Open-Source Bluetooth Low Energy Beacon

Nordic Semiconductor recently announced the availability on Kickstarter of a Nordic nRF52832 SoC-based Bluetooth low energy (BLE) beacon intended for Internet of Things (IoT) applications. You can program the Puck.js wirelessly from a website using a graphical editor or JavaScript instead of C or C++, which are traditionally used by Bluetooth low energy beacon developers.NS_PUCK Nordic

The open-source Puck.js supports both the iBeacon and Eddystone beacon formats and comes with firmware updates for the upcoming Bluetooth v5.0 specification. The circular 35-mm Puck.js has a silicone rubber cover and plastic base. Powered from a CR2032 coin cell battery, the Puck.js includes a magnetometer (digital compass), user-assignable tactile button, and four LEDs (red, green, blue, and infrared).

The Puck.js features an nRF52832 SoC, which means it benefits from a powerful ARM Cortex-M4F processor, 64-MHz clock speed, 64 KB of RAM, 512 KB of flash memory, built-in NFC, over-the-air firmware updates, a 12-bit ADC, timers, an SPI, a temperature sensor, and more.

Source: Nordic Semiconductor

Industry’s First Open-Source SoC Platforms

SiFive recently introduced the Freedom family of system on a chip (SoC) platforms that are built around the open-source RISC-V instruction set architecture, which was developed by the company’s founders at the University of California, Berkeley.

Features and specs:

  • Freedom U500 Series: The Freedom Unleashed (U) family features a fully Linux-capable embedded application processor featuring the world’s most advanced, multi-core RISC-V CPUs, running at a speed of 1.6 GHz or higher with support for accelerators and cache coherency. Designed in TSMC 28 nm, the Freedom U500 platform is well suited for machine learning, storage, and networking applications. The platform also supports standard high-speed peripherals including PCIe 3.0, USB 3.0, Gigabit Ethernet, and DDR3/DDR4.
  • Freedom E300 Series: The Freedom Everywhere (E) family is designed for embedded microcontroller, IoT, and wearables markets. Designed in TSMC 180 nm and architected to have minimal area and power, the Freedom E300 platform features efficient RISC-V cores with support for RISC-V compressed instructions that have been shown to reduce code size by up to 30%.

Full FPGA models of each SoC are now available. Visit dev.sifive.com for more information.

Source: SiFive

Arduino Primo Features Nordic Semiconductor SoC

Nordic Semiconductor recently announced that Arduino’s new Arduino Primo features its nRF52832 Bluetooth low energy SoC. The IoT-targeted Arduino Primo PCB features native Bluetooth low energy wireless connectivity and includes Near Field Communication (NFC), Wi-Fi, and infrared (IR) technologies. In addition to being able to wirelessly connect to a wide array of Bluetooth low energy sensors, the Arduino Primo uses the nRF52832 SoC’s integrated NFC for secure authentication and Touch-to-Pair (a simple BLE pairing function requiring no user interaction), and has embedded IR for traditional remote control. Nordic_Arduino_Primo_PRINT

The Nordic nRF52832 SoC’s ARM processor has ample computational overhead to manage the Arduino Primo’s on-board accelerometer, temperature, humidity, and pressure sensors. The Nordic Semiconductor nRF52832’s features and specs include:

  • 64-MHz, 32-bit ARM Cortex-M4F processor
  • 2.4-GHz multiprotocol radio that’s fully compatible with the Bluetooth 4.2 specification and features –96-dB RX sensitivity and 5.5-mA peak RX/TX currents
  • 512-KB flash memory and 64-KB RAM, and a fully-automatic power management system to optimize power consumption.

You can program via the Arduino Integrated Development Environment (IDE) programming interface. If you want to access the Arduino Prio’s most advanced features and functionality, you can use any Nordic nRF52 Series-compatible Software Development Kit (SDK) or programming tools. For example, the nRF5 SDK for IoT enables you to develop IPv6 over Bluetooth low energy applications on the nRF52832 SoC.

