Microsoft Unveils Secure MCU Platform with a Linux-Based OS

By Eric Brown

Microsoft has announced an “Azure Sphere” blueprint for for hybrid Cortex-A/Cortex-M SoCs that run a Linux-based Azure Sphere OS and include end-to-end Microsoft security technologies and a cloud service. Products based on a MediaTek MT3620 Azure Sphere chip are due by year’s end.

Just when Google has begun to experiment with leaving Linux behind with its Fuchsia OS —new Fuchsia details emerged late last week— long-time Linux foe Microsoft unveiled an IoT platform that embraces Linux. At RSA 2018, Microsoft Research announced a project called Azure Sphere that it bills as a new class of Azure Sphere microcontrollers that run “a custom Linux kernel” combined with Microsoft security technologies. Initial products are due by the end of the year aimed at industries including whitegoods, agriculture, energy and infrastructure.

Based on the flagship, Azure Sphere based MediaTek MT3620 SoC, which will ship in volume later this year, this is not a new class of MCUs, but rather a fairly standard Cortex-A7 based SoC with a pair of Cortex-M4 MCUs backed up by end to end security. It’s unclear if future Azure Sphere compliant SoCs will feature different combinations of Cortex-A and Cortex-M, but this is clearly an on Arm IP based design. Arm “worked closely with us to incorporate their Cortex-A application processors into Azure Sphere MCUs,” says Microsoft. 

Azure Sphere OS architecture (click images to enlarge)

Major chipmakers have signed up to build Azure Sphere system-on-chips including Nordic, NXP, Qualcomm, ST Micro, Silicon Labs, Toshiba, and more (see image below). The software giant has sweetened the pot by “licensing our silicon security technologies to them royalty-free.”

Azure Sphere SoCs “combine both real-time and application processors with built-in Microsoft security technology and connectivity,” says Microsoft. “Each chip includes custom silicon security technology from Microsoft, inspired by 15 years of experience and learnings from Xbox.”

The design “combines the versatility and power of a Cortex-A processor with the low overhead and real-time guarantees of a Cortex-M class processor,” says Microsoft. The MCU includes a Microsoft Pluton Security Subsystem that “creates a hardware root of trust, stores private keys, and executes complex cryptographic operations.”

The IoT oriented Azure Sphere OS provides additional Microsoft security and a security monitor in addition to the Linux kernel. The platform will ship with Visual Studio development tools, and a dev kit will ship in mid-2018.

Azure Sphere security features (click image to enlarge)

The third component is an Azure Sphere Security Service, a turnkey, cloud-based platform. The service brokers trust for device-to-device and device-to-cloud communication through certificate-based authentication. The service also detects “emerging security threats across the entire Azure Sphere ecosystem through online failure reporting, and renewing security through software updates,” says Microsoft.

Azure Sphere eco-system conceptual diagram (top) and list of silicon partners (bottom)

In many ways, Azure Sphere is similar to Samsung’s Artik line of IoT modules, which incorporate super-secure SoCs that are supported by end-to-end security controlled by the Artik Cloud. One difference is that the Artik modules are either Cortex-A applications processors or Cortex-M or -R MCUs, which are designed to be deployed in heterogeneous product designs, rather than a hybrid SoC like the MediaTek MT3620.Hybrid, Linux-driven Cortex-A/Cortex-M SoCs have become common in recent years, led by NXP’s Cortex-A7 based i.MX7 and -A53-based i.MX8, as well as many others including the -A7 based Renesas RZ/N1D and Marvell IAP220.

MediaTek MT3620

The MediaTek MT3620 “was designed in close cooperation with Microsoft for its Azure Sphere Secure IoT Platform,” says MediaTek in its announcement. Its 500MHz Cortex-A7 core is accompanied by large L1 and L2 caches and integrated SRAM. Dual Cortex-M4F chips support peripherals including 5x UART/I2C/SPI, 2x I2S, 8x ADC, up to 12 PWM counters, and up to 72x GPIO.

The Cortex-M4F cores are primarily devoted to real-time I/O processing, “but can also be used for general purpose computation and control,” says MediaTek. They “may run any end-user-provided operating system or run a ‘bare metal app’ with no operating system.”

In addition, the MT3620 features an isolated security subsystem with its own Arm Cortex-M4F core that handles secure boot and secure system operation. A separate Andes N9 32-bit RISC core supports 1×1 dual-band 802.11a/b/g/n WiFi.

The security features and WiFi networking are “isolated from, and run independently of, end user applications,” says MediaTek. “Only hardware features supported by the Azure Sphere Secure IoT Platform are available to MT3620 end-users. As such, security features and Wi-Fi are only accessible via defined APIs and are robust to programming errors in end-user applications regardless of whether these applications run on the Cortex-A7 or the user-accessible Cortex-M4F cores.” MediaTek adds that a development environment is avaialble based on the gcc compiler, and includes a Visual Studio extension, “allowing this application to be developed in C.”

