New Reflective Optical Sensor for Industrial and Medical Applications

TT Electronics recently introduced the Photologic V OPB9000, which is a reflective CMOS logic output sensor with programmable sensitivity, output polarity, and drain select. It provides dependable edge and presence detection of reflective media under a wide range of ambient light conditions. The OPB9000 is well suitable for a variety of applications, including industrial printing, dispensing, manufacturing automation, security devices, and portable medical equipment.TT Electronics TT058

The OPB9000’s features, benefits, and specs:

  • Programmable sensitivity, output polarity, and drain select
  • 25+ kilolux ambient light immunity along with a wide operating temperature range
  • The self-calibration feature avoids the need for constant recalibration as the LED ages, saving valuable time and effort.
  • Temperature compensation and automatic gain control features
  • 6-µs response time ensures high-speed detection for time-critical applications.
  • Fully integrated analog front end and digital interface
  • Combines an infrared emitter and integrated logic sensor in a 4.0 mm × 2.2 mm × 1.5 mm surface-mount package

Source: TT Electronics

Scalable Wearable Development Kit

ON Semiconductor recently announced the availability of a new Wearable Development Kit (WDK1.0). The kit comprises the following: a touchscreen display; wired and AirFuel-compatible wireless charging capability; a six-axis motion sensor and temperature sensor; an alarm, timer, and stopwatch; schematics; firmware and sample code; a dock station for charging; and a downloadable SmartApp for evaluating and controlling the smartwatches multiple functions.OnSemi Wearable Dev Kit

The WDK1.0’s features, specs, and benefits:

  • NCP6915 power Management IC provides five LDOs and one DC-DC
  • NCP1855 battery charger IC, an LC709203F fuel gauge, and a 10-W rated SCY1751 wireless charging front-end controller
  • MEMS-based FIS1100 IMU, with three‐axis gyroscope and three‐axis accelerometer operation for multidimensional motion tracking
  • Embedded temperature sensor included and an LC898301 driver IC for initiating haptic feedback
  • nRF52832 multi-protocol system-on-chip (SoC)
  • Eclipse-based IDE
  • 1.44″ 128 × 128 pixel TFT display with a capacitive touch screen
  • 26‐pin expansion port

Source: ON Semiconductor

New Sensor Technologies for Next-Gen Temperature Measurement

Melexis recently announced two new sensing technologies for next-generaration temperature measurement. The MLX90640 sensor array is an alternative to high-end thermal cameras. The MLX90342 is a quad thermocouple interface that addresses automotive sensing to 1300ºC.

The MLX90640 IR sensor arrays benefits, characteristics, and specs:

  • 32 × 24 pixels
  • –40° to 85°C operational temperature range; measures object temperatures from 240°C and 300°C
  • ±1°C target object temperature accuracy
  • Noise equivalent temperature difference (NETD) of 0.1K RMS at a 1-Hz refresh rate
  • Doesn’t require frequent recalibration
  • Field-of-view (FoV) options: 55° × 35° version and 110° × 75° wide-angle version
  • Compact, four-pin TO39 package incorporating the requisite optics
  • I2C-compatible digital interface
  • Target applications: fire prevention systems, HVAC equipment, smart buildings, and IP/surveillance systemsMLX90342 Melexis

The MLX90342 high-performance quadruple thermocouple interface benefits, characteristics, and specs:

  • Supports a –40° to 1300°C thermocouple temperature range
  • Operating temperature specification of –40° to 155°C
  • On-board cold junction compensation and linearization
  • Factory calibration; guaranteed intrinsic accuracy of ±5°C at 1100°C.
  • 26-pin 6 mm × 4 mm QFN package
  • 50-Hz Rapid refresh rate
  • Temperature data can be transmitted via a SENT Revision 3 digital interface
  • Target applications: turbo charger temperature control, exhaust gas recirculation, and diesel/gas particle filtering systems

Source: Melexis

79-GHz CMOS Radar Sensor Chips for Automotive Applications

Infineon Technologies recently announced at the Imec Technology Forum in Brussels (ITF Brussels 2016) it is cooperating with Imec to develop integrated CMOS-based, 79-GHz sensor chips for automotive radar applications. According to the announcement, Infineon and Imec expect functional samples to be available in Q3 2016. A complete radar system demonstrator is slated for early 2017.

There are usually up to three radar systems built into vehicles equipped with driver assistance functions. In the future, fully automated cars will be equipped with up to 10 radar systems and 10 additional sensor systems using camera or lidar technologies.