Source: Nordic Semiconductor

Low-Power 12 DOF Bluetooth Smart Sensor Development Platform

Dialog Semiconductor now offers a small, low-power 12 Degrees-of-Freedom (DOF) wireless smart sensor development kit for Internet of Things (IoT) applications, such as wearables, virtual reality, 3-D indoor mapping, and navigation. The DA14583 SmartBond Bluetooth Smart SoC is combined with Bosch Sensortec’s gyroscope, accelerometer, magnetometer, and environmental sensors. A 16 mm × 15 mm PCB is supplied as a dongle in a plastic housing. Current consumption is only 1.3 mA (typical) when streaming sensor data; it’s less than 110 µA in advertising mode and under 11 µA in power-save mode.Dialog DS025

The complementary software development kit (SDK) includes Dialog’s SmartFusion smart sensor library for data acquisition, auto-calibration, and sensor data fusion. It runs on the DA14583’s embedded Cortex M0 processor. The DA14583 has an ARM Cortex-M0 baseband processor with an integrated ultra-low power Bluetooth Smart radio. The development kit includes the following Bosch sensors: a BMI160 six-axis inertial measurement unit, a BMM150 three-axis geomagnetic field sensor, and a BME280 integrated environmental unit, which measures pressure, temperature, and humidity.

Source: Dialog Semiconductor

Bluetooth Smart SoCs Links Wearables to Apps for WeChat

Dialog Semiconductor recently announced its support for WeChat’s communications protocol with the launch of its WeChat SDK. With the kit, you can quickly add Bluetooth connectivity between WeChat apps and wearables and other IoT devices. Dialog DA14580 Dialog’s development kit is available now and includes a protocol stack for the WeChat communication layer. The SDK—which is based on the DA1458x family of SmartBond SoCs—enables you to reduce the overall development time for connecting their products wirelessly to WeChat apps. Your users can control wearable devices via the app and share information via the platform.

DA1458x SoCs combine a Bluetooth low-energy radio with an ARM Cortex-M0 application processor. With intelligent power management circuitry and accessible processor resources via 32 GPIOs,you can build fully hosted applications.

The SmartBond WeChat SDK enables efficient coding and comes with SmartSnippets software development environment, which is based on Keil µVision tools.

Source: Dialog Semiconductor

New Low-Power Smart Sensor Wireless Platform for IoT Devices

Dialog Semiconductor recently announced that it is collaborating with Bosch Sensortec to develop a low-power smart sensor platform for Internet of Things (IoT) devices. The 12-DOF smart sensor reference platform is intended for gesture recognition in wearable computing devices and immersive gaming, including augmented reality and 3-D indoor mapping and navigation.DS008_bosch-Dialog

The platform comprises Dialog’s DA14580 Bluetooth Smart SoC with three low-power Bosch Sensortecsensors: the BMM150 (for three-axis geo-magnetic field measurement), the BME280 (pressure, humidity, and temperature sensor), and the siz-axis BMI160 (a combination of a three-axis accelerometer and three-axis gyroscope in one chip). The resulting 14 × 14 mm2 unit draws less than 500 µA from a 3-V coin cell when updating and transferring all 12 × 16 bits of data wirelessly to a smartphone.

 

The 2.5 × 2.5 × 0.5 mm DA14580 SmartBond SoC integrates a Bluetooth Smart radio with an ARM Cortex-M0 application processor and intelligent power management. It more than doubles the battery life of an application-enabled smartphone accessory, wearable device, or computer peripheral in comparison with other solutions. The DA14580 includes a variety of analog and digital interfaces and features less than 15 mW power consumption in active mode and 600-nA standby current.

Bosch Sensortec’s BMI160 six-axis Inertial Measurement Unit (IMU) integrates a 16 bit, three-axis, low-g accelerometer and an ultra-low power three-axis gyroscope within a single package. When the accelerometer and gyroscope are in full operation mode, the typical current consumption is 950 µA.

The BMM150 integrates a compact three-axis geo-magnetic field sensor using Bosch Sensortec’s high performance FlipCore technology. The BME280 Integrated Environmental Unit combines sensors for barometric pressure, humidity, and temperature measurement. Its altitude measurement function is a key requirement in applications such as indoor navigation with floor tracking.