Microsoft learns to love LinuxIn recent years, we’ve seen Microsoft has increasingly softened its long-time anti-Linux stance by adding Linux support to its Azure service and targeting Windows 10 IoT at the Raspberry Pi, among other experiments. Microsoft is an active contributor to Linux, and has even open-sourced some technologies.

It wasn’t always so. For years, Microsoft CEO Steve Ballmer took turns deriding Linux and open source while warning about the threat they posed to the tech industry. In 2007, Microsoft fought back against the growth of embedded Linux at the expense of Windows CE and Windows Mobile by suing companies that used embedded Linux, claiming that some of the open source components were based on proprietary Microsoft technologies. By 2009, a Microsoft exec openly acknowledged the threat of embedded Linux and open source software.

That same year, Microsoft was accused of using its marketing muscle to convince PC partners to stop providing Linux as an optional install on netbooks. In 2011, Windows 8 came out with a new UEFI system intended to stop users from replacing Windows with Linux on major PC platforms.


Azure Sphere promo video

Further information

Azure Sphere is available as a developer preview to selected partners. The MediaTek MT3620 will be the first Azure Sphere MCU, and products based on it should arrive by the end of the year. More information may be found in Microsoft’s Azure Sphere announcement and product page.

Microsoft | www.microsoft.com

This article originally appeared on LinuxGizmos.com on April 16.

And check out this follow up story also from LinuxGizmos.com :
Why Microsoft chose Linux for Azure Sphere

 

STMicroelectonics Sensors Achieve Validation for Alibaba IoT OS

STMicroelectronics has announced the validation of its LSM6DSL 6-axis inertial sensor and LPS22HB pressure sensor for Alibaba IoT’s ecosystem, which enables users to create complete IoT nodes and gateway solutions with better time to market.

Announced last year, AliOS Things is a light-weight embedded operating system for IoT, developed by Alibaba. The company recently announced the release of AliOS Things v1.2, which includes a sensor-based component called uData. The ST sensors that have passed the AliOS validation have been integrated in uData. The two companies are cooperating on the development of IoT systems that aim to improve end-user experiences.

The LSM6DSL (shown) is a system-in-package featuring a 3D digital accelerometer and a 3D digital gyroscope that operates at 0.65 mA in high-performance mode and enables always-on low-power features for an optimal motion experience for the consumer. High robustness to mechanical shock makes the LSM6DSL well suited for the creation and manufacturing of reliable products. The LSM6DSL supports main OS requirements, offering real, virtual and batch sensors with 4 KB for dynamic data batching.

STMicroelectronics has announced the validation of its LSM6DSL 6-axis inertial sensor and LPS22HB pressure sensor for Alibaba IoT’s ecosystem, which enables users to create complete IoT (Internet-of-Things) nodes and gateway solutions with better time to market.

The LPS22HB is an ultra-compact piezoresistive absolute pressure sensor that functions as a digital output barometer. Dust-free and water-resistant by design, the sensor enables high accuracy and low-power operation. It is available in full-mold package with silicon cap and six 20µm holes guaranteeing sensor moisture resistance, relative accuracy of pressure measurement 0.1 mbar, and very low power consumption (12 µA in low-noise mode).

STMicroelectronics | www.st.com

A Tribute to Technology Pioneer Bob Lally

Bob Lally, founder of PCB Piezotronics, and a co-founder of the original Kistler Instrument Company, passed away recently at the age of 93. In addition to Bob’s legendary technical contributions, he will be remembered for his brave military service during World War II and post-retirement work in STEM.

Throughout his career, Bob’s R&D work was awarded multiple U.S. patents, including for the modally-tuned piezoelectric impact hammer, pendulum hammer calibrator, and gravimetric calibrator. He was most renowned, however, for his successful commercialization of a two-wire accelerometer with built-in electronics, known as integrated circuit piezoelectric, or ICP, which made the sensors lower cost, easier to use and more compatible with industrial environments.

For more on Bob Lally’s story read “Celebrating the Life of a True Industry Pioneer” on Sensors Online.

April Circuit Cellar: Sneak Preview

The April issue of Circuit Cellar magazine is coming soon. And we’ve got a healthy serving of embedded electronics articles for you. Here’s a sneak peak.

Not a Circuit Cellar subscriber?  Don’t be left out! Sign up today:

 

Here’s a sneak preview of April 2018 Circuit Cellar:

NAVIGATING THE INTERNET-OF-THINGS

IoT: From Gateway to Cloud
In this follow on to our March “IoT: Device to Gateway” feature, this time we look at technologies and solutions for the gateway to cloud side of IoT.  Circuit Cellar Chief Editor Jeff Child examines the tools and services available to get a cloud-connected IoT implementation up and running.

Texting and IoT Embedded Devices (Part 2)
In Part 1, Jeff Bachiochi laid the groundwork for describing a project involving texting. He puts that into action this, showing how to create messages on his Espressif System’s ESP8266EX-based device to be sent to an email account and end up with those messages going as texts to a cell phone.