Source: Infineon Technologies

OEM Controller for Fiber Optic Emergency Stop and Signaling Sensors

Micronor’s MR380-0 OEM Controller provides a low-cost, turn-key solution for OEM manufacturers and control system providers integrating any of the Micronor MR38X series ZapFREE Fiber Optic Signaling Sensors into their design. The sensor range includes Emergency Stop, E-Actuator, U-Beam, Key Switch, Push Button, Foot Switch, and Microswitch sensors.MICRONOR_MICROSWITCH_1500X1000P

The OEM Controller contains a stable transmitter and a sensitive optical receiver that operates over a Duplex LC multimode fiber optic link. The transmitter sends a constant light level via the transmit fiber that is interrupted when the fiber optic switch activates or the sensor beam is broken. The system is compatible with either OM1 (62.5 µm/125 µm) or OM2/OM3 (50 µm/125 µm) multimode fiber to distances up to 1.5 km. The Controller operates over a wide 5 to 24 VDC range and provides a Digital Logic as well as Open-Collector Output for activating external relays.

The MR380 ZapFREE Signaling Sensor System outperform electromechanical and electronics-based switches and sensors, specifically where EMI immunity, high voltage isolation, inherent safety, MRI compatibility, or operation over long distance is required. Applications include medical and MRI, transportation, and more.

For ATEX applications and hazardous locations, the Signaling Sensors are classified simple mechanical devices and can be installed in any manner of explosive atmosphere—mines, gas and dust. The Controller outputs inherently safe, optical radiation and is approved for EPL Mb/Gb/Gc/Db/Dc applications.

For Functional Safety applications, depending on sensor type, the controller defaults to the emergency state when: the optical path is blocked, in case of a broken fiber, a fiber is disconnected, or loss of power to the controller link.

In small quantities, the MR380-0 OEM Controller is $250 and MR38X Sensors can range $350 to $495, with a typical lead time of stock to two weeks. Discounts are available for OEM applications. Special engineered versions are available for MRI applications, radiation, and vacuum environments.

Source: Micronor

3-D Image Sensor Chips for Virtual Reality

Infineon Technologies AG and pmdtechnologies gmbh recently announced the development of REAL3 3-D image sensor chips for virtual and augmented reality applications, spatial measurement, photo effects, and more. The new sensors have improved optical sensitivity and power comsumption in comparison to the previous version.REAL3_Infineon
Features and specs:

  • Specifically designed for mobile devices, where most applications only need a resolution of 38,000 pixels.
  • Small sensor chip area
  • Each sensor chip features microlenses
  • The chips operate with infrared light and use the time-of-flight (ToF) measuring principle

The IRS1125C will be available in volume as of first quarter of 2016. The IRS1645C and IRS1615C are slated for the second quarter of 2016.

Source: Infineon Technologies

New Low-Power Smart Sensor Wireless Platform for IoT Devices

Dialog Semiconductor recently announced that it is collaborating with Bosch Sensortec to develop a low-power smart sensor platform for Internet of Things (IoT) devices. The 12-DOF smart sensor reference platform is intended for gesture recognition in wearable computing devices and immersive gaming, including augmented reality and 3-D indoor mapping and navigation.DS008_bosch-Dialog

The platform comprises Dialog’s DA14580 Bluetooth Smart SoC with three low-power Bosch Sensortecsensors: the BMM150 (for three-axis geo-magnetic field measurement), the BME280 (pressure, humidity, and temperature sensor), and the siz-axis BMI160 (a combination of a three-axis accelerometer and three-axis gyroscope in one chip). The resulting 14 × 14 mm2 unit draws less than 500 µA from a 3-V coin cell when updating and transferring all 12 × 16 bits of data wirelessly to a smartphone.

 

The 2.5 × 2.5 × 0.5 mm DA14580 SmartBond SoC integrates a Bluetooth Smart radio with an ARM Cortex-M0 application processor and intelligent power management. It more than doubles the battery life of an application-enabled smartphone accessory, wearable device, or computer peripheral in comparison with other solutions. The DA14580 includes a variety of analog and digital interfaces and features less than 15 mW power consumption in active mode and 600-nA standby current.

Bosch Sensortec’s BMI160 six-axis Inertial Measurement Unit (IMU) integrates a 16 bit, three-axis, low-g accelerometer and an ultra-low power three-axis gyroscope within a single package. When the accelerometer and gyroscope are in full operation mode, the typical current consumption is 950 µA.