Source: Dialog Semiconductor

Reference Design Addresses Demand for Voice Control

Silicon Labs recently released a new, cost-effective solution for voice-enabled ZigBee remote controls. The ZigBee Remote Control (ZRC) reference design reduces the need for expensive external hardware by implementing a software-based audio codec into a single-chip wireless SoC. It includes all of the hardware and software necessary for developing full-featured, voice-enabled remote controls.SiLabs Zigbee

The ZRC reference design is based on Silicon Labs EM34x wireless SoCs and ZRC 2.0 Golden Unit-certified software stack, which provides an industry-standard way to implement interoperable, low-power RF remote controls. The reference design includes complete RF layout and design files, an acceleration sensor for backlight control, a buzzer for “find me” capabilities, support for IR control, a digital microphone, and the ability to transmit voice commands over RF.

Silicon Labs offers two development kits the voice-enabled reference design. The  $249 EM34X-VREVK Voice Remote Evaluation Kit features preprogrammed devices and a simple GUI to demonstrate remote control capabilities, including RF, voice commands, and legacy IR support. The $399 EM34X-VRDK Voice Remote Development Kit provides you with an “out-of-the-box” design experience. It simplifies development of the remote control and target devices, and it comes with an EM34x voice-enabled remote control, USB stick, EM34x development board, EM34x wireless modules, and ISA3 debug adapter.

Samples and volume quantities of Silicon Labs’s EM34x SoCs are available with prices starting at $1.68 in 10,000-unit quantities.

Source: Silicon Labs

FPGA-Based Storage Reference Design Doubles NAND Flash Life

Altera Corp. recently developed a storage reference design  based on its Arria 10 SoCs that doubles the life of NAND flash. In addition, can increase the number of program-erase cycles by up to 7×. The design features an Arria 10 SoC with an integrated dual-core ARM Cortex A9 processor in an optimized, single-chip solution. It uses a Mobiveil SSD controller and NVMdurance NAND optimization software. This reference design provides improved performance and flexibility in NAND utilization while reducing the cost of the NAND array by increasing the lifetime of data center equipment.NAND_AlteraMobiveil’s controller supports multi-core architectures, enabling threads to run on each core with their own queue and interrupt without any locks required. NVMdurance’s NAND flash optimization software monitors the NAND Flash’s condition and automatically adjusts the control parameters in real time. The reference design also features end-to-end data protection, encryption and compression, and optimizes throughput and power consumption, all in a small silicon footprint.

Altera’s NAND storage reference design is available today.

Source: Altera Corp.

Video Decoder with MIPI-CSI2 Output Interface Supports Next-Generation SoCs

Intersil Corp. recently introduced the TW9992 analog video decoder, which features an integrated MIPI-CSI2 output interface that provides compatibility with the newest SoC processors. The decoder’s MIPI-CSI2 interface simplifies design by making it easier to interface with SoCs, while also lowering the system’s EMI profile. The TW9992 decoder takes both single-ended and differential composite video inputs from a vehicle’s backup safety camera, and is the latest addition to Intersil’s video decoder product family for automotive applications.TW9992-intersil

Designed with built-in diagnostics and superior video quality, the TW9992 addresses the biggest challenges faced by automotive video systems. For example, the decoder’s Automatic Contrast Adjustment (ACA) image enhancement feature overcomes a major challenge for backup camera systems by adapting to rapidly changing lighting conditions. ACA is able to automatically boost up or reduce the brightness/contrast of an image for greater visibility and safety.

In addition, vehicle backup cameras typically employ differential twisted pair cables that require designers to use an operational amplifier (op amp) in front of the video decoder to convert the differential signal to single-ended. The TW9992 decoder eliminates the need for an external op amp by supporting direct differential CVBS inputs, thus reducing system cost and board space. The built-in short-to-battery and short-to-ground detection capability on each differential input channel further enhances video performance and automotive system reliability.

Features and specifications:

  • NTSC/PAL 10-bit ADC analog video decoder with 4H adaptive comb filter
  • MIPI-CSI2 output interface
  • Software selectable analog input control allows for combinations of single-ended or differential CVBS
  • Advanced image enhancement features: automatic contrast adjustment, and programmable hue, brightness, saturation, contrast and sharpness
  • Output voltage: 1.8 to 3.3 V with 3.3 V tolerance
  • Low-power consumption: 100-mW typical
  • Integrated short-to-battery and short-to-ground detection tests
  • AEC-Q100 qualified

The automotive-grade TW9992 analog video decoder is available in a 32-pin wettable flank QFN package. It costs $3 in 1,000-piece quantities.