Internet of Things Security (Part 2)
In this next part of his article series on IoT security, Bob Japenga takes a look at side-channel attacks. What are they? How much of a threat are they? And how can we prevent them?

Product Focus: 32-Bit Microcontrollers
As the workhorse of today’s embedded systems, 32-bit microcontrollers serve a wide variety of embedded applications—including the IoT. This Product Focus section updates readers on these trends and provides a product album of representative 32-bit MCU products.

GRAPHICS, VISION AND DISPLAYS

Graphics, Video and Displays
Thanks to advances in displays and innovations in graphics ICs, embedded systems can now routinely feature sophisticated graphical user interfaces. Circuit Cellar Chief Editor Jeff Child dives into the latest technology trends and product developments in graphics, video and displays.

Color Recognition and Segmentation in Real-time
Vision systems used to require big, multi-board systems—but not anymore. Learn how two Cornell undergraduates designed a hardware/software system that accelerates vision-based object recognition and tracking using an FPGA SoC. They made a min manufacturing line to demonstrate how their system can accurately track and categorize manufactured candies carried along a conveyor belt.

SPECIFICATIONS, QUALIFICATIONS AND MORE

Component tolerance
We perhaps take for granted sometimes that the tolerances of our electronic components fit the needs of our designs. In this article, Robert Lacoste takes a deep look into the subject of tolerances, using the simple resistor as an example. He goes through the math to help you better understand accuracy and drift along with other factors.

Understanding the Temperature Coefficient of Resistance
Temperature coefficient of resistance (TCR) is the calculation of a relative change of resistance per degree of temperature change. Even though it’s an important spec, different resistor manufacturers use different methods for defining TCR. In this article, Molly Bakewell Chamberlin examines TCR and its “best practice” interpretations using Vishay Precision Group’s vast experience in high-precision resistors.

Designing of Complex Systems
While some commercial software gets away without much qualification during development, the situation is very different when safety in involved. For aircraft, vehicles or any complex system where failure unacceptable, this means adhering to established standards throughout the development life cycle. In this article, George Novacek tackles these issues and examines some of these standards namely ARP4754.

AND MORE IN-DEPTH PROJECT ARTICLES

Build a Marginal Oscillator Proximity Switch
A damped or marginal oscillator will switch off when energy is siphoned from its resonant LC tank circuit. In his article, Dev Gualtieri presents a simple marginal oscillator that detects proximity to a small steel screw or steel plate. It lights an LED, and the LED can be part of an optically-isolated solid-state relay.

Obsolescence-Proof Your UI (Part 1)
After years of frustration dealing with graphical interface technologies that go obsolete, Steve Hendrix decided there must be a better way. Knowing that web browser technology is likely to be with us for a long while, he chose to build a web server that could perform common operations that he needed on the IEEE-488 bus. He then built it as a product available for sale to others—and it is basically obsolescence-proof.

 

 

4 mA Integrated Sensor Transmitter Boasts Small Footprint

Maxim Integrated Products has announced the MAX12900, an ultra-low power, highly integrated 4 mA to  20 mA sensor transmitter. Embedded system developers can use it to create small, low power and highly accurate designs for industrial automation system. Ideal applications include industrial automation and process control, loop-powered 4 mA to 20 mA current transmitters, remote instrumentation and smart sensors.

Today’s system designers must develop enhanced 4 mA to 20 mA sensor transmitters with several considerations in mind. These include improved measurement accuracy over a wide temperature range and reduced size to fit in a small enclosure. In addition, they are required to meet a tight current budget of their overall sensor transmitter system as low as 4 mA.

The MAX12900 increases system accuracy with 10 ppm / degrees C voltage reference for up to 3.5x lower drift compared to traditional solutions. The small footprint (5 mm x 5 mm package size) of the MAX12900 integrates 10 optimized building blocks that results in a significant space savings of 20%-50% vs. traditional 4 mA to 20 mA sensor transmitter implementations.

The addition of an integrated high voltage LDO and power sequencing capability simplifies the power up of the 4 mA to 20 mA sensor transmitter. Its reduced current consumption for low power requires just 250 µA of current maximum, enabling up to 50% power savings compared to traditional solutions. The new MAX12900 solution reduces implementation complexity, generating system cost savings by converting pulse width modulation data from a microcontroller into current over a 4 mA to 20 mA loop with two, three, or four wire configurations. The MAX12900 is available in a 32-pin TQFN package and operates over a wide industrial temperature range of -40℃ to +125℃.