The BMM150 integrates a compact three-axis geo-magnetic field sensor using Bosch Sensortec’s high performance FlipCore technology. The BME280 Integrated Environmental Unit combines sensors for barometric pressure, humidity, and temperature measurement. Its altitude measurement function is a key requirement in applications such as indoor navigation with floor tracking.

Source: Dialog Semiconductor

Sensor Interface Connects Multiple Sensors to MCUs or FPGAs

Exar Corp. has announced the XR10910, a new sensor interface analog front end (AFE) for the calibration of sensor outputs. The XR10910 features an onboard 16:1 differential multiplexer, offset correction DAC, programmable gain instrumentation amplifier, and voltage reference. In addition, it provides 14-bit signal path linearity and is designed to connect multiple bridge sensors to a microcontroller or FPGA with an embedded ADC.EX041_Exar

Operating from from 2.7- to 5-V supplies, the XR10910 has a wide digital supply range of 1.8 to 5 V. It typically consumes 457 µA of supply current and offers a sleep mode for reducing the supply current to 45 µA.

The XR10910 is available in a 6 mm × 6 mm QFN package. Pricing starts at $8.10 each for 1,000-piece quantities.

Source: Exar Corp.

High-Side Current/Power Sensor

Microchip Technology recently introduced the PAC1921, a high-side current sensor with both a digital output, as well as a configurable analog output that can present power, current or voltage over the single output pin. Simultaneously, all power related output values are also available over the 2-Wire digital bus, which is compatible with I2C. The PAC1921 is available in a 10-lead 3 × 3 mm VDFN package. It was designed with the 2-Wire bus to maximize data and diagnostic reporting, while having the analog output to minimize data latency. The analog output can also be adjusted for use with 3-, 2-, 1.5-, or 1-V microcontroller inputs.Microchip PAC1921 Eval

The PAC1921 is ideal for networking, power-distribution, power-supply, computing and industrial-automation applications that cannot allow for latency when performing high-speed power management. A 39-bit accumulation register and 128 times gain configuration make this device ideal for both heavy and light system-load power measurement, from 0 to 32 V. It has the ability to integrate more than two seconds of power-consumption data. Additionally, the PAC1921 has a READ/INT pin for host control of the measurement period; and this pin can be used to synchronize readings of multiple devices.

The PAC1921 is supported by Microchip’s $64.99 PAC1921 High-Side Power and Current Monitor Evaluation Board (ADM00592). The PAC1921 is available for sampling and volume production, in a 10-lead 3 × 3 mm VDFN package, starting at $1.18 each in 5,000-unit quantities.

Source: Microchip Technology

Liquid Flow Sensor Wins Innovation Prize

Sensirion recently won the DeviceMed OEM-Components innovation prize at the Compamed 2014 exhibition. The disposable liquid flow sensor LD20-2000T for medical devices features an integrated thermal sensor element in a microchip. The pinhead-sized device is based on Sensirion’s CMOSens technology.sensirionliquidflowsensor

The LD20-2000T disposable liquid flow sensor provides liquid flow measurement capability from inside medical tubing (e.g., a catheter) in a low-cost sensor, suitable for disposable applications. As a result, you can measure drug delivery from an infusion set, an infusion pump, or other medical device in real time.

A microchip inside the disposable sensor measures the flow inside a fluidic channel. Accurate (~5%) flow rates from 0 to 420 ml/h and beyond can be measured. Inert medical-grade wetted materials ensure sterile operation with no contamination of the fluid. The straight, open flow channel with no moving parts provides high reliability. Using Sensirion’s CMOSens technology, the fully calibrated signal is processed and linearized on the 7.4 mm2 chip.

Source: Sensirion

New 8-Bit PICs for Sensor Applications

Microchip Technology recently expanded it’s PIC12/16LF155X 8-bit microcontroller family with the PIC16LF1554 and PIC16LF1559 (PIC16LF1554/9), which are targeted toward a variety of sensor applications. The PIC16LF1554/9 features two independent 10-bit, 100,000 samples per second ADCs with hardware Capacitive Voltage Divider (CVD) support for capacitive touch sensing.