Source: Intersil Corp.

Virtual Prototyping — The Future’s So Bright

Virtual prototyping has been making its appearance in the embedded software arena since the late 1990s, steadily gaining acceptance as a valuable software development target. It initially rode the wave of rapid advances in chip process technology, which enabled multiple programmable cores on a single chip. This triggered a domino effect in product capabilities, with deep convergence of multiple functions in the same device becoming possible (smartphones being the most idiomatic example). In the semiconductor business landscape, ASIC companies needed to grow into system-on-chip (SoC) companies. The force of growing software content, complexity in general and the specialized nature of the low-level SoC software specifically was amplified by increased time-to-market pressure. Traditional development practices (mostly post-silicon) and targets (physical boards, FPGAs, etc.) couldn’t answer the call for true pre-silicon software development. In its first decade, virtual prototyping has established itself as the key “shift left” enabler in SoC development.Synopsys Diagram2

During the past five years, virtual prototyping has silently enabled embedded software to get past key inflection points and challenges. In the mid-2000s, the introduction of multi-core architectures was a key hurdle for embedded software, requiring considerable refactoring of existing single-threaded/-core software stacks. Virtual prototyping’s debug and visibility advantages facilitated the transition. Around the same time, security hardware was introduced in leading mobile SoCs to provide the basis for a secure computing platform, enabling user services like mobile commerce. The complexity of the new security software and hostility of a physical target for development—a device is supposed to be hacking resistant—made a good case for virtual prototyping, which provided ample visibility into the complex secure/non-secure domain interactions and a less hostile development target.

More recently, we observed adoption to address the SoC power consumption challenge. Power efficiency correlates directly with longer battery times, and dedicated chip hardware, both on- and off-chip, was introduced to manage power. The hardware flexibility offered is large, with final control left to the software. Complex power management software layers were introduced in high-level software stacks, and as virtual prototyping uniquely allows for an accurate representation of the complex hardware clocking and voltage schemes (other technologies like FPGAs can’t easily tackle this), it not only became an enabler for this new development, but also proved its value in software optimization for power and energy.

Today virtual prototyping is powering the architecture transition from 32- to 64-bit in the embedded space, through its use for early instruction-set market introduction, by enabling the porting of large existing stacks prior to the first 64-bit physical implementation and by helping the SoC companies transition their software.

The above inflection points appear in different markets earlier than others, with mobile being on the leading edge of embedded software advances, typically followed by networking and automotive. For instance, automotive is only now facing the multi-core challenge. As such, virtual prototyping repeatedly will play a key role in tackling a specific inflection point.

Looking towards the future, the technology will make further advances on two major fronts: contribution to software quality testing and deeper anchoring into other parts of the SoC design flow, through integration with technologies like hardware emulation and FPGA-based prototyping. With its value for the development phase of software accepted, tackling the next phase, software testing, is natural. The software nature of virtual prototypes allows for large parallel deployment, ideal for regression testing. Moreover, with continuous integration now accepted as a regular practice in desktop and web software development, we expect the embedded market to follow this trend. And with a virtual target making continuous integration straightforward, we expect virtual prototypes to play an important role in the trend’s adoption. Markets including automotive (and mil/aero) have stringent safety and reliability requirements, and virtual prototypes’ unique fault injection capability is starting to show its value. Security testing and analysis is still an unexplored area, which not only has potential for the Internet of Things market, but can have a broad impact as security is becoming commonplace for any connected system.

Having simulation performance track the increasing SoC design scale and keeping the modeling effort under tabs to deliver value sufficiently early are not small engineering challenges. Just-In-Time compilation gave a major boost in the 2003–2004 timeframe, but the number of SoC subsystems requires another turbocharge right now. Exploiting the subsystem-level parallelism through new technologies that map subsystem simulations to different cores in the host machine, and deep-insight performance profiling tools that allow performance tuning, will carry the technology forward for another 5-10 years. Raising the modeling abstraction level, increasing automation and promotion of subsystem-based re-use and assembly methodology are effective arms to tackle the modeling effort challenge.

With its challenges being dealt with, virtual prototypes will continue to drive a further shift left and to converge with the numerous inflection point challenges of embedded software ahead. In 5-10 years, this embedded virtualization technology will likely be as accepted as virtualization technology is in the IT space today. A bright future indeed!