The MAX12900 is available at Maxim’s website and select authorized distributors for $2.89 (1000+.) The MAX12900EVKIT# evaluation kit is available for $55

Maxim Integrated | www.maximintegrated.com

Forecasts Predict Deluge of Powerful IoT Sensors

Tech the Future: The Future of IoT Sensors
By Zach Wendt, Engineer, Arrow  Electronics

Nearly all predictions estimating how many IoT devices we’ll have in the near future number in the tens of billions. This includes devices monitoring everything from weather conditions to whether or not you need a new bottle of laundry detergent. Underneath all of these gadgets is an array of sensors that relay input back to the cloud, enabling humans—or other IoT devices—to make decisions based on real-world input. Here are a few of the sensors that, while you may not see them, will be working behind the scenes to make our increasingly connected world run smoothly:

Passive Infrared (PIR): This type of sensor will be familiar to many as part of automatic lighting and alarm systems that detect movement. They’re normally made as small components with two sensing elements inside. When they sense a change in radiation in the surrounding area, this information is passed to a security system or other device. While the sensing element is something of a commodity, what sets different devices apart are the lenses used to focus the surrounding area into different segments, allowing for a wide range of monitoring capabilities.

Inertial Measurement Unit (IMU): If you want to track how something is moving, IMUs fill this role quite well. In the case of the popular MPU-6050, it packages both a gyroscope and accelerometer in one unit, allowing devices to respond to movement. Some devices integrate magnetometer (compass) into the unit as well, providing absolute orientation with respect to the earth’s surface.

Temperature Sensor: Temperature is inextricably linked for human comfort and even storage of some foods and other goods. So, measuring this is an important IoT function. This can work via a thermocouple method where a voltage is generated by two dissimilar metals or via a thermistor. A thermistor is a resistor that changes properties based on temperature.

Magnetic Field Sensor: While instances where you need to sense a magnetic field simply for its own sake are rare, embedding a magnet in equipment to facilitate sensory input is quite common. Home uses include attaching magnets to windows and doors to sense when one has been opened, while they are used in industry to verify that manufacturing equipment has completed a task. Sensors can take the form of a reed switch where a magnetic force opens or closes a pair of contacts inside a specially designed component, or a hall effect sensor that measures a magnet’s effect on a semiconducting material. One advantage of a hall sensor is that it can output a digital on/off signal, or can be set up to output a voltage proportional to the magnetic flux density experienced.

Load Cell: These sensors can detect force applied on an area, and are especially useful in industrial applications, where force applied to a part can mean the difference between a good product and one that doesn’t work. The most common device in use is called a strain gauge, where specially designed equipment measures the resistance of a material under load. Another method is known as piezoelectric load cell, where a material generates a voltage when deformed. One challenge with piezoelectric cells is that they only generate voltage when deformed, meaning this effect can’t be measured after the initial deformation.

Microswitch: Though we might not think of a microswitch—or any switch—as a sensor, these small mechanical devices (also known as snap-action switches) have been around since the 1930s and operate in such diverse modern technologies as arcade game buttons to automatic stops on CNC equipment. These switches use spring force to snap back to an original position when not depressed, and allow current to flow from a common connector to one of two outputs depending on the actuator position. While newer sensors have their advantages, this tried-and-true sensing method will be employed well into the future.

Sound Sensor: Sound has been used to transmit information throughout human history, and with the invention of the electronic microphone in the late 1800s—converting sound energy to mechanical motion and finally to electrical signals—this information could be recorded and transmitted. Now using increasingly powerful computers, microphones can be used to accomplish everything from coordinating lights with sound volume, to answering queries via smart devices like Amazon’s Alexa or Google Home. As speech recognition technology continues to advance, we could see this sensing method become more and more common.

Machine Vision: When we observe the world around us, no sense gives us more immediate information than sight. While our eyes do an amazing job at focusing on objects and absorbing light, the real trick lies in our brain’s ability to translate these blobs of light into something meaningful in our lives. When Cognex, a leader in machine vision, first started in the early 1980s, they celebrated when their prototype system could read the number “6” in 90 seconds. Now the company claims equipment capable of millisecond character reads—an increase in capacity of nearly 100,000 times. While this technology has leaped forward in the last 35 years, recognizing shapes, faces, and doing dimensional measurement, being able to understand what a picture truly means is still in its infancy, and will be the subject of research and advancement well into the future.

It will be exciting to see where IoT sensing technology takes us in the near future. Using microfabrication techniques, systems like an IMU that would have taken up significant space in years past can now be fit onto a single chip, allowing them to be embedded in more and more devices. Processing power to interpret input from the chips has increased exponentially, and the wireless technologies like Wi-Fi, Bluetooth and cellular data transmission have also advanced, allowing them to relay information to “the cloud” from nearly anywhere. Clearly our world will become more and more connected, hopefully leading to a bright future…or at least one where your sensor network prompts you to bring your umbrella when needed!

Zach Wendt is an engineer who enjoys writing about new technology and its impact on applications. Zach has a background in consumer product development and writes about sensors and other electronic components for Arrow Electronics.

This appears in the March (332) issue of Circuit Cellar magazine

Not a Circuit Cellar subscriber?  Don’t be left out! Sign up today:

CC Magazine – Sign Up Now!

 

March Circuit Cellar: Sneak Preview

The March issue of Circuit Cellar magazine is coming soon. And we’ve got a healthy serving of embedded electronics articles for you. Here’s a sneak peak.

