Windows-Compatible Dev Board

Intel, Microsoft, and Circuit Co. have teamed up to produce a development board designed for the production of software and drivers used on mobile devices such as phones, tablets and similar System on a Chip (SoC) platforms running Windows and Android operating systems with Intel processors.

Source: SharksCove.org

Source: SharksCove.org

The 6″ × 4″ Sharks Cove board and features a number of interfaces including GPIO, I2C, I2S, UART, SDIO, mini USB, USB, and MIPI for display and camera.

Its main features include:

  • Intel  ATOM Processor Z3735G , 2M Cache, 4 Core, 1.33 GHz up
    to 1.88 GHz
  • Intel HD Graphics
  • 1 GB 1×32 DDR3L-RS-1333, 16-GB EMMC storage, micro SD Card
  • HDMI full size connector, MIPI display connector
  • Twelve (5 × 2) Shrouded pin header connectors, 1 (2 × 10) sensor header, 2 × 60 pin MIPI connector for display, camera and 5 (2 × 2) headers for power
  • One USB 2.0 type A connector
  • One micro USB type A/B for debug
  • Audio Codec Realtek ALC5640, speaker output header and onboard digital mic
  • Ethernet or WiFi via USB
  • Intel UEFI BIOS
  • Power, volume up, volume down, home screen and rotation lock
  • One micro USB type A/B for Power
  • SPI debug programming header

You can preorder the board for $299. It includes a Windows 8.1 image together with all the necessary utilities for it to run on Sharks Cove.

Kernel RTOS Evaluation Kit

eSOL has started offering the eT-Kernel Evaluation Kit for Xilinx’s Zynq-7000 All Programmable SoC, which combines the dual-core ARM Cortex-A9 MPCore processor with Xilinx’s 28-nm programmable logic fabric. The Evaluation Kit integrates eSOL’s eT-Kernel Multi-Core Edition real time operating system (RTOS), its dedicated eBinder integrated development environment (IDE), middleware components, and device drivers. This complimentary 30-day Evaluation Kit permits developers to easily and quickly evaluate the performance and quality of Xilinx Zynq-7000 All Programmable SoC and eT-Kernel. Since eT-Kernel inherited the functions and architecture of uITRON, the most popular RTOS in Japan and Asian countries, developers can reuse their uITRON-based software assets without further work.

Run-time software in the Evaluation Kit includes the eT-Kernel Multi-core Edition, eSOL’s PrFILE2 FAT file system, the SD memory card driver, and the HDMI display driver, all of which are integrated and immediately run on the Zynq-7000 All Programmable SoC Evaluation Board. The eBinder IDE is available for eT-Kernel Multi-Core Edition-based software development. Besides ARM’s genuine compiler, eBinder offers various development tools and functions to strongly support multi-programming, debugging, and analysis for complex multi-core software development.

Zynq-7000 All Programmable SoC tightly integrates two ARM Cortex-A9 MPCore processors and FPGA fabric. The hardware and software programmability of Zynq-7000 AP SoC enables system development with high performance, flexibility, and scalability, while achieving lower power consumption and cost.

The eT-Kernel/Zynq-7000 All Programmable SoC Evaluation Kit allows developers to jump-start their evaluation using packaged device drivers, which saves the time and money of developing them. Zynq-7000 All Programmable SoC and the eT-Kernel Platform are an ideal combination for advanced embedded systems in the automotive, industrial, and medical arenas, including Automotive Driver Assistance Systems (ADAS), high-resolution graphic systems, machine vision systems, and network systems.

[Source: eSOL Co., Ltd]

8-Bit Microcontroller IP Core

DigitalCoreDesignThe DF6808 IP core is binary-compatible with the industry-standard Motorola 68HC08 8-bit microcontroller. The IP core uses sophisticated on-chip peripheral capabilities to perform 45 to 100 million instructions per second. FAST architecture implemented in DF6808 enables the 68HC08 microcontroller to run at least three times faster than the original solution.

The DF6808’s 16-bit, free-running timer system has two input-capture lines and two output-compare lines. The IP core is equipped with proprietary safety functions, including self-monitoring circuitry, which helps protect against system errors; the computer operating properly (COP) watchdog system, which protects against software failures; and an illegal opcode detection circuit, which provides a non-maskable interrupt if an illegal opcode occurs.

For power conservation, the IP core includes two software-controlled power-saving modes (Wait and Stop). These modes make the DF6808 IP core well suited for automotive and battery-driven applications.

The DF6808 includes the DoCDTM real-time hardware debugger, which provides built-in support for Digital Core Design’s hardware debug system and the debugging capability of an entire system-on-a-chip (SoC). The DoCDTM enables nonintrusive debugging of running applications. It can halt, run, step into, or skip an instruction and read/write any microcontroller contents, including all registers, user-defined peripherals, data, and program memories.

Contact Digital Core Design for pricing.

Digital Core Design
www.dcd.pl

Low-Power Micromodule

The ECM-DX2 is a highly integrated, low-power consumption micromodule. Its fanless operation and extended temperature are supported by the DMP Vortex86DX2 system-on-a-chip (SoC) CPU. The micromodule is targeted for industrial automation, transportation/vehicle construction, and aviation applications.
The ECM-DX2 withstands industrial operation environments for –40-to-75°C temperatures and supports 12-to-26-V voltage input. Multiple OSes, including Windows 2000/XP and Linux, can be used in a variety of embedded designs.

AvalueThe micromodule includes on-board DDR2 memory that supports up to 32-bit, 1-GB, and single-channel 24-bit low-voltage differential signaling (LVDS) as well as video graphics array (VGA) + LVDS or VGA + TTL multi-display configurations. The I/O deployment includes one SATA II interface, four COM ports, two USB 2.0 ports, 8-bit general-purpose input/output (GPIOs), two Ethernet ports, and one PS/2 connector for a keyboard and a mouse. The ECM-DX2 also provides a PC/104 expansion slot and one MiniPCIe card slot.

Contact Avalue Technology for pricing.

Avalue Technology, Inc.
www.avalue.com.tw

Compact Computer-on-Module

ADLINKThe cExpress-HL computer-on-module (COM) utilizes an Intel Core processor (formerly known as Haswell-ULT) to provide a compact, high-performance COM solution. The cExpress-HL is well suited for embedded systems in medical, digital signage, gaming, video conferencing, and industrial automation that require a high-performance CPU and graphics, but are constrained by size or thermal management requirements.

The cExpress-HL features a mobile 4th Generation Intel Core i7/i5/i3 processor at 1.7 to 3.3 GHz with Intel HD Graphics 5000 (GT3). The COM delivers high graphics performance while still keeping thermal design power (TDP) below 15 W. Intel’s system-on-chip (SoC) solution has a small footprint that enables it to fit onto the 95 mm × 95 mm COM.0 R2.0 Type 6. The COM provides rich I/O and wide-bandwidth data throughput, including three independent displays (two DDI channels and one LVDS), four PCIe x1 or one PCIe x4 (Gen2), four SATA 6 Gb/s, two USB 3.0 ports, and six USB 2.0 ports.

The cExpress-HL is equipped with ADLINK’s Smart Embedded Management Agent (SEMA), which includes a watchdog timer, temperature and other board information monitoring, and fail-safe BIOS support. SEMA enables users to monitor and manage stand-alone, connected, or remote systems through a cloud-based interface.
Contact ADLINK for pricing.

ADLINK Technology, Inc.
www.adlinktech.com