Filip Thoen is the principal engineer for virtual prototyping products at Synopsys, the Silicon to Software partner for innovative companies developing the electronic products and software applications we rely on every day. Thoen is responsible for the technical direction and architecture of the virtual prototyping products. Previously, he co-founded Virtio, a virtual prototyping leader later acquired by Synopsys, and served as its CTO. He has more than 15 years of experience in system simulation and embedded software, and has authored several articles, books, and patents in these areas. He holds MS and PhD degrees in Electrical Engineering from Catholic University of Leuven (Belgium).

This essay appears in Circuit Cellar 299 (June 2015).

SoC FPGA Development Kit for Audio & Processing Applications

Coveloz recently announced the availability of its Pro Audio Ethernet AVB FPGA Development Kit, which is a ready-to-play platform for building scalable, cost-effective networked audio and processing applications built on modular hardware.Covelozpro-audio-dev-kit

Coveloz introduced its Networked Pro Audio SoC FPGA Development Kit during the Integrated System Europe (ISE) show in Amsterdam. According to the company, the new platform will enable manufacturers to achieve faster AVnu certification for new AVB solutions, creating an ideal development environment for live sound, conferencing systems, public address, audio post production, music creation, automotive infotainment and ADAS applications.

At the heart of the Coveloz development platform is a highly integrated System-on-Module (SOM), featuring an Altera Cyclone V SoC FPGA, which includes a dual-core ARM A9 processor, DDR3 memory and a large FPGA fabric, all in a low cost and compact package. The kit includes a multitude of networking and audio interfaces, including three Gigabit Ethernet ports as well as I2S, AES10/MADI, AES3/EBU and TDM audio.

Coveloz provides FPGA and Linux firmware enabling designers to quickly build AVnu Certified products for the broadcast, pro-audio/video and automotive markets. The platform is aimed at time-synchronized networks and includes grandmaster, PPS and word clock inputs and outputs as well as high quality timing references.

The Coveloz development kit is also host to the BACH-SOC platform, which integrates AES67 and Ethernet AVB audio networking and processing. Both SoC and PCIe-based FPGA implementations are available.

The Coveloz Bach Module is a full-featured and programmable audio networking and processing solution for easily integrating industry-standard AES67 and/or Ethernet AVB/TSN networking into audio/video distribution and processing products. The solution enables products with over 128+128 channels of digital streaming and 32-bit audio processing at 48, 96, or 192 kHz.

Supporting a wide range of interfaces, Coveloz complements the development platform with a comprehensive software toolkit and engineering services to help manufacturers reducing time to market. Coveloz also provides application examples to demonstrate the capabilities of the BACH-SOC platform.

The programmable BACH-SOC can be customized to a particular application in many ways—for instance, from selecting the number and type of audio interface to choosing audio processing alone, transport alone, or a combination.

Source: Coveloz

Single-Board, Arduino Uno Shield-Compatible Dev Kit

Nordic Semiconductor’s new Arduino Uno shield-compatible nRF51 DK development kit supports Bluetooth Smart, ANT, and 2.4-GHz designs. Nordic also announced the availability of its nRF51 Dongle, which is a 16 mm × 28 mm USB dongle for the testing, analysis, and development of Bluetooth Smart, ANT, and 2.4-GHz applications.Nordic-nRF51 DK_1

The nRF51 DK is based on Nordic’s nRF51 Series SoC, which combines a 2.4-GHz multiprotocol radio, 32-bit ARM Corte M0 processor, flash memory, and 16- or 32-KB RAM. The SoCs can support a wide range of peripherals and are available in quad flat no-lead (QFN) and wafer level chip scale package (WLCSP) options.

Key points about the nRF51 DK and nRF51 Dongle

  • You can use the nRF51 DK with a variety of third-party Arduino shield expansion boards. It also supports ARM mbed for rapid prototyping projects.
  • The nRF51 DK allows access to all device peripherals, interfaces, and I/Os.
  • The nRF51 DK includes four user-programmable buttons and LEDS plus voltage and current pins to measure device power consumption.
  • nRF51 DK and nRF51 Dongle are supported by standard tool-chain options including Keil, IAR, and Gnu Compiler Collection (GCC).
  • The 63 mm × 101 mm nRF51 DK includes a coin-cell battery holder for field testing
  • You can use nRF51 DKhe DK as a programmer for other target boards that use the nRF51 Series SoC.