Not a Circuit Cellar subscriber?  Don’t be left out! Sign up today:

 

Here’s a sneak preview of March 2018 Circuit Cellar:

TECHNOLOGY FOR THE INTERNET-OF-THINGS

IoT: From Device to Gateway
The Internet of Things (IoT) is one of the most dynamic areas of embedded systems design today. This feature focuses on the technologies and products from edge IoT devices up to IoT gateways. Circuit Cellar Chief Editor Jeff Child examines the wireless technologies, sensors, edge devices and IoT gateway technologies at the center of this phenomenon.

Texting and IoT Embedded Devices
Texting has become a huge part of our daily lives. But can texting be leveraged for use in IoT Wi-Fi devices? Jeff Bachiochi lays the groundwork for describing a project that will involve texting. In this part, he gets into out the details for getting started with a look at Espressif System’s ESP8266EX SoC.

Exploring the ESP32’s Peripheral Blocks
What makes an embedded processor suitable as an IoT or home control device? Wi-Fi support is just part of the picture. Brian Millier has done some Wi-Fi projects using the ESP32, so here he shares his insights about the peripherals on the ESP32 and why they’re so powerful.

MICROCONTROLLERS HERE, THERE & EVERYWHERE

Designing a Home Cleaning Robot (Part 4)
In this final part of his four-part article series about building a home cleaning robot, Nishant Mittal discusses the firmware part of the system and gets into the system’s actual operation. The robot is based on Cypress Semiconductor’s PSoC microcontroller.

Apartment Entry System Uses PIC32
Learn how a Cornell undergraduate built a system that enables an apartment resident to enter when keys are lost or to grant access to a guest when there’s no one home. The system consists of a microphone connected to a Microchip PIC32 MCU that controls a push solenoid to actuate the unlock button.

Posture Corrector Leverages Bluetooth
Learn how these Cornell students built a posture corrector that helps remind you to sit up straight. Using vibration and visual cues, this wearable device is paired with a phone app and makes use of Bluetooth and Microchip PIC32 technology.

INTERACTING WITH THE ANALOG WORLD

Product Focus: ADCs and DACs
Makers of analog ICs are constantly evolving their DAC and ADC chips pushing the barriers of resolution and speeds. This new Product Focus section updates readers on this technology and provides a product album of representative ADC and DAC products.

Stepper Motor Waveforms
Using inexpensive microcontrollers, motor drivers, stepper motors and other hardware, columnist Ed Nisley built himself a Computer Numeric Control (CNC) machines. In this article Ed examines how the CNC’s stepper motors perform, then pushes one well beyond its normal limits.

Measuring Acceleration
Sensors are a fundamental part of what make smart machines smart. And accelerometers are one of the most important of these. In this article, George Novacek examines the principles behind accelerometers and how the technology works.

SOFTWARE TOOLS AND PROTOTYPING

Trace and Code Coverage Tools
Today it’s not uncommon for embedded devices to have millions of lines of software code. Trace and code coverage tools have kept pace with these demands making it easier for embedded developers to analyze, debug and verify complex embedded software. Circuit Cellar Chief Editor Jeff Child explores the latest technology trends and product developments in trace and code coverage tools.

Manual Pick-n-Place Assembly Helper
Prototyping embedded systems is an important part of the development cycle. In this article, Colin O’Flynn presents an open-source tool that helps you assemble prototype devices by making the placement process even easier.

Chipsets Provide Low Power LoRa Solutions

Semtech has announced its next generation LoRa devices and wireless radio frequency (RF) technology (LoRa Technology) chipsets enabling innovative LPWAN use cases for consumers with its advanced technology. Addressing the need for cost-effective and reliable sensor-to-cloud connectivity in any type of RF environment, the new features and capabilities will significantly improve the performance and capability of IoT sensor applications that demand ultra-low power, small form factor and long range wireless connectivity with a shortened product development cycle.

The next generation LoRa radios extends Semtech’s industry leading link budget by 20% with a 50% reduction in receiver current (4.5 mA) and a high power +22 dBm option. This extends battery life of LoRa-based sensors up to 30%, which reduces the frequency of battery replacement. The extended connectivity range, with the ability to reach deep indoor and outdoor sensor locations, will create new markets as different types of verticals integrate LoRa Technology in their IoT applications including healthcare and pharmaceuticals, media and advertising, logistics/shipping and asset tracking.

The new platform has a command interface that simplifies radio configuration and shortens the development cycle, needing only 10 lines of code to transmit or receive a packet, which will allow users to focus on applications. The small footprint, 45% less than the current generation, is highly configurable to meet different application requirements utilizing the global LoRaWAN open standard. The chipsets also supports FSK modulation to allow compatibility with legacy protocols that are migrating to the LoRaWAN open protocol for all the performance benefits LoRa Technology provides.

Three new devices, SX1262 (+22dBm), SX1261 (+15dBm) and SX1268 (+22dBm, China frequency bands) are currently sampling to lead customers and partners and will be available in full production in late Q1 2018. Development kits for various regions and associated software will also be available at that time.

