area and power, the Freedom E300 platform features efficient RISC-V cores with support for RISC-V compressed instructions that have been shown to reduce code size by up to 30%.

Full FPGA models of each SoC are now available. Visit dev.sifive.com for more information.

Source: SiFive

Arduino Primo Features Nordic Semiconductor SoC

Nordic Semiconductor recently announced that Arduino’s new Arduino Primo features its nRF52832 Bluetooth low energy SoC. The IoT-targeted Arduino Primo PCB features native Bluetooth low energy wireless connectivity and includes Near Field Communication (NFC), Wi-Fi, and infrared (IR) technologies. In addition to being able to wirelessly connect to a wide array of Bluetooth low energy sensors, the Arduino Primo uses the nRF52832 SoC’s integrated NFC for secure authentication and Touch-to-Pair (a simple BLE pairing function requiring no user interaction), and has embedded IR for traditional remote control. Nordic_Arduino_Primo_PRINT

The Nordic nRF52832 SoC’s ARM processor has ample computational overhead to manage the Arduino Primo’s on-board accelerometer, temperature, humidity, and pressure sensors. The Nordic Semiconductor nRF52832’s features and specs include:

  • 64-MHz, 32-bit ARM Cortex-M4F processor
  • 2.4-GHz multiprotocol radio that’s fully compatible with the Bluetooth 4.2 specification and features –96-dB RX sensitivity and 5.5-mA peak RX/TX currents
  • 512-KB flash memory and 64-KB RAM, and a fully-automatic power management system to optimize power consumption.

You can program via the Arduino Integrated Development Environment (IDE) programming interface. If you want to access the Arduino Prio’s most advanced features and functionality, you can use any Nordic nRF52 Series-compatible Software Development Kit (SDK) or programming tools. For example, the nRF5 SDK for IoT enables you to develop IPv6 over Bluetooth low energy applications on the nRF52832 SoC.

Source: Nordic Semiconductor

Low-Power 12 DOF Bluetooth Smart Sensor Development Platform

Dialog Semiconductor now offers a small, low-power 12 Degrees-of-Freedom (DOF) wireless smart sensor development kit for Internet of Things (IoT) applications, such as wearables, virtual reality, 3-D indoor mapping, and navigation. The DA14583 SmartBond Bluetooth Smart SoC is combined with Bosch Sensortec’s gyroscope, accelerometer, magnetometer, and environmental sensors. A 16 mm × 15 mm PCB is supplied as a dongle in a plastic housing. Current consumption is only 1.3 mA (typical) when streaming sensor data; it’s less than 110 µA in advertising mode and under 11 µA in power-save mode.Dialog DS025

The complementary software development kit (SDK) includes Dialog’s SmartFusion smart sensor library for data acquisition, auto-calibration, and sensor data fusion. It runs on the DA14583’s embedded Cortex M0 processor. The DA14583 has an ARM Cortex-M0 baseband processor with an integrated ultra-low power Bluetooth Smart radio. The development kit includes the following Bosch sensors: a BMI160 six-axis inertial measurement unit, a BMM150 three-axis geomagnetic field sensor, and a BME280 integrated environmental unit, which measures pressure, temperature, and humidity.

Source: Dialog Semiconductor

Bluetooth Smart SoCs Links Wearables to Apps for WeChat

Dialog Semiconductor recently announced its support for WeChat’s communications protocol with the launch of its WeChat SDK. With the kit, you can quickly add Bluetooth connectivity between WeChat apps and wearables and other IoT devices. Dialog DA14580 Dialog’s development kit is available now and includes a protocol stack for the WeChat communication layer. The SDK—which is based on the DA1458x family of SmartBond SoCs—enables you to reduce the overall development time for connecting their products wirelessly to WeChat apps. Your users can control wearable devices via the app and share information via the platform.

DA1458x SoCs combine a Bluetooth low-energy radio with an ARM Cortex-M0 application processor. With intelligent power management circuitry and accessible processor resources via 32 GPIOs,you can build fully hosted applications.

The SmartBond WeChat SDK enables efficient coding and comes with SmartSnippets software development environment, which is based on Keil µVision tools.

