Zero-Power Sensor (ZPS) Network

Recently, we featured two notable projects featuring Echelon’s Pyxos Pyxos technology: one about solid-state lighting solutions and one about a radiant floor heating zone controller. Here we present another innovative project: a zero-power sensor (ZPS) network on polymer.

The Zero Power Switch (Source: Wolfgang Richter, Faranak M.Zadeh)

The ZPS system—which was developed by Wolfgang Richter and Faranak M. Zadeh of Ident Technology AG— doesn’t require battery or RF energy for operation. The sensors, developed on polymer foils, are fed by an electrical alternating field with a 200-kHz frequency. A Pyxos network enables you to transmit of wireless sensor data to various devices.

In their documentation, Wolfgang Richter and Faranak M. Zadeh write:

“The developed wireless Zero power sensors (ZPS) do not need power, battery or radio frequency energy (RF) in order to operate. The system is realized on polymer foils in a printing process and/or additional silicon and is very eco-friendly in production and use. The sensors are fed by an electrical alternating field with the frequency of 200 KHz and up to 5m distance. The ZPS sensors can be mounted anywhere that they are needed, e.g. on the body, in a room, a machine or a car. One ZPS server can work for a number of ZPS-sensor clients and can be connected to any net to communicate with network intelligence and other servers. By modulating the electric field the ZPS-sensors can transmit a type of “sensor=o.k. signal” command. Also ZPS sensors can be carried by humans (or animals) for the vital signs monitoring. So they are ideal for wireless monitoring systems (e.g. “aging at home”). The ZPS system is wireless, powerless and cordless system and works simultaneously, so it is a self organized system …

The wireless Skinplex zero power sensor network is a very simply structured but surely functioning multiple sensor system that combines classical physics as taught by Kirchhoff with the latest advances in (smart) sensor technology. It works with a virtually unlimited number of sensor nodes in inertial space, without a protocol, and without batteries, cables and connectors. A chip not bigger than a particle of dust will be fabricated this year with the assistance of Cottbus University and Prof. Wegner. The system is ideal to communicate via PYXOS/Echelon to other instances and servers.

Pyxos networks helps to bring wireless ZPS sensor data over distances to external instances, nets and servers. With the advanced ECHELON technology even AC Power Line (PL) can be used.

As most of a ZPS server is realized in software it can be easily programmed into a Pyxos networks device, a very cost saving effect! Applications start from machine controls, smart office solutions, smart home up to Homes of elderly and medical facilities as everywhere else where Power line (PL) exists.”

Inside the ZPS project (Source: Wolfgang Richter, Faranak M.Zadeh)

For more information about Pyxos technology, visit www.echelon.com.

This project, as well as others, was promoted by Circuit Cellar based on a 2007 agreement with Echelon.

GPS-Based Vehicle Timing & Tracking Project

The KartTracker’s Renesas kit (Source: Steve Lubbers CC259)

You can design and construct your own vehicle timing system at your workbench. Steve Lubbers did just that, and he describes his project in Circuit Cellar 259 (February 2012). He calls his design the “Kart Tracker,” which he built around a Renesas Electronics Corp. RX62N RDK. In fact, Steve writes that the kit has most of what’s need to bring such a design to fruition:

Most of the pieces of my KartTracker are already built into the Renesas Electronics RX62N development board (see Figure 1). The liquid crystal display (LCD) on the development board operates as the user interface and shows the driver what is happening as he races. The integrated accelerometer can be used to record the G forces experienced while racing. A serial port provides connections to a GPS receiver and a wireless transmitter. Removable flash memory stores all the race data so you can brag to your friends. You now have all of the pieces of my KartTracker.

The following block diagram depicts the relationship between the CPU, base station, flash drive, and other key components:

KartTracker Diagram (Source: Steve Lubbers CC259)

The software for the system is fairly straightforward. Steve writes:

The KartTracker software was built around the UART software sample provided with the RX62N development kit. To provide file system support, the Renesas microSD/Tiny FAT software was added. Finally, my custom GPS KartTracker software was added to the Renesas samples. My software consists of GPS, navigation, waypoints, and display modules. Support software was added to interface to the UART serial port, the file system, and the user display and control on the RX62N circuit board.

Pseudocode for the main processing loop (Source: Steve Lubbers CC259)

Read Steve’s article in the February issue for more details.

If you want to build a similar system, you should get familiar with the Renesas RX62N RDK. In the following video, Dave Jones of EEVBlog provides a quick and useful introduction to the RX62N RDK and its specs (Source: Renesas).

Good luck with this project. Be sure to keep Circuit Cellar posted on your progress!

Click here to purchase Circuit Cellar 259.