LoRa Technology New Features:

  • 50% less power in receive mode
  • 20% more extended range
  • +22 dBm transmit power
  • A 45% reduction in size: 4mm by 4mm
  • Global continuous frequency coverage: 150-960MHz
  • Simplified user interface with implementation of commands
  • New spreading factor of SF5 to support dense networks
  • Protocol compatible with existing deployed LoRaWAN networks

 

Semtech | www.semtech.com/iot

Partner Program to Focus on Security

Microchip Technology has also established a Security Design Partner Program for connecting developers with third-party partners that can enhance and expedite secure designs. Along with the program, the company has also released its ATECC608A CryptoAuthentication device, a secure element that allows developers to add hardware-based security to their designs.

Microchip 38318249941_bf38a56692_zAccording to Microchip, the foundation of secured communication is the ability to create, protect and authenticate a device’s unique and trusted identity. By keeping a device’s private keys isolated from the system in a secured area, coupled with its industry-leading cryptography practices, the ATECC608A provides a high level of security that can be used in nearly any type of design. The ATECC608A includes the Federal Information Processing Standard (FIPS)-compliant Random Number Generator (RNG) that generates unique keys that comply with the latest requirements from the National Institute of Standards and Technology (NIST), providing an easier path to a whole-system FIPS certification.

Other features include:

  • Boot validation capabilities for small systems: New commands facilitate the signature validation and digest computation of the host microcontroller firmware for systems with small MCUs, such as an ARM Cortex-M0+ based device, as well as for more robust embedded systems.
  • Trusted authentication for LoRa nodes: The AES-128 engine also makes security deployments for LoRa infrastructures possible by enabling authentication of trusted nodes within a network.
  •  Fast cryptography processing: The hardware-based integrated Elliptical Curve Cryptography (ECC) algorithms create smaller keys and establish a certificate-based root of trust more quickly and securely than other implementation approaches that rely on legacy methods.
  •  Tamper-resistant protections: Anti-tampering techniques protect keys from physical attacks and attempted intrusions after deployment. These techniques allow the system to preserve a secured and trusted identity.
  •  Trusted in-manufacturing provisioning: Companies can use Microchip’s secured manufacturing facilities to safely provision their keys and certificates, eliminating the risk of exposure during manufacturing.

In addition to providing hardware security solutions, customers have access to Microchip’s Security Design Partner Program. These industry-leading companies, including Amazon Web Services (AWS) and Google Cloud Platform, provide complementary cloud-driven security models and infrastructure. Other partners are well-versed in implementing Microchip’s security devices and libraries. Whether designers are looking to secure an Internet of Things (IoT) application or add authentication capabilities for consumables, such as cartridges or accessories, the expertise of the Security Design Partners can reduce both development cost and time to market.

For rapid prototyping of secure solutions, designers can use the new CryptoAuth Xplained Pro evaluation and development kit (ATCryptoAuth-XPRO-B) which is an add-on board, compatible with any Microchip Xplained or Xplained Pro evaluation board. The ATECC608A is available for $0.56 each in 10,000 unit quantities. The ATCryptoAuth-XPRO-B add-on development board is available for $10.00 each.

Microchip Technology | www.microchip.com

Infineon MCUs Serve Audi’s Autonomous Car Functionality

Infineon Technologies has announced that it supplies key components for the Audi A8, the first series production car featuring level 3 automated driving. The ability of cars to self-drive is split into a number of different levels: With level 3, drivers can temporarily take their hands off the steering wheel under certain conditions.  The Audi A8 allows this when parking and exiting, in slow-moving traffic or in traffic congestion. Using microelectronics from Infineon Technologies, a car can take over in this kind of driving situation.

Various types of chips from Infineon serve the safe automated driving in the Audi A8: sensors, microcontrollers and power semiconductors. Radar sensor chips from the RASIC family are installed in the front and corner radar. They send and receive high-frequency 77-GHz signals and forward these on to the central driver assistance controller (zFAS).

A microcontroller from the AURIX family is a key component of the zFAS for reliable automated driving. AURIX enables to secure the connection to the vehicle data bus. It assesses and prioritizes data packets and initiates their processing in the fastest possible time. For example, it initiates emergency braking based on data from radar and other sensor systems. The AURIX family of microcontrollers is especially ideal for this purpose thanks to high processing power and extensive safety features.

AURIX microcontrollers are used in several controllers in the Audi A8: On the one hand, they control the functions for the engine. On the other, they operate in the Audi AI active chassis and in the electronic chassis platform, which controls the shock absorption. The microcontrollers also support activation of the airbag.

In addition to the electronics for drive, driver assistance and chassis, other semiconductor solutions from Infineon are installed in the comfort and body electronics, such as for example LED drivers from the LITIX Basic family in the tail lights as well as bridge drivers from the Embedded Power family in the windscreen wipers.