Source: Microchip Techno

Source: Microchip Techno

Watch a short video:

The PIC16LF1554 MCUs are available now for sampling and production in 14-pin PDIP, TSSOP, SOIC, and 16-pin QFN (4 x 4 x .9 mm) packages. The PIC16LF1559 MCUs are available for sampling and production in 20-pin PDIP, SSOP, and QFN (4 x 4 x .9 mm) packages. Pricing starts at $0.63 each, in 10,000-unit quantities.

Source: Microchip Technology

High-Performance 4- to 20-mA Output Ultrasonic Sensor

MaxBotix’s new 4-20HR-MaxSonar-WR sensors are high-accuracy ultrasonic sensors featuring a 4- to 20-mA output. Each sensor is an affordable IP67-rated drop-in replacement for use with existing PLC/process control systems. The sensors reject outside noise sources and feature speed-of-sound temperature compensation.

Source: MaxBotix

Source: MaxBotix

The 4-20HR-MaxSonar-WR sensors provide range information from 50 to 500 cm and have a 1.6-mm resolution, an operational temperature range from –40° to 65°C (–40° to 149°F), real-time automatic calibration, a 200,000-plus hours MTBF, an operational voltage range from 12 to 32 V, and a low 20- to 40-mA average current requirement. The sensors function well with multiple sensors in the same location and they are RoHS- and CE-compliant.

A six-pin screw terminal header is included to simplify system connections for quick installation in applications such as: tank level measurement, tide/water level monitoring, solar/battery powered applications, industrial automation and outdoor vehicle detection.

The 4-20HR-MaxSonar-WR sensors (and previous IP67 MaxBotix sensors) are manufactured in a variety of packages for easy mounting in existing fittings. The sensors are available in M30x1.5, 1″ BSPP, 1″ NPTS, and 0.75″ NPTS PVC pipe fittings.

Pricing starts at $199.95 each and $134.37 in 100-unit quantities.

Source: MaxBotix, Inc.

Ultra-Compact Ultrasonic Sensor Series

MaxbotixThe UCXL-MaxSonar-WR series of sensors are flexible, OEM-customizable products that can be integrated into a system with MaxBotix’s horns or flush-mounted into an existing housing. Mounting design recommendations are provided through MaxBotix’s 3-D CAD models (available in multiple formats) to facilitate your design process. The sensor layout offers four conveniently placed mounting holes for design flexibility.

The rugged, high performance sensors are individually calibrated and feature a 1-cm resolution, an operational temperature range from –40˚C to 70˚C, real-time automatic calibration (voltage, humidity, and ambient noise), 200,000+ h mean time between failures (MTBF), and an operational 3-to-5.5-V voltage range with a low 3.4-mA average current requirement.

Contact MaxBotix for pricing.

MaxBotix, Inc.
www.maxbotix.com

MCU-Based Experimental Glider with GPS Receiver

When Jens Altenburg found a design for a compass-controlled glider in a 1930s paperback, he was inspired to make his own self-controlled model aircraft (see Photo 1)

Photo 1: This is the cover of an old paperback with the description of the compass-controlled glider. The model aircraft had a so-called “canard” configuration―a very modern design concept. Some highly sophisticated fighter planes are based on the same principle. (Photo used with permission of Ravensburger.)

Photo 1: This is the cover of an old paperback with the description of the compass-controlled glider. The model aircraft had a so-called “canard” configuration―a very modern design concept. Some highly sophisticated fighter planes are based on the same principle. (Photo used with permission of Ravensburger.)

His excellent article about his high-altitude, low-cost (HALO) experimental glider appears in Circuit Cellar’s April issue. The MCU-based glider includes a micro-GPs receiver and sensors and can climb to a preprogrammed altitude and find its way back home to a given coordinate.

Altenburg, a professor at the University of Applied Sciences Bingen in Germany, added more than a few twists to the 80-year-old plan. An essential design tool was the Reflex-XTR flight simulation software he used to trim his 3-D glider plan and conduct simulated flights.

Jens also researched other early autopilots, including the one used by the Fiesler Fi 103R German V-1 flying bomb. Known as buzz bombs during World War II, these rough predecessors of the cruise missile were launched against London after D-Day. Fortunately, they were vulnerable to anti-aircraft fire, but their autopilots were nonetheless mechanical engineering masterpieces (see Figure 1)

“Equipped with a compass, a single-axis gyro, and a barometric pressure sensor, the Fiesler Fi 103R German V-1 flying bomb flew without additional control,” Altenburg says. “The compass monitored the flying direction in general, the barometer controlled the altitude, and the gyro responded to short-duration disturbances (e.g., wind gusts).”