Source: Dialog Semiconductor

New Low-Power Smart Sensor Wireless Platform for IoT Devices

Dialog Semiconductor recently announced that it is collaborating with Bosch Sensortec to develop a low-power smart sensor platform for Internet of Things (IoT) devices. The 12-DOF smart sensor reference platform is intended for gesture recognition in wearable computing devices and immersive gaming, including augmented reality and 3-D indoor mapping and navigation.DS008_bosch-Dialog

The platform comprises Dialog’s DA14580 Bluetooth Smart SoC with three low-power Bosch Sensortecsensors: the BMM150 (for three-axis geo-magnetic field measurement), the BME280 (pressure, humidity, and temperature sensor), and the siz-axis BMI160 (a combination of a three-axis accelerometer and three-axis gyroscope in one chip). The resulting 14 × 14 mm2 unit draws less than 500 µA from a 3-V coin cell when updating and transferring all 12 × 16 bits of data wirelessly to a smartphone.

 

The 2.5 × 2.5 × 0.5 mm DA14580 SmartBond SoC integrates a Bluetooth Smart radio with an ARM Cortex-M0 application processor and intelligent power management. It more than doubles the battery life of an application-enabled smartphone accessory, wearable device, or computer peripheral in comparison with other solutions. The DA14580 includes a variety of analog and digital interfaces and features less than 15 mW power consumption in active mode and 600-nA standby current.

Bosch Sensortec’s BMI160 six-axis Inertial Measurement Unit (IMU) integrates a 16 bit, three-axis, low-g accelerometer and an ultra-low power three-axis gyroscope within a single package. When the accelerometer and gyroscope are in full operation mode, the typical current consumption is 950 µA.

The BMM150 integrates a compact three-axis geo-magnetic field sensor using Bosch Sensortec’s high performance FlipCore technology. The BME280 Integrated Environmental Unit combines sensors for barometric pressure, humidity, and temperature measurement. Its altitude measurement function is a key requirement in applications such as indoor navigation with floor tracking.

Source: Dialog Semiconductor

Reference Design Addresses Demand for Voice Control

Silicon Labs recently released a new, cost-effective solution for voice-enabled ZigBee remote controls. The ZigBee Remote Control (ZRC) reference design reduces the need for expensive external hardware by implementing a software-based audio codec into a single-chip wireless SoC. It includes all of the hardware and software necessary for developing full-featured, voice-enabled remote controls.SiLabs Zigbee

The ZRC reference design is based on Silicon Labs EM34x wireless SoCs and ZRC 2.0 Golden Unit-certified software stack, which provides an industry-standard way to implement interoperable, low-power RF remote controls. The reference design includes complete RF layout and design files, an acceleration sensor for backlight control, a buzzer for “find me” capabilities, support for IR control, a digital microphone, and the ability to transmit voice commands over RF.

Silicon Labs offers two development kits the voice-enabled reference design. The  $249 EM34X-VREVK Voice Remote Evaluation Kit features preprogrammed devices and a simple GUI to demonstrate remote control capabilities, including RF, voice commands, and legacy IR support. The $399 EM34X-VRDK Voice Remote Development Kit provides you with an “out-of-the-box” design experience. It simplifies development of the remote control and target devices, and it comes with an EM34x voice-enabled remote control, USB stick, EM34x development board, EM34x wireless modules, and ISA3 debug adapter.

Samples and volume quantities of Silicon Labs’s EM34x SoCs are available with prices starting at $1.68 in 10,000-unit quantities.

Source: Silicon Labs

FPGA-Based Storage Reference Design Doubles NAND Flash Life

Altera Corp. recently developed a storage reference design  based on its Arria 10 SoCs that doubles the life of NAND flash. In addition, can increase the number of program-erase cycles by up to 7×. The design features an Arria 10 SoC with an integrated dual-core ARM Cortex A9 processor in an optimized, single-chip solution. It uses a Mobiveil SSD controller and NVMdurance NAND optimization software. This reference design provides improved performance and flexibility in NAND utilization while reducing the cost of the NAND array by increasing the lifetime of data center equipment.NAND_AlteraMobiveil’s controller supports multi-core architectures, enabling threads to run on each core with their own queue and interrupt without any locks required. NVMdurance’s NAND flash optimization software monitors the NAND Flash’s condition and automatically adjusts the control parameters in real time. The reference design also features end-to-end data protection, encryption and compression, and optimizes throughput and power consumption, all in a small silicon footprint.

Altera’s NAND storage reference design is available today.

Source: Altera Corp.