Infineon Technologies | www.infineon.com

MCU Vendors Embrace Amazon FreeRTOS

In a flurry of announcements concurrent with Amazon’s release of its new Amazon FreeRTOS operating system, microcontroller vendors are touting their collaborative efforts to support the OS. Amazon FreeRTOS extends the FreeRTOS kernel, a popular open source RTOS for microcontrollers, and includes software libraries for security, connectivity and updateability. Here’s a selection of announcements from the MCU community:

Microchip PIC32MZEF MCUs Support Amazon FreeRTOS
curiosityMicrochip Technology has expanded its collaboration with Amazon Web Services (AWS) to support cloud-connected embedded systems from the node to the cloud. Microchip’s PIC32MZ EF series of microcontrollers now support Amazon FreeRTOS.

STMicro Adds Amazon FreeRTOS to its IoT MCU Tool Suit
STMicroelectronics has announced its collaboration with Amazon Web Services (AWS) on Amazon FreeRTOS, the latest addition to the AWS Internet of Things (IoT) solution.

 

NXP MCU IoT Card with Wi-Fi Supports Amazon FreeRTOS
OM40007-LPC54018-IoT-ModuleNXP Semiconductors has introduced the LPC54018 MCU-based IoT module with onboard Wi-Fi and support for the new Amazon FreeRTOS on Amazon Web Services (AWS), offering developers universal connections to AWS.

 

TI SimpleLink™ MCU platform now supports new Amazon FreeRTOS (PRNewsfoto/Texas Instruments Incorporated)

TI Integrates SimpleLink MCU Platform with Amazon FreeRTOS
Texas Instruments (TI) has announced the integration of the new Amazon FreeRTOS into the SimpleLink microcontroller platform.

Renesas IoT Sandbox Supports RX65N MCU

Renesas Electronics America has expanded its Renesas IoT Sandbox lineup with the new RX65N Wi-Fi Cloud Connectivity Kit. The RX65N Wi-Fi Cloud Connectivity Kit provides an easy-to-use platform for connecting to the cloud, evaluating IoT solutions and creating IoT applications through cloud services and real-time workflows. The RX65N Wi-Fi Cloud Connectivity Kit integrates the high-performance Renesas RX65N microcontroller (MCU) and Medium One’s Smart Proximity demo with the data intelligence featured in Renesas IoT Sandbox.

RX65N_IoT_Sandbox_Wifi_Kit_UnpackedThe Renesas IoT Sandbox provides a fast path from IoT concept to prototype. It enables personalized data intelligence for system developers working with the Renesas SynergyTM Platform, the Renesas RL78 Family and RX Family of MCUs, and the Renesas RZ Family of microprocessors. The new RX65N Wi-Fi Cloud Connectivity Kit is based on the Renesas RX65N Group of MCUs, which is part of the high-performance RX600 Series of MCUs.

The new kit features the Smart Proximity demo implemented by Medium One. System developers can use workflows to extract data from the Ultrasonic Range Finder Sensor and then transmit distance data and duration length for objects close to the sensor to provide intelligence on end-user engagement with the objects. For instance, when deployed in retail environments, business owners can leverage the data to determine when and for how long shoppers view specific merchandise, providing greater insight on shoppers’ selection behaviors.

Developers can sign up for a Renesas IoT Sandbox account at www.renesas.com/iotsandbox. The data intelligence developer area is ready for immediate prototyping use. The RX65N Wi-Fi Connectivity Kit is available for order at Amazon for $59 per kit.

Renesas Electronics | www.renesas.com

NXP MCU IoT Card with Wi-Fi Supports Amazon FreeRTOS

NXP Semiconductors has introduced the LPC54018 MCU-based IoT module with onboard Wi-Fi and support for newly launched Amazon FreeRTOS on Amazon Web Services (AWS), offering developers universal connections to AWS. Amazon FreeRTOS provides tools for users to quickly and easily deploy an MCU-based connected device and develop an IoT application without having to worry about the complexity of scaling across millions of devices. Once connected, IoT device applications can take advantage of the capabilities of the cloud or continue processing data locally with AWS Greengrass.

Amazon FreeRTOS enables security-strong orchestration with the edge-cluster to further leverage low latencies in edge computing configurations, which extends AWS Greengrass core devices’ reach to the nodes. Distributed and autonomous computing architectures become possible through the consistent interface provided between the nodes and their gateways, in both online and offline scenario.

OM40007-LPC54018-IoT-ModuleNXP’s IoT module, co-developed with Embedded Artists and based on the LPC54018 MCU, offers unlimited memory extensibility, a root of trust built on the embedded SRAM physical unclonable functions (PUF) and on-chip cryptographic accelerators. Together, LPC and Amazon FreeRTOS, with easy-to-use software libraries, bring multiple layers of network transport security, simplify cloud on-boarding and over-the-air device management.

NXP enables node-to-cloud AWS connectivity with its LPC54018-based IoT module available on Amazon.com and EmbeddedArtists.com at $35 direct to consumers.

NXP Semiconductors | www.nxp.com

Microchip PIC32MZEF MCUs Support Amazon FreeRTOS

Microchip Technology has expanded its collaboration with Amazon Web Services (AWS) to support cloud-connected embedded systems from the node to the cloud. Supporting Amazon Greengrass, Amazon FreeRTOS and AWS Internet of Things (IoT), Microchip provides all the components, tools, software and support needed to rapidly develop secure cloud-connected systems.