Figure 1: These are the main components of the Fieseler Fi 103R German V-1 flying bomb. The flight controller was designed as a mechanical computer with a magnetic compass and barometric pressure sensor for input. Short-time disturbances were damped with the main gyro (gimbal mounted) and two auxiliary gyros (fixed in one axis). The “mechanical” computer was pneumatically powered. The propeller log on top of the bomb measured the distance to the target.

Figure 1: These are the main components of the Fieseler Fi 103R German V-1 flying bomb. The flight controller was designed as a mechanical computer with a magnetic compass and barometric pressure sensor for input. Short-time disturbances were damped with the main gyro (gimbal mounted) and two auxiliary gyros (fixed in one axis). The “mechanical” computer was pneumatically powered. The propeller log on top of the bomb measured the distance to the target.

Altenburg adapted some of the V-1’s ideas into the flight control system for his 21st century autopilot glider. “All the Fi 103R board system’s electromechanical components received an electronic counterpart,” he says. “I replaced the mechanical gyros, the barometer, and the magnetic compass with MEMS. But it’s 2014, so I extended the electronics with a telemetry system and a GPS sensor.” (See Figure 2)

Figure 2: This is the flight controller’s block structure. The main function blocks are GPS, CPU, and power. GPS data is processed as a control signal for the servomotor.

Figure 2: This is the flight controller’s block structure. The main function blocks are GPS, CPU, and power. GPS data is processed as a control signal for the servomotor.

His article includes a detailed description of his glider’s flight-controller hardware, including the following:

Highly sophisticated electronics are always more sensitive to noise, power loss, and so forth. As discussed in the first sections of this article, a glider can be controlled by only a magnetic compass, some coils, and a battery. What else had to be done?

I divided the electronic system into different boards. The main board contains only the CPU and the GPS sensor. I thought that would be sufficient for basic functions. The magnetic and pressure sensor can be connected in case of extra missions. The telemetry unit is also a separate PCB.

Figure 3 shows the main board. Power is provided by a CR2032 lithium coin-cell battery. Two low-dropout linear regulators support the hardware with 1.8 and 2.7 V. The 1.8-V line is only for the GPS sensor. The second power supply provides the CPU with a stable voltage. The 2.7 V is the lowest voltage for the CPU’s internal ADC.

It is extremely important for the entire system to save power. Consequently, the servomotor has a separate power switch (Q1). As long as rudder movement isn’t necessary, the servomotor is powered off. The servomotor’s gear has enough drag to hold the rudder position without electrical power. The servomotor’s control signal is exactly the same as usually needed. It has a 1.1-to-2.1-ms pulse time range with about a 20-ms period. Two connectors (JP9 and JP10) are available for the extension boards (compass and telemetry)..

I used an STMicroelectronics LSM303DLM, which is a sensor module with a three-axis magnetometer and three-axis accelerometer. The sensor is connected by an I2C bus. The Bosch Sensortec BMP085 pressure sensor uses the same bus.

For telemetry, I applied an AXSEM AX5043 IC, which is a complete, narrow-band transceiver for multiple standards. The IC has an excellent link budget, which is the difference between output power in Transmit mode and input sensitivity in Receive mode. The higher the budget, the longer the transmission distance.

The AX5043 is also optimized for battery-powered applications. For modest demands, a standard crystal (X1, 16-MHz) is used for clock generation. In case of higher requirements, a temperature-compensated crystal oscillator (TCXO) is recommended.

The main board’s hardware with a CPU and a GPS sensor is shown. A CR2032 lithium coin-cell battery supplies the power. Two regulators provide 1.8  and 2.7 V for the GPS and the CPU. The main outputs are the servomotor’s signal and power switch.

Figure 3: The main board’s hardware with a CPU and a GPS sensor is shown. A CR2032 lithium coin-cell battery supplies the power. Two regulators provide 1.8 and 2.7 V for the GPS and the CPU. The main outputs are the servomotor’s signal and power switch.

Altenburg’s article also walks readers through the mathematical calculations needed to provide longitude, latitude, and course data to support navigation and the CPU’s most important sensor— the u-blox Fastrax UC430 GPS. He also discusses his experience using the Renesas Electronics R5F100AA microcontroller to equip the prototype board. (Altenburg’s glider won honorable mention in the 2012 Renesas RL78 Green Energy Challenge, see Photos 2 and 3).

The full article is in the April issue, now available for download by members or single-issue purchase.