The nRF51 DK costs $69. The nRF51 Dongle is $49.

Source: Nordic Semiconductor

2014 SoC Conference Early Bird Registration Now Open

Early Bird Registration is now open for the 12th International System on a Chip (SoC) Conference, which will take place at the University of California, Irvine (UCI) from October 22–23, 2014. Early Bird Registration ends October 10, 2014.

The conference will include technical presentations, exhibits, networking opportunities, panel discussions, and keynotes.

About the conference:

  • Keynotes
    • Dr. Takahiro Hanyu, New Paradigm VLSI System Research Group, Laboratory for Brainware Systems Research Institute of Electrical Communication, Tohoku University, Japan
    • Jim Aralis, Chief Technology Officer (CTO), and Vice President of R&D,  Microsemi
    • Dr. Peter L. Gammel, Chief Technology Officer (CTO), Skyworks Solutions, Inc.
    • Hughes Metras, VP, Strategic Partnerships CEA-LETI, France.
  • Special IC Technology Tutorial
    • “IC Technology at New Nodes Made Easy!,” Dr. Alvin Loke, IEEE Solid-State Circuits Distinguished Lecturer, Qualcomm Technologies, Inc.
  • Sessions
    • “Optical Computing with Silicon Photonics.” Yunshan Jiang, Peter DeVore, Jacky Chan, Bahram Jalali, UCLA
    • “Widely Tunable MMMB Wireless Front-Ends Using RF-CMOS MEMS,” Jeffrey L. Hilbert, CEO & Founder, WiSpry, Inc.
    • “Packaging and Assembly for Internet of Things Electronics: SoC Performance at SiP Cost,” Dr. Jayna Sheats, CEO, Terecircuits
    • “Full SoC Emulation from Device Drivers to Peripheral Interfaces,” Jim Kenney, Marketing Director for Mentor Mentor Graphics’ Emulation Division
    • And more.

Source: 2014 SoC Conference

 

SmartFusion2 Advanced Dev Kit

Microsemi Corp. has announced a new larges-density, low-power SmartFusion2 150K LE SoC FPGA Advanced Development Kit. It’s meant for board-level designers and system architects who need to rapidly create system-level designs.

Source: Microsemi Corp.

Source: Microsemi Corp.

The kit’s features include:

  • Largest 150K LE development device
  • 2x FMC connectors (HPC and LPC)
  • Purchase of kits comes with a free one-year Libero SoC design software platinum license (valued at $2,500)
  • DDR3, SPI flash
  • 2× Gigabit Ethernet connectors
  • SMA connectors
  • PCIe x4 edge connector
  • Power measurement test points

Source: Microsemi

 

Windows-Compatible Dev Board

Intel, Microsoft, and Circuit Co. have teamed up to produce a development board designed for the production of software and drivers used on mobile devices such as phones, tablets and similar System on a Chip (SoC) platforms running Windows and Android operating systems with Intel processors.

Source: SharksCove.org

Source: SharksCove.org

The 6″ × 4″ Sharks Cove board and features a number of interfaces including GPIO, I2C, I2S, UART, SDIO, mini USB, USB, and MIPI for display and camera.

Its main features include:

  • Intel  ATOM Processor Z3735G , 2M Cache, 4 Core, 1.33 GHz up
    to 1.88 GHz
  • Intel HD Graphics
  • 1 GB 1×32 DDR3L-RS-1333, 16-GB EMMC storage, micro SD Card
  • HDMI full size connector, MIPI display connector
  • Twelve (5 × 2) Shrouded pin header connectors, 1 (2 × 10) sensor header, 2 × 60 pin MIPI connector for display, camera and 5 (2 × 2) headers for power
  • One USB 2.0 type A connector
  • One micro USB type A/B for debug
  • Audio Codec Realtek ALC5640, speaker output header and onboard digital mic
  • Ethernet or WiFi via USB
  • Intel UEFI BIOS
  • Power, volume up, volume down, home screen and rotation lock
  • One micro USB type A/B for Power
  • SPI debug programming header

You can preorder the board for $299. It includes a Windows 8.1 image together with all the necessary utilities for it to run on Sharks Cove.