Microchip’s PIC32MZ EF series of microcontrollers now support Amazon FreeRTOS, an operating system that makes compact low-powered edge devices easy to program, deploy, secure and maintain. These high-performance MCUs incorporate industry-leading connectivity options, ample Flash memory, rich peripherals and a robust toolchain which empower embedded designers to rapidly build complex applications. Amazon FreeRTOS includes software libraries which make it easy to securely deploy over-the-air updates as well as the ability to connect devices locally to AWS Greengrass or directly to the cloud, providing a variety of data processing location options.

For systems requiring data collection and analysis at a local level, developers can use Microchip’s SAMA5D2 series of microprocessors with integrated AWS Greengrass software. This will enable systems to run local compute, messaging, data caching and sync capabilities for connected devices in a secure way. This type of execution provides improved event response, conserves bandwidth and enables more cost-effective cloud computing. The SAMA5D2 devices, also available in System-in-Package (SiP) variants, offer full Amazon Greengrass compatibility in a low-power, small form factor MPU targeted at industrial and long-life gateway and concentrator applications. Additionally, the integrated security features and extended temperature range allows these MPUs to be deployed in physically insecure and harsh environments.

In any cloud-connected design, security and ease of use are vital pieces of the puzzle. Microchip’s ATECC608A CryptoAuthentication device enables enhanced system security as well as easy-to-use registration. The secure element provides a unique, trusted and protected identity to each device that can be securely authenticated to protect a brand’s intellectual property and revenue. In addition to enhancing system security, the ATECC608A allows AWS customers to instantly connect to the cloud through the device’s Just-in-Time-Registration (JITR) powered by AWS IoT.

curiosityMicrochip has an extensive toolchain for rapid and reliable development. The Curiosity PIC32MZ EF development board (shown), to kick-start Amazon FreeRTOS-based designs, is a fully integrated 32-bit development platform which also includes two mikroBUS expansion sockets, enabling designers to easily add additional capabilities, such as Wi-Fi with the WINC1510 click board, to their designs. The SAMA5D2 Xplained Ultra board, which can be used for AWS Greengrass designs, is a fast prototyping and evaluation platform for the SAMA5D2 series of MPUs. Additionally, the CryptoAuth Xplained Pro evaluation and development kit is an add-on board for rapid prototyping of secure solutions on AWS IoT and is compatible with any Microchip Xplained or XplainedPro evaluation boards. AWS is also a part of Microchip’s Design Partner Program which provides technical expertise and cost-effective solutions in a timely manner.

PIC32MZ EF MCUs are available starting at $5.48 each in 10,000 unit quantities. The PIC32MZ EF Curiosity board (DM320104) is available for $47.99 each. SAMA5D2 MPUs are available starting at $4.42 each in 10,000 unit quantities. The SAMA5D2 Xplained Ultra board (ATSAMA5D2C-XULT) is available for $150 each. ATECC608A secure elements are available starting at $0.56 each in 10,000 unit quantities. The CryptoAuth Xplained Pro evaluation and development kit (ATCryptoAuth-XPRO-B) is available for $10 each.

Microchip Technology | www.microchip.com

STMicro Adds Amazon FreeRTOS to its IoT MCU Tool Suite

STMicroelectronics has announced its collaboration with Amazon Web Services (AWS) on Amazon FreeRTOS, the latest addition to the AWS Internet of Things (IoT) solution. Amazon FreeRTOS provides everything one needs to easily and securely deploy microcontroller-based connected devices and develop an IoT application without having to worry about the complexity of scaling across millions of devices. Once connected, IoT device applications can take advantage of all of the capabilities the cloud has to offer or continue processing data locally with AWS Greengrass.

ST’s collaboration with AWS speeds designers’ efforts to create easily connectable IoT nodes with the combination of ST’s semiconductor building blocks and Amazon FreeRTOS, which extends the leading free and open-source real-time operating-system kernel for embedded devices (FreeRTOS) with the appropriate libraries for local networking, cloud connectivity, security, and remote software updates.

For the STM32, ST’s family of 32-bit Arm Cortex-M microcontrollers, the modular and interoperable IoT development platform spans state-of-the-art semiconductor components, ready-to-use development boards, free software tools and common application examples. At the official release of Amazon FreeRTOS, a version of the OS and libraries were immediately made available to run on the ultra-low-power STM32L4 series of microcontrollers.

The starter kit for Amazon FreeRTOS is ST’s B-L475E-IOT01A Discovery kit for IoT node, a fully integrated development board that exploits low-power communication, multiway sensing, and a raft of features provided by the STM32L4 series microcontroller to enable a wide range of IoT-capable applications. The Discovery kit’s support for Arduino Uno V3 and PMOD connectivity ensures unlimited expansion capabilities with a large choice of specialized add-on boards.

STMicroelectronics | www.st.com