One of the final steps is mounting the servomotor for rudder control. Thin cords connect the servomotor horn and the rudder. Two metal springs balance mechanical tolerances.

Photo 2: One of the final steps is mounting the servomotor for rudder control. Thin cords connect the servomotor horn and the rudder. Two metal springs balance mechanical tolerances.

Photo 2: This is the well-equipped high-altitude low-cost (HALO) experimental glider.

Photo 3: This is the well-equipped high-altitude low-cost (HALO) experimental glider.

The Future of Small Radar Technology

Directing the limited resources of Fighter Command to intercept a fleet of Luftwaffe bombers en route to London or accurately engaging the Imperial Navy at 18,000 yards in the dead of night. This was our grandfather’s radar, the technology that evened the odds in World War II.

This is the combat information center aboard a World War II destroyer with two radar displays.

This is the combat information center aboard a World War II destroyer with two radar displays.

Today there is an insatiable demand for short-range sensors (i.e., small radar technology)—from autonomous vehicles to gaming consoles and consumer devices. State-of-the-art sensors that can provide full 3-D mapping of a small-target scenes include laser radar and time-of-flight (ToF) cameras. Less expensive and less accurate acoustic and infrared devices sense proximity and coarse angle of arrival. The one sensor often overlooked by the both the DIY and professional designer is radar.

However, some are beginning to apply small radar technology to solve the world’s problems. Here are specific examples:

Autonomous vehicles: In 2007, the General Motors and Carnegie Mellon University Tartan Racing team won the Defense Advanced Research Projects Agency (DARPA) Urban Challenge, where autonomous vehicles had to drive through a city in the shortest possible time period. Numerous small radar devices aided in their real-time decision making. Small radar devices will be a key enabling technology for autonomous vehicles—from self-driving automobiles to unmanned aerial drones.

Consumer products: Recently, Massachusetts Institute of Technology (MIT) researchers developed a radar sensor for gaming systems, shown to be capable of detecting gestures and other complex movements inside a room and through interior walls. Expect small radar devices to play a key role in enabling user interface on gaming consoles to smartphones.

The Internet of Things (IoT): Fybr is a technology company that uses small radar sensors to detect the presence of parked automobiles, creating the most accurate parking detection system in the world for smart cities to manage parking and traffic congestion in real time. Small radar sensors will enable the IoT by providing accurate intelligence to data aggregators.

Automotive: Small radar devices are found in mid- to high-priced automobiles in automated cruise control, blind-spot detection, and parking aids. Small radar devices will soon play a key role in automatic braking, obstacle-avoidance systems, and eventually self-driving automobiles, greatly increasing passenger safety.

Through-Wall Imaging: Advances in small radar have numerous possible military applications, including recent MIT work on through-wall imaging of human targets through solid concrete walls. Expect more military uses of small radar technology.

What is taking so long? A tremendous knowledge gap exists between writing the application and emitting, then detecting, scattered microwave fields and understanding the result. Radar was originally developed by physicists who had a deep understanding of electromagnetics and were interested in the theory of microwave propagation and scattering. They created everything from scratch, from antennas to specialized vacuum tubes.

Microwave tube development, for example, required a working knowledge of particle physics. Due to this legacy, radar textbooks are often intensely theoretical. Furthermore, microwave components were very expensive—handmade and gold-plated. Radar was primarily developed by governments and the military, which made high-dollar investments for national security.

Small radar devices such as the RFBeam Microwave K-LC1a radio transceiver cost less than $10 when purchased in quantity.

Small radar devices such as the RFBeam Microwave K-LC1a radio transceiver cost less than $10 when purchased in quantity.

It’s time we make radar a viable option for DIY projects and consumer devices by developing low-cost, easy-to-use, capable technology and bridging the knowledge gap!
Today you can buy small radar sensors for less than $10. Couple this with learning practical radar processing methods, and you can solve a critical sensing problem for your project.

Learn by doing. I created the MIT short-course “Build a Small Radar Sensor,” where students learn about radar by building a device from scratch. Those interested can take the online course for free through MIT Opencourseware or enroll in the five-day MIT Professional Education course.

Dive deeper. My soon-to-be published multimedia book, Small and Short-Range Radar Systems, explains the principles and building of numerous small radar devices and then demonstrates them so readers at all levels can create their own radar devices or learn how to use data from off-the-shelf radar sensors.

This is just the beginning. Soon small radar sensors will be everywhere.